
����������
�������

Citation: Suantai, S.; Kankam, K.;

Yambangwai, D.; Cholamjiak, W. A

Modified Inertial Parallel

Viscosity-Type Algorithm for a Finite

Family of Nonexpansive Mappings

and Its Applications. Mathematics

2022, 10, 4422. https://doi.org/

10.3390/math10234422

Academic Editors: Sumit Chandok

and Yury Shestopalov

Received: 21 September 2022

Accepted: 15 November 2022

Published: 23 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Modified Inertial Parallel Viscosity-Type Algorithm
for a Finite Family of Nonexpansive Mappings and
Its Applications
Suthep Suantai 1,2, Kunrada Kankam 3, Damrongsak Yambangwai 3,* and Watcharaporn Cholamjiak 3

1 Research Group in Mathematics and Applied Mathematics, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand

2 Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand

3 School of Science, University of Phayao, Phayao 56000, Thailand
* Correspondence: damrongsak.ya@up.ac.th

Abstract: In this work, we aim to prove the strong convergence of the sequence generated by the
modified inertial parallel viscosity-type algorithm for finding a common fixed point of a finite family
of nonexpansive mappings under mild conditions in real Hilbert spaces. Moreover, we present the
numerical experiments to solve linear systems and differential problems using Gauss–Seidel, weight
Jacobi, and successive over relaxation methods. Furthermore, we provide our algorithm to show
the efficiency and implementation of the LASSO problems in signal recovery. The novelty of our
algorithm is that we show that the algorithm is efficient compared with the existing algorithms.
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1. Introduction

LetK be a nonempty closed and convex subset of a real Hilbert spaceH and T : K → K
be a mapping with the fixed point set F(T), i.e., F(T) = {x ∈ K : Tx = x}. A mapping T is
said to be:

(1) Contractive if there exists a constant k ∈ (0, 1) such that ‖Tx− Ty‖ ≤ k‖x− y‖ for all
x, y ∈ K;

(2) Nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ K.

Many problems in optimization can be solved by solving the transmission fixed point
problem of a nonexpansive mapping, such as minimization problems, variational inequality,
variational inclusion, etc. [1,2]. Thus, nonexpansive mapping has been studied extensively,
including creating an algorithm to find its fixed point [3,4]. Constructing an algorithm to achieve
strong convergence is a critical issue that many mathematicians focus on. One of them is the
viscosity approximation method of selecting a particular fixed point of a given nonexpansive
mapping as proposed by Moudafi [5] in 2000. Later, a class of viscosity-type methods was
introduced by many authors; see [6,7]. One of the modified viscosity methods introduced by
Aoyama and Kimura [8] is called the viscosity approximation method (VAM) for a countable
family of nonexpansive mappings. The VAM was applied to a variational problem and zero
point problem. When the contraction mappings are set by some fixed vectors, the VAM is
reduced to a Halpern-type iteration method (HTI). To improve the convergence of the method,
one of the most commonly used methods is the inertial method. In 1964, Polyak [9] introduced
an algorithm that can speed up the gradient descent, and its modification was made immensely
popular by Nesterov’s accelerated gradient algorithm, which was an algorithm proposed by
Nesterov in 1983 [10]. This well-known method, which has improved the convergence rate, is
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known as the inertial iteration for the operator. Many researchers have given various acceleration
techniques such as [11,12] to obtain a faster convergence method.

Many real-world problems can be modeled as common problems. Therefore, the study
of the solving of these problem is important and has received the attention of many
mathematicians. In 2015, Anh and Hieu [13] introduced a parallel monotone hybrid
method (PMHM), and Khatibzadeh and Ranjbar [14] introduced Halpern-type iterations
to approximate a finite family of quasi-nonexpansive mappingsin Banach space. Recently,
there has been some research involving the parallel method for solving many problems. It
is shown that the method can be applied in real-world problems such as image deblurring
and related applications [15,16].

Inspired by previous works, in this work, we are interested in presenting a viscosity
modification combined with the parallel monotone algorithm for a finite nonexpansive
mapping. We provide a strong convergence theorem for the proposed algorithm with a
parallel monotone algorithm. We provide numerical experiments of our algorithm for
solving the linear system problem, differential problem, and signal recovery problem. The
efficiency of the proposed algorithm is shown by comparing with existing algorithms.

2. Preliminaries

In this section, we give some definitions and lemmas that play an essential role in our
analysis. The strong and weak convergence of {un} to x will be denoted by un → u and
un ⇀ u, respectively. The projection of s on to A is defined by

PA(s) = argmin
t∈A

‖s− t‖

where A is a nonempty, closed set.

Lemma 1 ([17]). Let {sn} be a sequence of nonnegative real numbers such that there exists a subse-
quence {sni} of {sn} satisfying {sni} < {sni+1} for all i ∈ N. Then, there exists a nondecreasing
sequence {mk} of N such that lim

k→∞
mk = ∞ and the following properties are satisfied for all (sufficiently

large) numbers k ∈ N:
smk ≤ smk+1 and sk ≤ smk+1.

Lemma 2 ([2]). Let {sn} be a sequence of nonnegative real numbers such that

sn+1 = (1− bn)sn + dn

where {bn} ⊂ (0, 1) with
∞

∑
n=0

bn = ∞ and {dn} satisfies lim sup
n→∞

dn

bn
≤ 0 or ∑

n=0∞
|dn| < ∞. Then,

lim
n→∞

sn = 0.

Lemma 3 ([18]). Assume {sn} is a sequence of nonnegative real numbers such that

sn+1 ≤ (1− δn)sn + δnτn, n ≥ 1

and
sn+1 ≤ sn − ηn + ρn, n ≥ 1.

where {δn} ⊆ (0, 1), {ηn} is a sequence of nonnegative real numbers, and {τn} and {ρn} are real
sequences such that:

1.
∞

∑
n=1

δn = ∞;

2. lim
n→∞

ρn = 0;

3. lim
k→∞

ηnk = 0 implies lim sup
k→∞

τnk ≤ 0 for any subsequence of real numbers {nk} of {n}.
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Then, lim
n→∞

sn = 0.

Proposition 1 ([19]). Let H be a real Hilbert space. Let m ∈ N be fixed. Let {xi}m
i=1 ⊂ X and

ti ≥ 0 for all i = 1, 2, ..., m with
m

∑
i=1

ti ≤ 1. Then, we have

∥∥∥∥ m

∑
i=1

tixi

∥∥∥∥2

≤

m

∑
i=1

ti‖xi‖2

2−
( m

∑
i=1

ti

) . (1)

3. Main Results

In this section, we introduce viscosity modification combined with the inertial parallel
monotone algorithm for a finite family of nonexpansive mappings. Before proving the
strong convergence theorem, we give the following Definition 1:

Definition 1. Let C be a nonempty subset of a real Hilbert space H. Let Ti : C → C be nonexpan-
sive mappings for all i = 1, 2, ..., N. Then, {Ti}N

i=1 is said to satisfy Condition (A)
if, for each bounded sequence {zn} ⊂ C, there exists sequence {in} such that in ∈ {1, 2, ..., N}

for all n ≥ 1 with lim
n→∞

‖zn − Tin zn‖ = 0 implying that lim
n→∞

‖zn − Tizn‖ = 0 for all i =

1, 2, ..., N.

For the example of {Ti}N
i=1, which satisfies Condition (A), we can set Ti = JBi

ri (I − ri Ai),
where JBi

ri = (I + riBi)
−1, Ai : H → H is an αi-inverse strongly monotone operator, Bi : H →

2H is a maximal monotone operator, and ri satisfies the assumptions in Theorem 3.1 of [1].
Assume that the following conditions hold:

C1. lim
n→∞

θn‖un − un−1‖
αn

= 0;

C2. lim
n→∞

αn = 0, ∑∞
n=1 αn = ∞;

C3. lim inf
n→∞

βnγn > 0, lim inf
n→∞

βn(1− αn − βn − γn) > 0.

Theorem 1. Let {un} be defined by Algorithm 1, and let {Ti}N
i=1 satisfy Condition (A) such that

F :=
N⋂

i=1

F(Ti) 6= ∅. Then, the sequence {un} converges strongly to z̄ = PF f (z).

Algorithm 1: Let C be a nonempty closed convex subset of a real Hilbert space
H, and let f : H → H be a contraction mapping. Let Ti : C → C be nonexpansive
mappings for all i = 1, 2, ..., N.

Suppose that {θn} ⊂ [0, θ] with θ ∈ [0, 1) and {αn}, {βn}, and {γn} are sequences
in (0, 1). For n = 1, let {un} be a sequence generated by u0, u1 ∈ H, and define the
following:
Step 1. Calculate the inertial step:

vn = un + θn(un − un−1).

Step 2. Compute:

sn,i = αn f (vn) + βnvn + γnTivn + (1− αn − βn − γn)Ti(Tivn)

Step 3. Construct un+1 by

un+1 = argmax{‖sn,i − vn‖ : i = 1, 2, ..., N}.

Step 4. Set n = n + 1, and go to Step 1.
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Proof. For each n ∈ N, i ∈ {1, 2, ..., N}, we set {zn,i} to be defined by z1,i ∈ H and

zn+1,i = αn f (zn,i) + βnzn,i + γnTizn,i + (1− αn − βn − γn)Ti(Tizn,i).

Let z ∈ F. Then, for each i ∈ {1, 2, ..., N}, we have

‖zn+1,i − z‖ ≤ αn‖ f (zn,i)− z‖+ βn‖zn,i − z‖+ γn‖Tizn,i − z‖
+(1− αn − βn − γn)‖Ti(Tizn,i)− z‖

≤ αn‖ f (zn,i)− f (z)‖+ αn‖ f (z)− z‖+ (1− αn)‖zn,i − z‖
≤ (1− αn(1− k))‖zn,i − z‖+ αn‖ f (z)− z‖

= (1− αn(1− k))‖zn,i − z‖+ αn(1− k)
‖ f (z)− z‖
(1− k)

≤ max
{
‖zn,i − z‖, ‖ f (z)− z‖

(1− k)
}

...

≤ max
{
‖z1,i − z‖, ‖ f (z)− z‖

(1− k)
}

.

This shows that {zn,i} is bounded for all i = 1, 2, ..., N. From the definition of {un},
there exist in ∈ {1, 2, ..., N} such that

un+1 = αn f (vn) + βnvn + γnTin vn + (1− αn − βn − γn)Tin(Tin vn). (2)

Therefore, we obtain

‖un+1 − zn+1,in‖ ≤ αn‖ f (vn)− f (zn,in)‖+ βn‖vn − zn,in‖+ γn‖Tin vn − Tin zn,in‖
+(1− αn − βn − γn)‖Tin(Tin vn)− Tin(Tin zn,in)‖

≤ (1− αn(1− k))‖vn − zn,in‖
≤ (1− αn(1− k))‖un + θn(un − un−1)− zn,in‖
≤ (1− αn(1− k))‖un − zn,in‖+ θn‖un − un−1‖.

By our assumptions and Lemma 2, we conclude that

lim
n→∞

‖un+1 − zn+1,in‖ = 0. (3)

By Proposition 1 and (2), we obtain

‖zn+1,in − z‖2 = ‖αn( f (zn,in)− f (z)) + αn( f (z)− z) + βn(zn,in − z) + γn(Tin zn,in − z)

+ (1− αn − βn − γn)(Tin Tin zn,in − z)‖2

≤ ‖αn( f (zn,in)− f (z)) + βn(zn,in − z) + γn(Tin zn,in − z)

+ (1− αn − βn − γn)(Tin Tin zn,in − z)‖2 + 〈αn( f (z)− z), zn+1,in − z〉
≤ αnk‖zn,in − z‖2 + βn‖zn,in − z‖2 + (1− αn − βn)‖Tin zn,in − zn,in‖

2

− βnγn‖Tin zn,in − zn,in‖ − βn(1− αn − βn − γn)‖Tin Tin zn,in − zn,in‖
2

+ 〈αn( f (z)− z), zn+1,in − z〉
≤ (1− αn(1− k))‖zn,in − z‖2 − βnγn‖Tin zn,in − zn,in‖

2

− βn(1− αn − βn − γn)‖Tin Tin zn,in − zn,in‖
2

+ 〈αn( f (z)− z), zn+1,in − z〉.

(4)
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Setting sn = ‖zn,in − z‖2 implies that

sn+1 ≤ (1− αn(1− k))sn − βnγn‖Tin zn,in − zn,in‖
2

− βn(1− αn − βn − γn)‖Tin Tin zn,in − zn,in‖
2 + 〈αn( f (z)− z), zn+1,in − z〉.

(5)

Assume that un → z̄, then we show that z̄ ∈ F. We will consider this for two
possible cases on sequence {sn}:

Case 1. Suppose that there exists n0 ∈ N such that sn+1 ≤ sn for all n ≥ n0. This
implies that lim

n→∞
sn exists. From (5), we have

βnγn‖Tin zn,in − zn,in‖
2 ≤ (1− αn(1− k))sn + 〈αn( f (z)− z), zn+1,in − z〉 − sn+1 (6)

From Condition (A), (6), and {un} bounded, we obtain

lim
n→∞

βnγn‖Tizn,in − zn,in‖
2 = 0 (7)

From Condition C3 and (7), this implies that

lim
n→∞

‖Tin zn,in − zn,in‖ = 0

As un → z̄ and lim
n→∞

‖un+1 − zn+1,in‖ = 0 from (3), this implies that zn,in → z̄. Since

{Ti}N
i=1 satisfies Condition (A), lim

n→∞
‖Tizn,in − zn,in‖ = 0 for all i = 1, 2, ..., N. By the

demiclosed property of nonexpansive mapping, we obtain z̄ ∈ F.
Case 2. Suppose that there exists a subsequence {snj} of {sn} such that snj < snj+1 for

all j ∈ N. In this case, it follows from Lemma 1 that there is a nondecreasing subsequence
{mk} of N such that lim

k→∞
mk → ∞, and the following inequalities hold for all k ∈ N:

smk ≤ smk+1 and sk ≤ smk+1.

Similar to Case 1, we obtain lim
n→∞

‖Timk
zmk ,imk

− zmk ,imk
‖ = 0. It is known that un → z̄,

which implies umk → z̄. Therefore, z̄ ∈ F. We next show that z̄ = PF f (z). From (4), we
see that

‖zn+1,in − z‖2 ≤ (1− αn(1− k))‖zn,in − z‖2 + 〈αn( f (z)− z), zn+1,in − z〉.

Since {zn,in} is bounded, there exists a subsequence {‖znk ,ink
− z‖} of {‖zn,in − z‖}

such that

lim inf
k→∞

(‖znk+1,ink
− z‖ − ‖znk ,ink

− z‖) ≥ 0 and lim sup
k→∞

〈 f (z)− z, znk+1,ink
− z〉 ≤ 0.

For this purpose, one assumes that {‖znk ,ink
− z‖} is a subsequence of {‖zn,in − z‖}

such that lim inf
k∈∞

(‖znk+1,ink
− z‖ − ‖znk ,ink

− z‖) ≥ 0. This implies that

lim inf
k→∞

(‖znk+1,ink
− z‖2 − ‖znk ,ink

− z‖2)

= lim inf
k→∞

((‖znk+1,ink
− z‖ − ‖znk ,ink

− z‖)(‖znk+1,ink
− z‖+ ‖znk ,ink

− z‖))

≥ 0.

From the definition of zn, we obtain
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‖znk+1,ink
− znk ,ink

‖ ≤ ‖αnk ( f (znk ,ink
)− znk ,ink

) + γnk (Tink
znk ,ink

− znk ,ink
)

+ (1− αnk − βnk − γnk )(Tink
Tink

znk ,ink
− znk ,ink

)‖

≤ αnk‖ f (znk ,ink
)− znk ,ink

‖+ γnk‖Tink
znk ,ink

− znk ,ink
‖

+ (1− αnk − βnk − γnk )‖Tink
Tink

znk ,ink
− znk ,ink

)‖

≤ αnk (k‖znk ,ink
− z‖+ ‖ f (z)− znk ,ink

‖) + γnk‖Tink
znk ,ink

− znk ,ink
‖

+ (1− αnk − βnk − γnk )‖Tink
Tink

znk ,ink
− znk ,ink

)‖.

(8)

By Cases 1 and 2, there exists a subsequence of {znk ,ink
} such that

lim
k→∞
‖Tink

znk ,ink
− znk ,ink

‖ = 0, (9)

and

lim
k→∞
‖Tink

Tink
znk ,ink

− znk ,ink
‖ = 0. (10)

By the boundedness of {zn,i}, (8), and (9), we have

lim
n→∞

‖znk+1,ink
− znk ,ink

‖ = 0. (11)

Since {zn,i} is bounded, there exists a subsequence {znkj
,inkj
} of {znk ,ink

} converging

weakly to some z̄ ∈ H. Without loss of generality, we replace {znkj
} by {znk}, and we have

lim sup
n→∞

〈 f (z)− z, zn,in − z〉 = lim sup
k→∞

〈 f (z)− z, znk ,ink
− z〉

= 〈 f (z)− z, z̄− z〉

Since z ∈ F, z̄ = PF f (z). From (11), we obtain

lim sup
k→∞

〈 f (z)− z, znk+1 − z〉 = lim sup
k→∞

〈 f (z)− z, znk − z〉+ lim sup
k→∞

〈 f (z)− z, znk+1 − znk 〉

= 〈 f (z)− z, z̄− z〉
≤ 0.

Therefore, lim
n→∞

‖zn,in − z̄‖ = 0 by using Lemma 3 and (5). By lim
n→∞

‖un+1− zn+1,in‖ = 0,

this implies that lim
n→∞

‖un − z̄‖ = 0. We thus complete the proof.

4. Numerical Experiments

In this section, we present our algorithm to solve linear systems and differential
problems. All computational experiments were written in Matlab 2022b and conducted
on a Processor Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz, 3000 Mhz, with 8 cores and 8
logical processors.

4.1. Linear System Problems

We now consider the linear system:

Au = b (12)

where A : Rl → Rl is a linear and positive operator and u, b ∈ Rl . Then, the lin-
ear system (12) has a unique solution. There are many different ways of rearranging
Equation (12) in the form of fixed point equation T(u) = u. For example, the well-known



Mathematics 2022, 10, 4422 7 of 21

weight Jacobi (WJ) and successive over relaxation (SOR) methods [12,20,21] provide the
linear system (12) as the fixed point equation TWJ(u) = u and TSOR(u) = u.

From Table 1, we set ω is the weight parameter; the diagonal component of matrix A
is D, whereas the lower triangular component of matrix D− A is L.

Table 1. The different ways of rearranging the linear systems (12) into the form u = T(u).

Linear System Fixed Point Mapping T(u)

Au = b TWJ(u) =
(

I −ωD−1 A
)
u + ωD−1b

TSOR(u) =
(

I −ω(D−ωL)−1 A
)

u + ω(D−ωL)−1b

Setting T(u) = S(u) + c, where u, c ∈ C, we can see that

‖T(u)− T(t)‖ = ‖S(u)− S(t)‖ ≤ ‖S‖‖u− t‖ ≤ ‖u− t‖, ∀u, t ∈ Rl (13)

where S is an operator with ‖S‖ < 1. In controlling the operators TWJ and TSOR in the form
of TW J(u) = SW J(u) + cW J where

SWJ = I −ωD−1 A, cWJ = ωD−1b,

and TSOR(u) = SSOR(u) + cSOR where

SSOR = I −ω(D−ωL)−1 A, cSOR = ω(D−ωL)−1b.

It follows from (13) that TWJ and TSOR are nonexpansive mapping, and their weight
parameter needs to be appropriately adjusted. The weight parameter ω implemented for the
operator Sj of the WJ and SOR methods has a norm less than one. Moreover, the optimal
weight parameter ωo in obtaining the smallest norm for each type of operator S is indicated
in Table 2.

Table 2. Implemented weight parameter and optimal weight parameter of operator S.

The Different Types Implemented Weight Optimal Weight
of Operator S Parameter ω Parameter ωo

SWJ 0 < ω < 2 min
{

λmin(D)

λmin(A)
,

λmax(D)

λmax(A)

}
ωo =

1
2
(
λmin(A) + λmax(A)

)
SSOR 0 < ω < 2 ωo =

2d
d +

√
λmin(A)λmax(A))

The parameters λmax(D−1 A) and λmin(D−1 A) are the maximum and minimum eigen-
value of matrix D−1 A, respectively, and ρ is the spectral radius of the iteration matrix of
the Jacobi method (SWJ with ω = 1). Thus, we can convert this linear system into fixed
point equations to obtain the solution of the linear system (12).

Ti(u) = u, ∀i = 1, 2, . . . , M, (14)

where u is the common solution of Equation (14). By utilizing the nonexpansive mapping
Ti, ∀i = 1, 2, . . . , M, we provide a new parallel iterative method in solving the common
solution of Equation (14). Iteratively, the generated sequence {un} is produced by using
two initial data u0, u1 ∈ Rl and

zn = un + θn(un − un−1),

yi,n = αn f (zn) + βnzn + γnTizn

+
(
1− (αn + βn + γn)

)
Ti ◦ Ti(zn), i = 1, . . . , M

un+1 = argmax||yi,n − zn||, n ≥ 1,

(15)
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where {αn}, {ϑn}, {γn} are appropriate real sequences in [0, 1] and f is a contraction map-
ping. The stopping criterion is employed as follows:

‖un+1 − un‖2 < εl ,

and after that, set un−1 = un and un = un+1.
Next, the proposed method (15) was compared with the well-known WJ, SOR, and

Gauss–Seidel (the SOR method with ω = 1, called the GS method) methods in obtaining the
solution of the linear system:

4 −1 0 −1 0 . . . . . . . . . 0
−1 4 −1 0 −1 0 . . . . . . 0
0 −1 4 −1 0 −1 0 . . . 0
−1 0 −1 4 −1 0 −1 . . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 . . . −1 0 −1 4 −1 0 −1
0 . . . 0 −1 0 −1 4 −1 0
0 . . . . . . 0 −1 0 −1 4 −1
0 . . . . . . . . . 0 −1 0 −1 4


l×l



u1
u2
u3
u4
...
ul−3
ul−2
ul−1
ul


l×1

=



1
1
1
1
...
1
1
1
1


l×1

, (16)

and u0 = [1 1 · · · 1 1]Tl×1, u1 = [0.5 0.5 · · · 0.5 0.5]Tl×1 with l = 50, 100. For
simplicity, the proposed method (15) with M ≤ 3 and the nonexpansive mapping T are
chosen from TWJ, TSOR, and TGS, and f (u) = u. The results of the WJ, GS, SOR, and
proposed methods are given for the following cases:

Case 1. The proposed method with TWJ;

Case 2. The proposed method with TGS;

Case 3. The proposed method with TSOR;

Case 4. The proposed method with TWJ–TGS;

Case 5. The proposed method with TWJ–TSOR;

Case 6. The proposed method with TGS–TSOR;

Case 7. The proposed method with TWJ–TGS–TSOR.

These are demonstrated and discussed for solving the linear system (16). The weight
parameter ω of the proposed methods is set as its optimum weight parameter (ωo) defined
in Table 2. We used the following parameters:

αn =

{
1/n2, if 1 ≤ n < Ñ,
1/n, otherwise,

(17)

βn =

{
1/(2n + 1), if 1 ≤ n < Ñ,
n/(2n + 1), otherwise,

(18)

γn = βn, and

θn =

min
{

1
n2‖un − un−1‖2

, 0.15
}

if un 6= un−1 ,

0.15 otherwise,
(19)

where Ñ is the number of iterations at which we want to stop with εl = 10−7. The
estimated error per iteration step for all cases was measured by using the relative error
‖un − u‖2/‖u‖2. Figure 1 shows the estimated error per iteration step for all cases with
l = 50 and l = 100.

The trend of the number of iterations for the WJ, GS, and SOR methods and all case
studies of the proposed methods in solving the linear system (16) with l = 50 and l = 100 is
shown in Figure 2.
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Figure 1. Relative error of the GS, WJ, and SOR methods and all cases of the proposed methods in
solving the problem (16) with l = 50 and l = 100, respectively.
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Figure 2. The progression in the number of iterations for the GS, WJ, and SOR methods and the
proposed methods in solving the problem (12)) with l = 50 and l = 100, respectively.

Figures 1 and 2 show that the proposed method using TWJ was better than the WJ
method, the proposed method with TGS was better than the GS method, and the proposed
method with TSOR was better than SOR method when the speed of convergence and the
number of iterations are compared. We also found that, when the proposed method with
M > 1 was used (parallel algorithm), the number of iterations was based on the minimum
number of iterations used in the nonparallel proposed methods. That is, when the parallel
algorithms were used, it can be seen from Figure 2 that the number of iterations of the
proposed method with TWJ–TGS was the same as the proposed method with TGS and the
number of iterations of the proposed method with TWJ–TSOR, TGS–TSOR, TWJ–TGS–TSOR
was the same as the proposed method with TSOR. As a result of the parallel algorithm in
which TSOR was used as its partial components (The proposed methods with TWJ–TSOR,
TGS–TSOR, TWJ–TGS–TSOR), this will give us the fastest convergence.

Figure 3 shows that the CPU time of the SOR method was better than the other
methods. However, the CPU time of the proposed method using the parallel technique
TWJ–TGS–TSOR was better, close to the SOR method as compared to the other way, when
the grid size of matrix A was increased.

Next, we provide a comparison of proposed algorithm with the PMHM, HTI, and
VAM (where Tn is the Wn-mapping, which was introduced by Shimoji and Takahashi [22]
with setting αn = n

n+1 ). For the parameter in the HTI and VAM, we chose αn = n
n+1 . Let

fn(un) =
un
8 in the VAM algorithm and fn(un) = 0.7u0 in the HTI algorithm. The results

are reported in Table 3 and Figure 4.
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Figure 3. The progression of the CPU time for the GS, WJ, and SOR methods and the proposed methods
in solving the problem (12) with l = 50 and l = 100, respectively.

Table 3. The progression of the CPU time for the linear system problem.

l = 50, eps = 10−4

Algorithm Proposed PMHM HTI VAM

CPU time 0.0052 0.0072 0.3167 0.8132

l = 100, eps = 10−4

Algorithm Proposed PMHM HTI VAM

CPU time 0.0063 0.0074 1.1320 3.5399
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Figure 4. The progression of the number of iterations for the proposed methods and the PMHM, HTI,
and VAM in solving the problem (12) with l = 50 and l = 100, respectively.

From Table 3 and Figure 4, we see that the CPU time and the number of iterations of
the proposed algorithm were better than the PMHM, HTI, and VAM.

4.2. Differential Problems

Consider the following simple and well-known periodic heat problem with Dirichlet
boundary conditions (DBCs) and initial data:

ut = ϑuxx + f (x, t), 0 < x < l, t > 0.

u(x, 0) = u0(x), 0 < x < l, (20)

u(0, t) = ψ1(t), u(l, t) = ψ2(t), t > 0,

where ϑ is constant, u(x, t) represents the temperature at points (x, t) and f (x, t), and ψ1(t)
and ψ2(t) are sufficiently smooth functions. Below, we use the notations ui

n and (uxx)i
n to

represent the approximate numerical values of u(xi, tn) and uxx(xi, tn), and tn = n∆t, where
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ϑt denotes the size of the temporal mesh. The following well-known Crank–Nicolson-type
scheme [12,21] is the foundation for a set of schemes used to solve the heat problem (20):

ui
n+1 − ui

n

∆t
=

ϑ

2

[
(uxx)

i
n+1 + (uxx)

i
n

]
+ f i

n+1/2, i = 2, . . . , N − 1 (21)

with initial data:
ui

0 = u0(xi), i = 2, . . . , N − 1 (22)

and DBCs:
u1

n+1 = ψ1(tn+1), uN
n+1 = ψ2(tn+1). (23)

To approximate the term of (uxx)i
k, k = n, n + 1, we used the standard centered

discretization with space. The matrix form of the well-known second-order finite difference
scheme (FDS) in solving the heat problem (20) can be written as

Aun+1 = Gn (24)

where Gn = Bun + fn+1/2:

A =



1 + η − η

2
− η

2
1 + η − η

2
. . .

. . .
. . .

− η

2
1 + η − η

2
− η

2
1 + η


, B =



1− η
η

2η

2
1− η

η

2
. . .

. . .
. . .

η

2
1− η

η

2η

2
1− η


,

un =


u2

k
u3

k
...

uN−2
k

uN−1
k

, fn+1/2 =


η

2
ψ1

n+1/2 + ∆t f 2
n+1/2

∆t f 3
n+1/2
...

∆t f N−2
n+1/2

η

2
ψn+1/2

2 + ∆t f N−1
n+1/2

,

η = ϑ∆t/
(
∆x2), γi

n+1/2 = γi(tn+1/2), i = 1, 2, and f i
n+1/2 = f (xi, tn+1/2), i = 2, . . . , N − 1.

According to Equation (24), matrix A is square and symmetrically positive definite. This scheme
uses a three-point stencil and reaches the second-order approximation with time and space. The
scheme (21) is consistent with the problem (20). The required and sufficient criterion for the
stability of the scheme (21) is ‖ A−1B ‖≤ 1 (see [12]).

The discretization of the considered problem (24) has traditionally been solved using itera-
tive methods. Here, the well-known WJ and SOR methods were chosen as examples (see Table 4).

Table 4. The specific name of WJ and SOR in solving the discretization of the considered problem (24).

Consideration Problem (24) Iterative Method Specific Name

Aun+1 = Gn Du(n+1,s+1) = (D−ωA)u(n+1,s) + ωGn WJ
(D−ωL)u(n+1,s+1) =

(
(D−ωL)−ωA

)
u(n+1,s) +ωGn SOR

The weight parameter is ω; the diagonal component of matrix A is D; the lower
triangular part of matrix D− A is L. Moreover, the optimal weight parameter ωo is also
indicated with the same formula in Table 2. The step sizes of the time play an important
role in the stability needed for the WJ and SOR methods in solving the linear systems (24)
generated from the discretization of the considered problem (20). The discussion on the
stability of the WJ and SOR methods in solving the linear systems (24) can be found
in [20,21].

Let us consider the linear system:

Au = G (25)
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where A : Rl → Rl is a linear and positive operator and u, G ∈ Rl . We transformed this
linear system into the form of a fixed point equation T(u) = u to determine the solution of
the linear system (25). For example, the well-known WJ, SOR, and GS approaches present
the linear system (25) as a fixed point equation (see Table 5).

Table 5. The alternative method of rearranging the linear systems (25) into the form u = T(u).

Linear System Fixed Point Mapping T(u)

Au = G TWJ(u) =
(

I −ωD−1 A
)
u + ωD−1G

TGS(u) =
(

I − (D− L)−1 A
)

u + ω(D− L)−1G

TSOR(u) =
(

I −ω(D−ωL)−1 A
)

u + ω(D−ωL)−1G

We introduced a new parallel iterative method using the nonexpansive mapping
Tj, ∀j = 1, 2, . . . , M. Iteratively, the generated sequence {un} is created by employing two
initial data u0 = u(0,1), u1 = u(1,1) ∈ Rl and

t(n,s+1) = u(n,s+1) + θn

(
u(n,s+1) − u(n,s)

)
,

vj
(n,s+1) = αn f

(
t(n,s+1)

)
+ βnt(n,s+1) + γnTjt(n,s+1)

+
(
1− (αn + βn + γn)

)
Tj ◦ Tj

(
t(n,s+1)

)
, j = 1, . . . , M

u(n+1,s+1) = argmax‖vi
(n,s+1) − t(n,s+1)‖, n ≥ 1,

(26)

where the second superscript “s”, s = 1, 2, . . . , Ŝn, denotes the number of iterations,
{αn}, {ϑn}, {γn} are appropriate real sequences in [0, 1], and f is a contraction mapping.
The following stopping criteria were employed:

‖u(n+1,Ŝn+1) − u(n+1,Ŝn)
‖2 < εd,

where “Ŝn” denotes the last iteration at time tn, and then, we set

u(n,1) = u(n−1,1), u(n+1,Ŝn+1) = u(n,1).

Next, the proposed method (26) in obtaining the solution of the problem (24) generated
from the discretization of the heat problem with DBCs and the initial data (20) was then
compared to the well-known WJ, GS, and SOR methods with their optimal parameters. The
proposed method (26) with M ≤ 3 and the nonexpansive mapping T chosen from TWJ, TSOR,
and TGS were compared.

Let us consider the simple heat problems:

ut = ϑuxx + 0.4ϑ(4π2 − 1)e−4ϑt cos(4πx), 0 ≤ x ≤ 1, 0 < t < ts,

u(x, 0) = cos(4πx)/10, u(0, t) = e−4ϑt/10, u(1, t) = e−4ϑt/10,

u(x, t) = e−4ϑt cos(4πx)/10.

(27)

The results of the WJ, GS, and SOR methods were compared with all case studies
of the proposed methods, which is the same as Section 4.1. Because we focused on the
convergence of the proposed method, the stability analysis in selecting the time step sizes
is not described in depth. The proposed methods’ time step size was based on the least
step size selected from the WJ and SOR methods in solving the problem (24) obtained from
the discretization of the considered problem (27).

All computations were carried out on a uniform grid of N nodes, which corresponds to
the solution of the problem (24) with N− 2× N− 2 sizes of matrix A and ∆x = 1/(N − 1).
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The weight parameter ω of the proposed method is defined as the optimum weight param-
eter (ωo) in Table 2.

We used ϑ = 25, ∆t = ∆x2/10, εd = 10−7, the default parameters αn, βn, γn, and the
function f set as Equations (17)–(19) and

θn =

min
{

1
n2‖un − un−1‖2

, 0.121
}

if un 6= un−1,

0.121 otherwise,
(28)

where Ñ is the number of iterations at which we want to stop. For testing purposes only,
all computations were carried out for 0 ≤ t ≤ 0.01 (when t� 0.05, u(x, t)→ 0). Figure 5
shows the approximate solution of the problem (27) with 101 nodes at t = 0.01 by using
the WJ, GS, and SOR methods and the proposed methods.
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Figure 5. Approximate solutions of the GS, WJ, and SOR methods and all cases of the proposed methods
in solving the problem (27) with 101 nodes.

It can be seen from Figure 5 that all numerical solutions matched the analytical solution
reasonably well. Figure 6 shows the trend of the iteration number for the WJ, GS, and
SOR methods and the proposed methods in solving the problem (24) generated from the
discretization of the considered problem (27) with 101 nodes. It was found that the proposed
method with TWJ was better than the WJ method, the proposed method with TGS was better
than the GS method, and the proposed method with TSOR was better than the SOR method
when the number of iterations was compared.
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Figure 6. The evolution of the number of iterations for the WJ, GS, and SOR methods and the
proposed methods in solving the problem (20) with 101 nodes and t ∈ (0, 1].

We see that the number of iterations of the proposed method with 0 < n ≤ 3 depends
on the minimum number of iterations of the nonparallel proposed methods used. That is,
the number of iterations of the proposed method at each time step with TWJ–TGS was the
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same as the proposed method with TGS, and the number of iterations at each time step of
the proposed methods with TWJ–TSOR, TGS–TSOR, and TWJ–TGS–TSOR was the same as the
proposed method with TSOR.

Next, the proposed method with TWJ–TGS–TSOR was chosen in solving the problem (24)
generated from the discretization of the considered problem (27) to test and verify the
order of accuracy for the presented FDS in solving the heat problem. All computations
were carried out on uniform grids of 11, 21, 41, 81, and 161 nodes, which correspond to the
solution of the discretization of the heat problem (27) with ∆x = 0.1, 0.05, 0.025, 0.0125, and
0.0625, respectively. The evolution of their relative error ‖un − u‖2/‖u‖2 at each time step
reached under the acceptable tolerance εd = 1× 10−7 for the numerical solution of the heat
problem problem with various grid sizes is shown in Figure 7.
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Figure 7. The evolution of the relative error in obtain the numerical solution of the problem (27) with
various grid sizes by using the proposed method with TWJ–TGS–TSOR.

When the distance between the graphs of all computational grid sizes was examined,
the proposed method using TWJ–TGS–TSOR was shown to have second-order accuracy. That
is, the order of the accuracy of the proposed method using TWJ–TGS–TSOR corresponds to the
FDS construction. Figure 8 shows the trend of the iteration number for the WJ, GS, and SOR
methods compared with all cases of the proposed methods in solving the discretization of the
considered problem (27) with varying grid sizes.
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Figure 8. The evolution of the iteration number for the GS, WJ, and SOR methods and the proposed
methods in solving the problem (20) with ϑ = 25 and t ∈ (0, 1].

It can be seen that, when the grid size was small, the parallel algorithm in which the
TGS or TSOR was used as its partial components gave us the lowest number of iterations
under the accepted tolerance.

From Figure 9, we see that the CPU time of the SOR method was better than the other
methods. However, the CPU time of the proposed method using the parallel technique TWJ–
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TGS–TSOR was better, close to the SOR method as compared to the other way, when the grid
size of matrix A was increased.
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Figure 9. The evolution of the CPU time for the GS, WJ, and SOR methods and the proposed method
in solving problem (20) with ϑ = 25 and t ∈ (0, 1].

Next, we provide a comparison of the proposed algorithm with the PMHM, HTI, and
VAM (where Tn is a Wn−mapping, which was introduced by Shimoji and Takahashi [22]
with setting αn = n

n+1 ). As the parameter in the HTI and VAM, we chose αn = n
n+1 . Let

fn(un) =
un
8 in the VAM algorithm and fn(un) = 0.7u0 in the HTI algorithm. The results are

reported in Figures 10 and 11.
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Figure 10. The average number of iterations for the proposed methods and the PMHM, HTI,
and VAM.
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Figure 11. The CPU time for the proposed methods and the PMHM, HTI, and VAM.

From Figures 10 and 11, we see that the CPU time and number of iterations of the
proposed algorithm were better than the PMHM, HTI, and VAM.

Moreover, the our method can solve many real-word problems such as image and
signal processing, optimal control, regression, and classification problems by setting Ti as
the proximal gradient operator. Therefore, we present the examples of the signal recovery
in the next.

4.3. Signal Recovery

In this part, we present some numerical examples of the signal recovery by the pro-
posed methods. A signal recovery problem can be modeled as the following underdeter-
mined linear equation system:

b = Au + ε, (29)

where u ∈ RN is the original signal and b ∈ RM is the observed signal, which is squashed
by the filter matrix A : RN → RM and noiseε. It is well known that the problem (29) can be
solved by the LASSO problem:

min
u∈RN

1
2
‖b− Au‖2

2 + λ‖u‖1, (30)

where λ > 0. As a result, various techniques and iterative schemes have been de-
veloped over the years to solve the LASSO problem; see [15,16]. In this case, we set
Tun = proxλg(un − λ∇ f (un)), where f (u) = 1

2‖b− Au‖2
2 and g(u) = λ‖u‖1. It is known

that T is a nonexpansive mapping when λ ∈ (0, 2/L), and L is the Lipschitz constant of ∇ f .
The goal in this paper was to remove noise without knowing the type of filter and

noise. Thus, we are interested in the following problem:

min
u∈RN

1
2
‖A1u− b1‖2

2+ λ1‖u‖1,

min
u∈RN

1
2
‖A2u− b2‖2

2+ λ2‖u‖1,

...

min
u∈RN

1
2
‖ANu− bN‖2

2+ λN‖u‖1.

(31)
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where u is the original signal, Ai is a bounded linear operator, and bi is an observed signal
with noise for all i = 1, 2, ..., N.

We can apply Algorithm 1 to solve the problem (31) by setting Tiun = proxλi gi
(un − λi∇ fi(un)).

In our experiment, the sparse vector u ∈ RN was generated by the uniform distribution
in [−2, 2] with n nonzero elements. b1, b2, b3 were generated by the normal distribution
matrix A1, A2, A3 ∈ RM×N , respectively, with white Gaussian noise such that the signal-to-
noise ratio (SNR) = 40. The initial point u1 was picked randomly. We used the mean-squared
error (MSE) for estimating the restoration accuracy, which is defined as follows:

MSE =
1
N
‖un − u∗‖2

2 < 10−4,

where u∗ is the estimated signal of u.

In what follows, let the step size parameter λi =
1.999

max1≤i≤3(‖Ai‖2)
for all i = 1, 2, 3,

when the contraction mapping f : H → H is defined by f (x) = 0.9x, ∀x ∈ H. We study the
convergence behavior of the sequence θn when

θn =


εn, if n ≤ K and un 6= un−1

αn
n2‖un−un−1‖

, if n > K and un 6= un−1

0.4, if otherwise,

(32)

where K is the number of iterations at which we want to stop.
The iterative scheme was varied by choosing different εn in the following cases:

Case 1. εn = 0;

Case 2. εn = min(0.13,
1

‖u1 − u0‖
);

Case 3. εn = min(0.45,
1

‖u1 − u0‖
);

Case 4. εn = min(0.87,
1

‖u1 − u0‖
);

Case 5. εn = 0.45;
Case 6. εn = 0.89.

We set the number of iterations at which we wanted to stop K = 10,000, and in all
cases, we set αn = 1

5n+1 , βn = 0.3, and γn = βn. The results are reported in Table 6.

Table 6. The convergence of Algorithm 1 with each εn for parameter θn.

Parameter θn Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

A1 CUP 7.3927 7.0153 4.2289 1.8295 5.3543 3.0668
Iter 3830 3661 2076 451 2684 1402

A2 CUP 7.5717 6.5441 3.8712 1.3047 5.4360 2.9778
Iter 3993 3436 1902 438 2762 1419

A3 CUP 7.4972 6.6584 4.0925 1.3244 5.4799 3.3457
Iter 4009 3509 1971 453 2836 1447

A1A2 CUP 2.9380 2.5944 2.0119 1.3225 2.5928 2.1553
Iter 499 402 259 73 410 259

A1A3 CUP 2.8789 2.7574 1.9361 1.3796 2.5989 2.3089
Iter 475 459 248 76 409 249

A2A3 CUP 2.9561 2.7747 2.1093 1.333 2.6121 2,1656
Iter 503 447 278 77 394 231

A1A2A3 CUP 19907 1.9641 1,7686 1.7525 1.8102 3.2931
Iter 74 68 41 37 45 171

From Table 6, it is shown that the parameter θ depends on εn = 0 using the number of
iterations with the CPU time of our algorithm more than the other εn. Furthermore, we see
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that the case of inputting had a lower number of iterations and CPU time than the case of
inputting AiAi, i = 1, 2 and Ai, i = 1, 2, 3 for all of the cases. This means that the efficiency
of the proposed algorithm is better when the number of subproblems is increasing.

Next, we provide a comparison of the proposed algorithm with the PMHM, HTI, and
VAM (where Tn is a Wn-mapping, which was introduced by Shimoji and Takahashi [22]
with setting αn = n

n+1 ). We set the parameter in the PMHM algorithm as αn = 1− n
n+1 . The

parameter in the HTI and VAM was chosen as αn = n
n+1 and βn = n

n+1 . Let fn(un) =
un
8

in the VAM algorithm and fn(un) = 0.7u0 in the HTI algorithm. We plot the number of
iterations versus the mean-squared error (MSE) and the original signal, observation data,
and recovered signal for one case with N = 2560, M = 1280, and m = 210. The results are
reported in Table 7.

From Table 7, we see by the MSE values that our algorithm using the parallel method
was faster than the PMHM, HTI, and VAM in terms of the number of iterations and the
CPU time.

Table 7. The computational results for solving the LASSO problem.

N = 2560, M = 1280

m = 210 m = 230 m = 250

A1 CUP 1.3953 1.4232 1.6346
Iter 443 449 503

A2 CUP 1.3978 1.4164 1.5908
Iter 440 474 474

A3 CUP 1.2974 1.2871 1.3930
Iter 411 419 427

A1A2 CUP 1.3888 1.4732 1.5538
Iter 75 75 78

A1A3 CUP 1.4487 1.3061 1.3578
Iter 72 70 82

A2A3 CUP 1.3728 1.2877 1.2515
Iter 73 68 75

A1A2A3 CUP 1.7252 1.8706 1.8094
Iter 37 38 37

PMHM CUP 2.6205 2.7398 2.4789
Iter 252 262 264

HTI CUP 2.0454 2.0043 2.0365
Iter 121 127 130

VAM CUP 1.7917 2.2685 2.0194
Iter 58 64 60

From Figure 12, it is shown that the MSE value of Algorithm 1 with A1A2A3 decreased
faster than that of Algorithm 1 with Ai Ai, i = 1, 2, and that with Ai Ai, i = 1, 2 decreased
faster than that of Algorithm 1 with Ai, i = 1, 2, 3.

Figure 12. The graphs of the MSE for Algorithm 1 with the input Ai, i = 1, 2, 3.
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The original signal, observation data, and recovered signal are shown in Figures 13–16.

Figure 13. The original signal size N = 2560, M = 1280, and 250 spikes and the measured values
with Ai, i = 1, 2, 3, SNR = 40, respectively.

Figure 14. The recovered signal with m = 210 by A1 (503 Iter, CPU = 1.6346), A2 (474 Iter, CPU = 1.5908),
and A3 (427 Iter, CPU = 1.3930), respectively.

Figure 15. The recovered signal with m = 210 by A1A2 (78 Iter, CPU = 1.5538), A1A3 (82 Iter,
CPU = 1.3578), and A2A3 (75 Iter, CPU = 1.2515), respectively.
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Figure 16. The recovered signal with m = 210 by A1A2A3 (37 Iter, CPU = 1.8094), PMHM (264 Iter,
CPU = 2.4789), HTI (130 Iter, CPU = 2.0365), and VAM (60 Iter, CPU = 2.0194), respectively.

From Figures 16 and 17, it is shown that Algorithm 1 with A1A2A3 converged faster
than the PMHM, HTI, and VAM.

Figure 17. The graphs of the MSE for Algorithm 1 with A1A2A3 and the PMHM algorithm, respectively.

5. Conclusions

In this work, we introduced a viscosity modification combined with the parallel mono-
tone algorithm for a finite family of nonexpansive mappings. We also established a strong
convergence theorem. We provided numerical experiments of our algorithm for solving
linear system problems and differential problems and showed the efficiency of the proposed
algorithm. In the signal recovery problem, it was found that our algorithm had a better
convergence behavior than the other algorithms. In the future, the proposed algorithm can
be executed to solve a generalized nonexpansive mapping and be applied to solve many
real-word problems such as image and signal processing, optimal control, regression, and clas-
sification problems.
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