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1. Introduction

To begin with, we introduce some notations and conventions that are used throughout
this paper. Let C, N and N0 stand for the sets of all complex, positive integer and non-
negative integer numbers, respectively. Given a pair of p, q ∈ N, we denote by Cp×q the set
of all complex p× q matrices, and by C[z]p×p the set of p× p matrix polynomials; that is, the
ring of polynomials in z with matrix coefficients from Cp×p. In particular, C[z] = C[z]1×1.
For convenience, the zero and the identity p× p matrices are, respectively, written as 0p
and Ip for short. Given a matrix A ∈ Cp×p, we denote its transpose by AT, its conjugate
transpose by A∗ and its Moore–Penrose inverse by A†, i.e., A† is a unique solution of the
matrix equations:

AXA = A, XAX = X, AX = (AX)∗, XA = (XA)∗.

Let A be a Hermitian matrix, i.e., A = A∗. We write A � 0 if A is an Hermitian
positive definite matrix, and A � 0 if A is an Hermitian non-negative definite matrix.

Given a non-zero matrix polynomial F(z) ∈ C[z]p×p, F(z) can be represented in the
form

F(z) =
n

∑
k=0

Akzn−k, with A0, . . . , An ∈ Cp×p and A0 is a non-zero matrix, (1)

where An is called the constant term of F(z), A0 is called the leading coefficient of F(z) and
n is called the degree of F(z), denoted by deg F(z). F(z) is called monic if A0 is equal to the
identity matrix Ip and it is called comonic if An = Ip. A matrix polynomial F(z) is said to
be regular if det F(z) is not identically zero. For a regular matrix polynomial F(z), we say
that λ ∈ C is a zero (also called a latent root) of F(z) if the determinant det F(λ) = 0. Its
multiplicity is the multiplicity of λ as a zero of det F(z). The spectrum σ(F) of F(z) is the
set of all zeros of F(z). The study of the zero localization of a regular matrix polynomial
can be converted to the comonic or monic situation via the translation and reversal of the
original polynomial (see, e.g., [1]).
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The structured feature of dynamical systems can be intimately related to the zero local-
ization of the characteristic matrix polynomials or matrix-valued functions. For example,
certain differential algebraic systems are asymptotically stable if and only if the zeros of
the characteristic matrix polynomials F(z) are located in the open left half-plane Cl (see,
e.g., [2–8]). In this case, F(z) is called Hurwitz stable. More system features involving
bifurcation and marginal stability are connected with the study of the location of the char-
acteristic zeros in the closed left half-plane (see, e.g., [9–12]). In general, a regular matrix
polynomial F(z) is called quasi-stable if σ(F) is contained in the closed left half-plane.

Recently, the stability analysis for matrix polynomials in [13] connects with the theory
of holomorphic matrix-valued functions. Denote by C+ the open upper half of the complex
plane. Recall that a function R : C+ → Cp×p is said to be a matrix-valued Herglotz–
Nevanlinna (In the scalar case p = 1, other popular titles in the literature for the same
function are “Nevanlinna”, “Pick”, “Nevanlinna-Pick”, “Herglotz”, etc.) function if it is
holomorphic on C+ and its imaginary part satisfies that

Im R(z) =
1
2i
(R(z)− R(z)∗) � 0, z ∈ C+.

Each matrix-valued Herglotz–Nevanlinna function, R(z) can be continued into the
open lower half-plane C− by reflection (see, e.g., [14]):

R(z) = R(z̄)∗, z ∈ C−.

A function R : C \ [0,+∞)→ Cp×p is said to be a matrix-valued Stieltjes function if it
satisfies the following three conditions:

(i) R(z) is a matrix-valued Herglotz–Nevanlinna function;
(ii) R(z) is holomorphic in C \ [0,+∞);
(iii) for each z ∈ (−∞, 0), R(z) � 0.

It is clear that R(z) is a matrix-valued Stieltjes function if and only if both R(z) and
zR(z) are matrix-valued Herglotz–Nevanlinna functions (see, e.g., [15]).

For a matrix polynomial F(z) written as in (1), it can be split into the even part Fe(z)
and the odd part Fo(z) as

Fe(z) =
m

∑
k=0

A2kzm−k and Fo(z) =
m

∑
k=1

A2k−1zm−k

when n = 2m, and

Fe(z) =
m

∑
k=0

A2k+1zm−k and Fo(z) =
m

∑
k=0

A2kzm−k

when n = 2m + 1, so that F(z) = Fe(z2) + zFo(z2). This leads to the construction of two
p× p rational matrix-valued functions (i.e., matrices whose entries are rational functions)

RF(z) = Fo(−z)(Fe(−z))−1 (2)

if Fe(z) is regular, and
R̃F(z) = −Fe(−z)(zFo(−z))−1 (3)

if Fo(z) is regular.
It has been shown in [13] (Theorems 1.1 and 1.2) that, for a monic matrix polynomial

F(z), its Hurwitz stability can be checked via its Stieltjes property. Here, we say F(z) has
Stieltjes property if RF(z) or R̃F(z) is a matrix-valued Stieltjes function. These results give
some matrix generalizations of a classical stability criterion by Gantmacher, Chebotarev
theorem, Grommer theorem and some aspects of the modified Hermite–Biehler theorem
(see [13] (Section 3)).
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This paper continues our investigations in [13] on the relation between the stability
analysis and Stieltjes property of matrix polynomials. It turns out that, for a matrix
polynomial F(z) under some natural assumptions, its quasi-stability can also be checked via
its Stieltjes property. The basic strategy for the quasi-stability of a monic matrix polynomial
F(z) is based on the theory of matricial Hamburger moment problem (see, e.g., [16–18]).
As for the comonic case, it can be converted into the monic case via the reversal of F(z).
We remark that when F(z) is comonic and deg F is odd, the Stieltjes property of F(z) is
characterized by RF(z), which is different from the corresponding monic case. Furthermore,
these relations between the quasi-stability and the Stieltjes property of matrix polynomials
lead to a Hurwitz stability criterion for comonic matrix polynomials. Note that the comonic
situation is a natural assumption for Hurwitz stable matrix polynomials. Indeed, when the
constant term of F(z) is singular, 0 ∈ σ(F) and then F(z) is not Hurwitz stable. Therefore,
for a Hurwitz stable matrix polynomial F(z), its constant term is necessarily non-singular.
In this case, without loss of generality, we always assume that the tested matrix polynomial
F(z) is comonic. Our results in this paper generalize some results in [13,19].

We conclude the introduction with the outline of this paper. Sections 2 and 3 build
relations between the Stieltjes property and the quasi-stability of matrix polynomials,
respectively, in the monic case and in the comonic case. Section 4 is devoted to the Hurwitz
stability criterion for comonic matrix polynomials.

2. Stieltjes Property of Quasi-Stable Matrix Polynomials: The Monic Case

Let D(z), P(z), Q(z) ∈ C[z]p×p. We say that D(z) is a right divisor of P(z) if there
exists a C(z) ∈ C[z]p×p such that

P(z) = C(z)D(z).

In this case, if D(z) is also a right divisor of Q(z), then D(z) is called a right common
divisor of P(z) and Q(z). For a right common divisor D(z) of P(z) and Q(z), we call
D(z) a GRCD of P(z), and Q(z) if any other right common divisor of P(z) and Q(z) is
a right divisor of D(z). Furthermore, P(z) and Q(z) are said to be right coprime if any
right common divisor of P(z) and Q(z) is unimodular; that is, its determinant is a non-zero
constant. For the calculation for GRCDs, we refer the reader to the methods based on the
use of the Hermite or Popov form (see, e.g., [20] (Section 6.3), [21]) and a fast algorithm via
elimination for the generalized Sylvester matrices (see [22]).

Let R(z) be a rational matrix-valued function. If λ ∈ C is a zero of the monic least
common multiple of the denominators of the entries of R(z), then λ is called a pole of R(z)
(see, e.g., [20]). Moreover, R(z) is called symmetric with respect to the real line if it obeys
that R(z) = R(z̄)∗ for all z ∈ C except the poles of the entries of R(z).

To test the Hurwitz stability of a monic matrix polynomial F(z) ∈ C[z]p×p, it is
necessary to assume that Fe(z) and Fo(z) are right coprime and the constant term of F(z)
is non-singular. In fact, if the constant term of F(z) is singular or Fe(z) and Fo(z) are not
right coprime, F(z) cannot be Hurwitz stable. Another precondition is that the rational
matrix-valued function RF(z) or R̃F(z) is symmetric with respect to the real line.

Theorem 1 ([13] (Theorem 1.1)). Let F(z) ∈ C[z]p×p be a monic matrix polynomial with the
non-singular constant term in which Fe(z) and Fo(z) are right coprime, and let RF(z) defined by (2)
be a symmetric rational matrix-valued function with respect to the real line. Then, F(z) is Hurwitz
stable if and only if RF(z) is a matrix-valued Stieltjes function.

Theorem 2 ([13] (Theorem 1.2)). Let F(z) ∈ C[z]p×p be a monic matrix polynomial with the
non-singular constant term in which Fe(z) and Fo(z) are right coprime, Fo(z) be regular when
deg F is even, and let R̃F(z) defined by (3) be a symmetric rational matrix-valued function with
respect to the real line. Then, F(z) is Hurwitz stable if and only if R̃F(z) is a matrix-valued Stieltjes
function.
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With regard to Theorems 1 and 2, we are naturally to consider the relations between
the quasi-stability of a monic matrix polynomial and its Stieltjes property.

For a monic matrix polynomial F(z) which is quasi-stable, each GRCD F̃(z) of Fe(z)
and Fo(z) necessarily satisfies that σ(F̃) ⊆ (−∞, 0]. In fact, note that F̃(z2) is a right divisor
of F(z). If F̃(z) has a zero reiθ (r > 0,−π < θ < π) located outside the interval (−∞, 0],
then

√
reiθ/2 is a zero of F(z), which is located in the open right half-plane. In this case, F(z)

is not quasi-stable. So, to test the quasi-stability of F(z), we make the following assumption:

Assumption 1. The spectrum of a/each GRCD of Fe(z) and Fo(z) is contained in the interval
(−∞, 0].

Recently, Zhan et al. [23] have presented several criteria for the quasi-stability of F(z)
under Assumption 1. Here, we establish the relationships between the quasi-stability of
a monic matrix polynomial and its Stieltjes property. For this goal, we invoke some basic
results on the matricial Hamburger moment problem. For a more comprehensive study, we
refer the reader to some references, e.g., [16–18,24,25].

Given an infinite sequence of Hermitian matrices S = (sk)
∞
k=0, the full matricial

Hamburger moment problem (FHM(S ) for short) is to find all the non-negative Hermitian
p× p Borel measures τ on R such that∫

R
ukdτ(u) = sk, k ∈ N0.

In view of [17], if there exists a solution τ of Problem FHM(S ), then the Stieltjes
transform

∫
R

dτ(u)
u−z of τ admits the following asymptotic expansion

∫
R

1
u− z

dτ(u) = −
∞

∑
j=0

sj

zj+1 (4)

when z → ∞ in the sector {z | ε ≤ argz ≤ π − ε}, 0 < ε < π
2 . Conversely, if there exists

a non-negative Hermitian p× p Borel measures τ on R, such that its Stieltjes transform
admits the asymptotic expansion (4), then τ is a solution of Problem FHM(S ).

The solvability of Problem FHM(S ) is intimately related to the Hermitian non-
negative definiteness of block Hankel matrices built from the moment sequence S . Denote
the block Hankel matrices associated with S by

HS
j,k :=


sj sj+1 · · · sj+k

sj+1 sj+2 · · · sj+k+1
...

...
. . .

...
sj+k sj+k+1 · · · sj+2k

, j, k ∈ N0.

For simplicity, HS
0,k is written as HS

k . Moreover, we denote by S[k] the generalized
Schur complement of HS

k−1 in HS
k , i.e.,

S[k] = s2k −
[
sk · · · s2k−1

]
(HS

k−1)
†

 sk
...

s2k−1

, k ∈ N.

Lemma 1 ([17] (Theorem 2.2)). Let S be an infinite sequence of p × p Hermitian matrices.
Problem FHM(S ) is solvable if and only if HS

k � 0 for k ∈ N0.

Lemma 2 ([18] (Proposition 4.9)). Let S be an infinite sequence of p× p Hermitian matrices,
such that HS

k � 0 for k ∈ N0. If S[k] = 0p for some k ∈ N, then Problem FHM(S ) has a
unique solution.
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Now, we present the relations between the quasi-stability and the Stieltjes property of
a monic matrix polynomial.

Theorem 3. Let F(z) ∈ C[z]p×p be a monic matrix polynomial under Assumption 1.

(i) When deg F(z) is even, let RF(z) defined by (2) be a symmetric rational matrix-valued
function with respect to the real line. Then, F(z) is quasi-stable if and only if RF(z) is a
matrix-valued Stieltjes function.

(ii) When deg F(z) is odd, let R̃F(z) defined by (3) be a symmetric rational matrix-valued function
with respect to the real line. Then, F(z) is quasi-stable if and only if R̃F(z) is a matrix-valued
Stieltjes function.

Proof. We only give a proof of Part (i). As for Part (ii), it can be proved in an analogous
way. Let deg F(z) = 2m for some integer m. Since deg Fe(z)− deg Fo(z) ≥ 1, we suppose
that the rational matrix-valued function RF(z) has the following asymptotic expansion
at z = ∞:

RF(z) = −
∞

∑
j=0

sj

zj+1 , (5)

where sj = s∗j .
We first prove the “if” part. Let RF(z) defined by (2) be a matrix-valued Stieltjes

function and {λj}r
j=1 be the set of all different poles of RF(z). Then, RF(z) admits an

integral representation (see, e.g., [15])

RF(z) = A +
∫ +∞

0

1
u− z

dτ(u), z ∈ C+, (6)

where A � 0 and τ is a non-negative Hermitian p× p matrix-valued Borel measure on
[0,+∞), such that ∫ +∞

0

1
1 + u

trace(dτ(u)) < +∞.

Noting that RF(z) is a rational matrix-valued function, such that limz→∞ RF(z) = 0,
we can rewrite (6) into the following discrete form

RF(z) =
r

∑
j=1

Ej

λj − z
, (7)

where Ej � 0, Ej 6= 0p, and λj ≥ 0 for j = 1, . . . , r. It follows from (7) that

HS
m−1 =

r

∑
j=1


 1

...
λm−1

j

[1, · · · , λm−1
j

]⊗ Ej � 0,

in which S = (sj)
∞
j=0 and ⊗ stands for the Kronecker product of two matrices. On the

other hand, by (7) we have

zRF(z) = −
r

∑
j=1

Ej +
r

∑
j=1

λjEj

λj − z
. (8)

Similarly, from (8), one can derive that

HS
1,m−1 =

r

∑
j=1


 1

...
λm−1

j

[1, · · · , λm−1
j

]⊗ (λjEj) � 0.
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Therefore, by [23] (Theorem 3.1) F(z) is a quasi-stable matrix polynomial.
Now, we prove the “only if” part. Suppose that F(z) is quasi-stable. By [23] (Theorem

3.1), HS
m−1 � 0. Assume that

(−1)mFe(−z) =
m

∑
k=0

Pkzm−k.

Due to (5) and the fact that P0 = Ip, we have

HS
k+m−1



0p
...

0p
Pm
...

P1


= −

 sk+m
...

s2k+2m−1

,
[
sk+m · · · s2k+2m−1

]


0p
...

0p
Pm
...

P1


= −s2k+2m, k ∈ N0.

It follows from the last equations that

s2k+2m =
[
0p · · · 0p P∗m · · · P∗1

]
HS

k+m−1



0p
...

0p
Pm
...

P1



=
[
0p · · · 0p P∗m · · · P∗1

]
HS

k+m−1

(
HS

k+m−1

)†
HS

k+m−1



0p
...

0p
Pm
...

P1



=
[
sk+m · · · s2k+2m−1

](
HS

k+m−1

)†

 sk+m
...

s2k+2m−1

, k ∈ N0.

Then, S[k+m] = 0p, k ∈ N0. Together with the Hermitian non-negative definiteness of
HS

m−1, we have HS
k � 0 for k ∈ N0. In view of Lemma 2, there exists a unique non-negative

Hermitian p× p matrix-valued Borel measure τ on R, such that∫
R

ukdτ(u) = sk, k ∈ N0,

or equivalently, ∫
R

1
u− z

dτ(u) = −
∞

∑
j=0

sj

zj+1 , z→ ∞. (9)

Combining (5) and (9), we have that

RF(z) =
∫
R

1
u− z

dτ(u).

Therefore, RF(z) is a matrix-valued Herglotz–Nevanlinna function.
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To prove RF(z) is a matrix-valued Stieltjes function, we must prove that zRF(z) is also
a matrix-valued Herglotz–Nevanlinna function. To this end, we invoke the Anderson–Jury
Bezoutian matrix of a pair of matrix polynomials (see, e.g., [1,26–28]). Let P(z), Q(z) ∈
C[z]p×p satisfy

P∨(z)Q(z) = Q∨(z)P(z),

where P∨(z) = P(z̄)∗, Q∨(z) = Q(z̄)∗. The Anderson–Jury Bezoutian matrix B(P, Q) of
P(z) and Q(z) is defined via the formula

[
Ip, zIp, · · · , zm−1 Ip

]
B(P, Q)


Ip

uIp
...

um−1 Ip

 =
1

z− u
(

P∨(z)Q(u)−Q∨(z)P(u)
)
,

where m = max{deg P(z), deg Q(z)}.
Note that zRF(z) is holomorphic in C+. If we choose P(z) = Fe(−z), Q(z) =

−zFo(−z), then zRF(z) = −Q(z)P(z)−1. An application of [23] (Theorem 3.1) and [13]
(Lemma A1) yields that the Anderson–Jury Bezoutian matrix B(P, Q) is Hermitian non-
negative definite, and subsequently,

P(z)∗
zRF(z)− (zRF(z))∗

z− z̄
P(z) =

[
Ip, · · · , z̄m−1 Ip

]
B(P, Q)

 Ip
...

zm−1 Ip

 � 0, z ∈ C+.

This implies that Im zRF(z) � 0 for all z ∈ C+. Then, zRF(z) is also a matrix-valued
Herglotz–Nevanlinna function. The proof of the “only if” part is complete.

Now, we provide an example to illustrate Theorem 3.

Example 1. Let F(z) ∈ C[z]2×2 be a monic matrix polynomial of degree 5, given as

F(z) =
[

1 0
0 1

]
z5 +

[
1 i
−i 2

]
z4 +

[
8 −i
i 8

]
z3 +

[
4 3i
−2i 9

]
z2

+

[
19 −i
7i 13

]
z +

[
5 i
3i 9

]
.

Then, the even and odd parts of F(z) are

Fe(z) =
[

1 i
−i 2

]
z2 +

[
4 3i
−2i 9

]
z +

[
5 i
3i 9

]
,

Fo(z) =
[

1 0
0 1

]
z2 +

[
8 −i
i 8

]
z +

[
19 −i
7i 13

]
,

respectively. By a direct computation, we have that

F̃(z) =
[

z + 5 i
2i z + 2

]
is a GRCD of Fe(z) and Fo(z), and σ(F̃) = {−3,−4} ⊆ (−∞, 0]. Moreover,

R̃F(z) = −Fe(−z)(zFo(−z))−1 =
E1

−z
+

E2

4− z
+

E3

5− z
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is a symmetric rational matrix-valued function with respect to the real line, where

E1 =
1

10

[
3 i
−i 7

]
� 0, E2 =

1
2

[
1 i
−i 1

]
� 0, E3 =

1
5

[
1 2i
−2i 4

]
� 0.

Hence, RF(z) is a matrix-valued Stieltjes function. In view of Theorem 3, F(z) is quasi-stable.

If the rational matrix-valued function RF(z) defined by (2) in Theorem 3 is replaced by
R̃F(z) defined by (3), then we obtain the following criterion for the quasi-stability of F(z).

Theorem 4. Let F(z) ∈ C[z]p×p be a monic matrix polynomial under Assumption 1.

(i) When deg F(z) is even, let Fo(z) be regular and R̃F(z) defined by (3) be a symmetric rational
matrix-valued function with respect to the real line. Then, F(z) is quasi-stable if and only if
R̃F(z) is a matrix-valued Stieltjes function.

(ii) When deg F(z) is odd, let Fe(z) be regular and RF(z) defined by (2) be a symmetric rational
matrix-valued function with respect to the real line. Then, F(z) is quasi-stable if and only if
RF(z) is a matrix-valued Stieltjes function.

Proof. We only give a proof of the first part of Theorem 4. The second part can be proved
in a similar way. Under the assumptions of Theorem 4, the rational matrix-valued function
RF(z) defined by (2) is also symmetric with respect to the real line, and satisfies

RF(z) = −(zR̃F(z))−1, zRF(z) = −(R̃F(z))−1.

The last two equations imply that RF(z) is a matrix-valued Stieltjes function if and only
if R̃F(z) is a matrix-valued Stieltjes function. Hence, the first part of Theorem 4 follows
directly from Part (i) of Theorem 3.

For a quasi-stable matrix polynomial F(z), the stability index of F(z), denoted by ν(F),
is the number of zeros of F(z) with negative real parts, and the degeneracy index of F(z)
is denoted by δ(F), which stands for the number of zeros of F(z) lying on the imaginary
axis, counting their multiplicities. Note that a monic matrix polynomial F(z) is Hurwitz
stable if and only if F(z) is quasi-stable and ν(F) = deg det F(z). Thus, a combination of
Theorem 3, Corollary 2 below and [13] (Lemma A.2) leads to Theorems 1 and 2 for the
Hurwitz stability of matrix polynomials.

A p× p rational matrix-valued function R(z) is called proper if R(z) converges to a
constant matrix as z tends to ∞. Recall that each p× p proper rational matrix-valued func-
tion R(z) can be reduced to the following Smith–McMillan form via two p× p unimodular
matrix polynomials UL(z) and UR(z) as follows:

UL(z)R(z)UR(z) = diag
[

n1(z)
d1(z)

,
n2(z)
d2(z)

, · · · ,
nr(z)
dr(z)

, 0, · · · , 0
]

,

in which

(i) For k = 1 . . . , r, nk(z) and dk(z) are coprime;
(ii) For k = 1, . . . , r− 1, nk+1(z) is divisible by nk(z);
(iii) For k = 1, . . . , r− 1, dk(z) is divisible by dk+1(z).

The sum ∑r
k=1 deg dk(z) is called the McMillan degree of R(z) and denoted by µ(R)

(see, e.g., [20] (Section 6.5.2)).
In what follows, we represent the stability index ν(F) of a quasi-stable matrix polyno-

mial F(z) in terms of the McMillan degrees of RF(z) and zRF(z), or the McMillan degrees
of R̃F(z) and zR̃F(z).
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Lemma 3. Let P(z), Q(z) ∈ C[z]p×p, s = deg P(z) ≥ 1, and let the leading coefficient of P(z)
be non-singular. If R(z) = Q(z)(P(z))−1 is a symmetric rational matrix-valued function with
respect to the real line and admits the following Laurent series

R(z) =
∞

∑
j=0

z−(j+1)sj,

Then, rank HS
s−1 = µ(R), in which S = (sj)

∞
j=0.

Proof. By [13] (Lemma A.2), we have

dimKer HS
s−1 = deg det D(z),

where D(z) is a GRCD of P(z) and Q(z). On the other hand, it follows from [20] (P. 445,
(13)) that

µ(R) = deg det P(z)− deg det D(z) = ps− deg det D(z).

Then, we obtain

rank HS
s−1 = ps− dimKer HS

s−1 = ps− deg det D(z) = µ(R),

as required.

A combination of [13] (Corollary 3.2) and Lemma 3 yields that

Corollary 1. Let F(z) ∈ C[z]p×p be a monic quasi-stable matrix polynomial.

(i) When deg F(z) is even, let RF(z) defined by (2) be a symmetric rational matrix-valued
function with respect to the real line. Then,

ν(F) = µ(RF) + µ(zRF).

(ii) When deg F(z) is odd, let R̃F(z) defined by (3) be a symmetric rational matrix-valued function
with respect to the real line. Then,

ν(F) = µ(R̃F) + µ(zR̃F).

At the end of this section, we consider the quasi-stability of scalar polynomials. Let
F(z) be a monic scalar polynomial under Assumption 1. In this case, one of RF(z) and
R̃F(z) is a well-defined and symmetric rational function with respect to the real line if
and only if F(z) is a polynomial with real coefficients. For simplicity, and without loss of
generality, we assume further that F(z) is a monic real polynomial and the constant term of
F(z) is non-zero.

When deg F(z) is even, by Theorem 3, F(z) is quasi-stable if and only if RF(z) is a
rational Stieltjes function. In this case, the degeneracy index δ(F) is even, and thus the
stability index ν(F) = deg F(z)− δ(F) is even as well. Since

µ(zRF) ≤ µ(RF) ≤ µ(zRF) + 1,

by Corollary 1, we have
ν(F)

2
≤ µ(RF) ≤

ν(F) + 1
2

.

This implies that

µ(RF) =
ν(F)

2
.
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In view of the fact that deg Fo(−z) < deg Fe(−z), the Stieltjes function RF(z) can be
rewritten as the following discrete form

RF(z) =
r

∑
i=1

ei
λi − z

,

in which r = ν(F)
2 , ei > 0, i = 1, · · · , r and λ1, · · · , λr are distinct positive real numbers.

When deg F(z) is odd, both RF(z) and R̃F(z) are well defined and, by Theorem 3, F(z)
is quasi-stable if and only if R̃F(z) is a rational Stieltjes function, or equivalently, RF(z) is a
rational Stieltjes function. In this case, deg Fe(−z) ≤ deg Fo(−z). In view of the fact that the
limit A = limz→∞ RF(z) exists and is non-negative, we obtain deg Fe(−z) ≥ deg Fo(−z).
Then deg Fe(−z) = deg Fo(−z), and thus A > 0. On the other hand,

µ(zR̃F) ≤ µ(R̃F) ≤ µ(zR̃F) + 1.

By Corollary 1, we have

ν(F)− 1
2

≤ µ(zR̃F) ≤
ν(F)

2
.

Since F(z) is a real polynomial and F(0) 6= 0, the degeneracy index δ(F) is even, and
thus the stability index ν(F) is odd. Then,

µ(zR̃F) =
ν(F)− 1

2
.

Note that

µ(RF) =deg Fe(−z)− deg gcd(Fe(−z), Fo(−z))

=deg Fo(−z)− deg gcd(Fe(−z), Fo(−z))

=µ(zR̃F).

Then, µ(RF) = ν(F)−1
2 . Therefore, the Stieltjes function RF(z) admits the following

discrete form

RF(z) = A +
r

∑
i=1

ei
λi − z

,

in which A > 0, r = ν(F)−1
2 , ei > 0, i = 1, · · · , r and λ1, · · · , λr are distinct positive real

numbers.
Summarizing the analysis above, we obtain a criterion for the quasi-stability of scalar

polynomials.

Corollary 2. Let F(z) be a monic real polynomial under Assumption 1 and the constant term of
F(z) is non-zero. Then, F(z) is quasi-stable if and only if

RF(z) = A +
r

∑
i=1

ei
λi − z

,

in which r ∈ N0, A = 0 when deg F(z) is even and A > 0 when deg F(z) is odd, ei > 0, λi > 0
for i = 1, · · · , r, and λ1, · · · , λr are distinct. In this case,

r =
⌊

ν(F)
2

⌋
.

where the symbol bxc stands for the largest integer not exceeding x.
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We remark that the assertion of Theorem 4.8 in [19] is not valid if the real polynomial
p(z) does not satisfy Assumption 1. For example, p(z) = (z+ 1)3(z− 1) is a real polynomial
with a non-zero constant term. We check easily that the associated function Φ(z) = 2

z+1
defined by (4.2)–(4.6) in [19] is a R-function and each pole of Φ(z) is negative. However,
f (z) is not quasi-stable since 1 is a zero of f (z). In fact, under Assumption 1 Theorem 4.8
in [19] is equivalent to Corollary 2 above.

3. Stieltjes Property of Quasi-Stable Matrix Polynomials: The Comonic Case

This section continues our investigations on the Stieltjes property of quasi-stable
matrix polynomials. Different from Section 2, we focus on the quasi-stability of comonic
matrix polynomials.

Let F(z) be a non-zero matrix polynomial of degree n. For each d ∈ N, d ≥ n, the
d-reversal matrix polynomial of F(z) is defined as follows:

Revd[F](z) = zdF(z−1).

For simplicity, we denote Revn[F](z) by Rev[F](z). A matrix polynomial F(z) ∈
C[z]p×p is comonic if and only if Rev[F](z) is a monic matrix polynomial. In this case, we
check easily that the quasi-stability of both matrix polynomials F(z) and Rev[F](z) are
equivalent.

Lemma 4. Let F(z) ∈ C[z]p×p be comonic. Then, F(z) is quasi-stable if and only if Rev[F](z) is
quasi-stable.

Proof. Since F(0) = Ip, we have

Rev[Rev[F]](z) = F(z).

So we only need to prove the “only if" part of this lemma. We use proof by contradic-
tion. Suppose that Rev[F](z) is quasi-stable. If F(z) is not quasi-stable, then F(z) has a zero
λ located in the open right half-plane. Note that

0 = det F(λ) = det(λnRev[F](λ−1)) = λnp det Rev[F](λ−1).

The last equation implies that λ−1 ∈ σ(Rev[F]). This contradicts the quasi-stability of
Rev[F](z). Then, F(z) is also quasi-stable.

Owing to Lemma 4, the quasi-stability study of a comonic matrix polynomial can be
reduced to that of a monic matrix polynomial via reversal. Now, we present two lemmas to
deduce the quasi-stability criterion of comonic matrix polynomials.

Lemma 5. Let F(z) ∈ C[z]p×p be of degree n = 2m + j for j = 0 or j = 1 under Assumption 1.
Then,

σ(F̃) ⊆ (−∞, 0],

where F̃(z) is a GRCD of Revm[Fe](z) and Revm+j−1[Fo](z).

Proof. In view of [29] (Proposition A.3), there exist two unimodular matrix polynomials
U1(z) and U2(z) (i.e., the determinants of U1(z) and U2(z) are non-zero constants), such
that

U1(z)
[

Revm[Fe](z)
Revm+j−1[Fo](z)

]
=

[
F̃(z)
0p

]
, U2(z)

[
Fe(z)
Fo(z)

]
=

[
F̂(z)
0p

]
, (10)
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where F̂(z) is a GRCD of Fe(z) and Fo(z). Now, we use proof by contradiction to deduce
that σ(F̃) ⊆ (−∞, 0]. Suppose that there exists a zero λ (λ 6∈ (−∞, 0]) of F̃(z). Due to (10),
we have

rankF̂(λ−1) =rank
[

F̂(λ−1)
0p

]
= rank

[
Fe(λ−1)
Fo(λ−1)

]
= rank

[
λmFe(λ−1)

λm+j−1Fo(λ−1)

]

=rank
[

Revm[Fe](λ)
Revm+j−1[Fo](λ)

]
= rank

[
F̃(λ)

0p

]
= rankF̃(λ) < p.

Therefore, λ−1 ∈ σ(F̂) and λ−1 6∈ (−∞, 0], which contradicts Assumption 1.

Lemma 6. Let R(z) be a p× p matrix-valued function which is holomorphic in C \ [0,+∞) and
symmetric with respect to the real line. Then, R(z) is a matrix-valued Stieltjes function if and only
if R̃(z) = −z−1R(z−1) is a matrix-valued Stieltjes function.

Proof. Since R(z) = −z−1R̃(z−1) for all z ∈ C \ [0,+∞), we only need to prove the “only
if" part of this lemma. We suppose that R(z) is a matrix-valued Stieltjes function, or
equivalently, R(z) and zR(z) are matrix-valued Herglotz–Nevanlinna functions. Obviously,
R̃(z) and zR̃(z) are holomorphic in C \R. Moreover, for every z ∈ C \R,

R̃(z)− R̃(z)∗

z− z̄
=
−z−1R(z−1) + z̄−1R(z−1)∗

z− z̄

=|z|−2 · z−1R(z−1)− (z−1R(z−1))∗

z−1 − z−1
� 0,

and

zR̃(z)− (zR̃(z))∗

z− z̄
=
−R(z−1) + R(z−1)∗

z− z̄

=|z|−2 · R(z−1)− R(z−1)∗

z−1 − z−1
� 0.

Then, both R̃(z) and zR̃(z) are matrix-valued Herglotz–Nevanlinna functions, and
thus, R̃(z) is a matrix-valued Stieltjes function.

For a comonic matrix polynomial F(z) ∈ C[z]p×p, whether its degree is even or not, the
rational matrix-valued function RF(z) is always well defined. This enables us to describe
the Stieltjes property of a quasi-stable matrix polynomial F(z) in terms of the rational
matrix-valued function RF(z), which is different from Theorem 3 for the odd case.

Theorem 5. Let F(z) ∈ C[z]p×p be a comonic matrix polynomial under Assumption 1, and let
RF(z) defined by (2) be a symmetric rational matrix-valued function with respect to the real line.
Then, F(z) is quasi-stable if and only if RF(z) is a matrix-valued Stieltjes function.

Proof. Case 1. deg F = 2m. First, we prove the “if" part of this theorem. Note that

Rev[F](z) = Revm[Fe](z2) + zRevm−1[Fo](z2).

This implies that Revm[Fe](z) and Revm−1[Fo](z) are the even part and odd part of
Rev[F](z), respectively. Since Revm[Fe](z) is monic, the rational matrix-valued function
RRev[F](z) is well defined and

RRev[F](z) =
Revm−1[Fo](−z)

Revm[Fe](−z)
=

(−1)m−1zm−1Fo(−z−1)

(−1)mzmFe(−z−1)
= −z−1RF(z−1)
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is symmetric with respect to the real line. Suppose that F̃(z) is a GRCD of Revm[Fe](z) and
Revm−1[Fo](z). Due to Lemma 5, we have σ(F̃) ⊆ (−∞, 0], which means that the monic
matrix polynomial Rev[F](z) satisfies Assumption 1. Then, by Lemmas 4, 6 and Theorem 3,
we have

RF(z) is a matrix-valued Stieltjes function

⇐⇒ RRev[F](z) is a matrix-valued Stieltjes function

⇐⇒ Rev[F](z) is quasi-stable

⇐⇒ F(z) is quasi-stable.

Case 2. deg F = 2m + 1. In this case,

Rev[F](z) = Revm[Fo](z2) + zRevm[Fe](z2).

This implies that Revm[Fo](z) and Revm[Fe](z) are the even part and odd part of
Rev[F](z), respectively. Since Revm[Fe](z) is monic, the rational matrix-valued function
R̃Rev[F](z) is well defined and

R̃Rev[F](z) = −
Revm[Fo](−z)
zRevm[Fe](−z)

= − Fo(−z−1)

zFe(−z−1)
= −z−1RF(z−1)

is symmetric with respect to the real line. Let F̃(z) be a GRCD of Revm[Fe](z) and Revm[Fo](z).
Using Lemma 5, we have that σ(F̃) ⊆ (−∞, 0]. Then, the monic matrix polynomial Rev[F](z)
satisfies Assumption 1. Due to Lemmas 4, 6 and Theorem 3, we have

RF(z) is a matrix-valued Stieltjes function

⇐⇒ R̃Rev[F](z) is a matrix-valued Stieltjes function

⇐⇒ Rev[F](z) is quasi-stable

⇐⇒ F(z) is quasi-stable.

Then, the proof is complete.

Under some conditions, the Stieltjes property of quasi-stable comonic matrix polyno-
mials can also be described in terms of R̃F(z) defined by (3).

Theorem 6. Let F(z) ∈ C[z]p×p be a comonic matrix polynomial under Assumption 1, Fo(z) be
regular, and let R̃F(z) defined by (3) be a symmetric rational matrix-valued function with respect to
the real line. Then, F(z) is quasi-stable if and only if R̃F(z) is a matrix-valued Stieltjes function.

The following example shows how to use Theorem 5 to test the quasi-stability of a
comonic matrix polynomial.

Example 2. Let F(z) ∈ C[z]2×2 be a comonic matrix polynomial of degree 3, given as

F(z) =
[

2 7i
0 10

]
z3 +

[
4 −i
3i 6

]
z2 +

[
1 i
−i 2

]
z +

[
1 0
0 1

]
with the even and odd parts

Fe(z) =
[

4 −i
3i 6

]
z +

[
1 0
0 1

]
,

Fo(z) =
[

2 7i
0 10

]
z +

[
1 i
−i 2

]
,
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, respectively. By a direct computation, we have that Fe(z) and Fo(z) are right coprime and

RF(z) = Fo(−z)(Fe(−z))−1 = A +
E1

1
3 − z

+
E2

1
7 − z

is a symmetric rational matrix-valued function with respect to the real line, where

A =
1
21

[
33 30i
−30i 40

]
� 0, E1 = − 1

36

[
9 3i
−3i 1

]
� 0, E2 =

5
196

[
1 −i
i 1

]
� 0.

Obviously, RF(z) is not a matrix-valued Stieltjes function. Then, by Theorem 5, F(z) is not
quasi-stable.

4. Stieltjes Property of Hurwitz Stable Matrix Polynomials: The Comonic Case

In this section, we extend Theorems 1 and 2 to the comonic case, in which the leading
coefficient of the tested matrix polynomial is unnecessarily non-singular. For this reason,
the following lemmas are needed.

Lemma 7. Let F(z) ∈ C[z]p×p be a comonic matrix polynomial. Then, F(z) is Hurwitz stable if
and only if Rev[F](z) is quasi-stable and σ(Rev[F]) ⊆ Cl ∪ {0}.

Proof. Since F(z) is comonic of degree n, we have that 0 6∈ σ(F). For any non-zero λ ∈ C,

det F(λ) = det(λnRev[F](λ−1)) = λnp det Rev[F](λ−1),

which implies that λ ∈ σ(F) if and only if λ−1 ∈ σ(Rev[F]). Obviously, λ ∈ Cl if and only
if λ−1 ∈ Cl . Then, we have

F(z) is Hurwitz stable⇐⇒ σ(F) ⊆ Cl

⇐⇒ σ(Rev[F]) \ {0} ⊆ Cl

⇐⇒ σ(Rev[F]) ⊆ Cl ∪ {0}.

In this case, Rev[F](z) is apparently quasi-stable. Then, we complete the proof.

Lemma 8. Let F(z) ∈ C[z]p×p be a comonic matrix polynomial of degree n = 2m + j for j = 0
or j = 1, and F̃(z) be a GRCD of Revm[Fe](z) and Revm+j−1[Fo](z). If Fe(z) and Fo(z) are right
coprime, then σ(F̃) ⊆ {0}.

Proof. Under the assumption of the lemma, there exist two unimodular matrix polynomials
U1(z) and U2(z), such that

U1(z)
[

Fe(z)
Fo(z)

]
=

[
Ip
0

]
, U2(z)

[
Revm[Fe](z)

Revm+j−1[Fo](z)

]
=

[
F̃(z)

0

]
.

Note that, for any non-zero λ ∈ C, we have

rankF̃(λ) = rank
[

F̃(λ)
0

]
= rank

[
Revm[Fe](λ)

Revm+j−1[Fo](λ)

]

= rank
[

λmFe(λ−1)
λm+j−1Fo(λ−1)

]
= rank

[
Fe(λ−1)
Fo(λ−1)

]
= rank

[
Ip
0

]
= p,

which means that F̃(λ) is non-singular. Then, σ(F̃) ⊆ {0}.
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Lemma 9. Let F(z) ∈ C[z]p×p be a monic matrix polynomial and F̂(z) be a GRCD of Fe(z2) and
zFo(z2). If RF(z) defined by (2) (resp. R̃F(z) defined by (3)) is a symmetric rational matrix-valued
function with respect to the real line when deg F(z) is even (resp. odd), then

δ(F) = δ(F̂).

Proof. The proof can be divided into two cases.
Case I: deg F(z) = 2m. Let RF(z) admit the Laurent series expansion

RF(z) = −
∞

∑
j=0

z−(j+1)sj, z→ ∞.

Then, sj (j = 0, 1, · · · ) are Hermitian matrices, and the rational matrix-valued function
zFo(−z2)(Fe(−z2))−1 admits the following Laurent series expansion

zFo(−z2)(Fe(−z2))−1 = zRF(z2) = −
∞

∑
j=0

z−(2j+1)sj, z→ ∞.

Let H be a Hermitian block Hankel matrix defined by

H =



s0 0p s1 · · · sm−1 0p
0p s1 0p · · · 0p sm
s1 0p s2 · · · sm 0p
...

...
...

...
...

sm−1 0p sm · · · s2m−2 0p
0p sm 0p · · · 0p s2m−1


.

We can easily check that H is congruent to the following block diagonal matrix[
HS

m−1
HS

1,m−1

]
,

in which S = (sj)
∞
j=0. Since F̂(iz) is a GRCD of zFo(−z2) and Fe(−z2), by [13] (Lemma A.2)

we have
dimKer H = deg det F̂(iz) = deg det F̂(z),

or equivalently,
δ(HS

m−1) + δ(HS
1,m−1) = deg det F̂(z). (11)

Due to [23] (Lemma 2.1), we have

δ(F) = δ(HS
m−1) + δ(HS

1,m−1)− π(F̂)− ν(F̂). (12)

A combination of (11) and (12) yields that δ(F) = δ(F̂).
Case I: deg F(z) = 2m + 1. Let R̃F(z) admit the Laurent series expansion

R̃F(z) =
∞

∑
j=0

z−jsj, z→ ∞.

Then, sj (j = 0, 1, · · · ) are Hermitian matrices and the Laurent series expansion of the
rational matrix-valued function Fe(−z2)(zFo(−z2))−1 is of the form:

Fe(−z2)(zFo(−z2))−1 = −zR̃F(z2) = −
∞

∑
j=0

z−(2j+1)sj, z→ ∞.
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We define a Hermitian block Hankel matrix H̃ by

H̃ =


s0 0p s1 · · · sm
0p s1 0p · · · 0p
s1 0p s2 · · · sm+1
...

...
...

...
sm 0p sm+1 · · · s2m

.

It is not difficult to check that H̃ is congruent to the following block diagonal matrix[
HS

m
HS

1,m−1

]
,

in which S = (sj)
∞
j=0. Note that F̂(iz) is a GRCD of zFo(−z2) and Fe(−z2). Then, by [13]

(Lemma A.2), we have

dimKer H̃ = deg det F̂(iz) = deg det F̂(z),

or equivalently,
δ(HS

m ) + δ(HS
1,m−1) = deg det F̂(z). (13)

Due to [23] (Lemma 2.1), we have

δ(F) = δ(HS
m ) + δ(HS

1,m−1)− π(F̂)− ν(F̂). (14)

A combination of (13) and (14) leads to δ(F) = δ(F̂). Then, the proof is complete.

Based on the above lemmas, we obtain the following relationship between the Hurwitz
stability and the Stieltjes property of comonic matrix polynomials.

Theorem 7. Let F(z) ∈ C[z]p×p be comonic, in which Fe(z) and Fo(z) are right coprime, and let
RF(z) defined by (2) be symmetric with respect to the real line. Then, F(z) is Hurwitz stable if and
only if RF(z) is a matrix-valued Stieltjes function.

Proof. Since Fe(z) and Fo(z) is right coprime, F(z) satisfies Assumption 1. Then, the “only
if” part is a direct consequence of Theorem 5. Now, we prove the “if” part. Suppose that
RF(z) is a matrix-valued Stieltjes function. Due to Theorem 5, F(z) is quasi-stable, and thus
by Lemma 4, Rev[F](z) is quasi-stable as well.

Let deg F = 2m + j for j = 0 or j = 1. Note that Rev[F](z) is monic and Revm[Fo](z)
and Revm+j−1[Fe](z) are the even part and the odd part of Rev[F](z), respectively. Let F̂(z)
be a GRCD of Revm[Fe](z2) and zRevm+j−1[Fo](z2). In view of Lemma 9, we have

δ(Rev[F]) = δ(F̂).

Observe that F̂(z) is a right common divisor of Rev[F](z). The last equation implies
that Rev[F](z) and F̂(z) have the same zeros (if they exist) on the imaginary axis. Due to
the quasi-stability of Rev[F](z), we have

σ(Rev[F]) ⊆ Cl ∪ σ(F̂). (15)

Let F̃(z) be a GRCD of Revm[Fe](z) and Revm+j−1[Fo](z). It follows from [23] (Lemma 2.3)
that there exists a L(z) ∈ C[z]p×p, such that σ(L) ⊆ {0} and

F̂(z) = L(z)F̃(z2). (16)
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On the basis of Lemma 8, σ(F̃) ⊆ {0}, and thus by (15) and (16), σ(Rev[F]) ⊆ Cl ∪ {0}.
Hence, by Lemma 7, F(z) is Hurwitz stable.

Now, we provide an example to test the Hurwitz stability of a comonic matrix polyno-
mial by Theorem 7.

Example 3. Let F(z) ∈ C[z]2×2 be a comonic matrix polynomial of degree 4, given as

F(z) =
[

3− 2i −4− 6i
−5− 2i −4 + 10i

]
z4 +

[
−2− 2i −4 + 4i
−5− 4i −8 + 10i

]
z3 +

[
1− 2i −7

0 5 + 2i

]
z2

+

[
1 2
2 5

]
z +

[
1 0
0 1

]
.

The even and odd parts of F(z) are

Fe(z) =
[

3− 2i −4− 6i
−5− 2i −4 + 10i

]
z2 +

[
1− 2i −7

0 5 + 2i

]
z +

[
1 0
0 1

]
,

Fo(z) =
[
−2− 2i −4 + 4i
−5− 4i −8 + 10i

]
z +

[
1 2
2 5

]
,

respectively. A direct calculation shows that Fe(z) and Fo(z) are right coprime and

RF(z) = Fo(−z)(Fe(−z))−1 =
E1

1
2 − z

+
E2

1
4 − z

is a symmetric rational matrix-valued function with respect to the real line, where

E1 =
1
4

[
1 1
1 1

]
� 0, E2 =

1
8

[
1 3
3 9

]
� 0.

Hence, RF(z) is a matrix-valued Stieltjes function. In view of Theorem 7, F(z) is Hurwitz
stable.

In a similar way, we can prove that the rational matrix-valued function RF(z) in
Theorem 7 can be replaced by R̃F(z) if it is well defined.

Theorem 8. Let F(z) ∈ C[z]p×p be comonic, in which Fe(z) and Fo(z) are right coprime and
Fo(z) is regular, and let R̃F(z) defined by (3) be symmetric with respect to the real line. Then, F(z)
is Hurwitz stable if and only if R̃F(z) is a matrix-valued Stieltjes function.

We remark that Theorems 7 and 8 are direct generalizations of Theorems 1 and 2,
respectively.

5. Conclusions

In this paper, we have revealed some intrinsic connections between the quasi-stability
of a monic or comonic matrix polynomial and the Stieltjes property of a rational matrix-
valued function constructed by the even–odd split of the original matrix polynomial. These
connections provide us with new ways to test the quasi-stability of matrix polynomials
under some natural assumptions. Moreover, applying these results, we have obtained
two criteria for the Hurwitz stability of comonic matrix polynomials. We remark that
the constant term of a Hurwitz stable matrix polynomial is always non-singular, and the
Hurwitz stability of a matrix polynomial with a non-singular constant term is equivalent to
that of a certain comonic matrix polynomial. Then, to investigate the Hurwitz stability of a
matrix polynomial, we assume that it is comonic without loss of generality. Hence, these
two Hurwitz stability criteria presented here are direct generalizations of Theorems 1.1 and
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1.2 in [13], where the tested matrix polynomial is assumed to be monic, or equivalently, the
leading coefficient matrix is non-singular.
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