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1. Introduction

In this paper, we investigate the random dynamics of the stochastic fractional Ginzburg–
Landau equation defined on Rn with polynomial drift terms of arbitrary order. To be spe-
cific, we consider the following stochastic fractional complex Ginzburg–Landau equation
on Rn, for t > 0 and given α ∈ (0, 1),

du(t) + (1 + iν)(−∆)αu(t)dt + (1 + iµ)|u(t)|2βu(t)dt =ρu(t)dt + g(t, x)dt

+ σ(t, ω, u(t))dW(t),
(1)

with initial condition

u(0, x) = u0(x), x ∈ Rn, (2)

where u(x, t) is a complex-valued function on Rn × [0,+∞). In (1), i is the imaginary unit,
α, β, µ, ν and ρ are real constants with ρ > 0 and β > 0, (−∆)α is fractional Laplace operator,
g ∈ L2

loc(R, L2(Rn)) is given, σ is a local Lipschitz nonlinear diffusion coefficient, and W is
a two-sided cylindrical Wiener process in a Hilbert space defined on a complete filtered
probability space (Ω, F , {Ft}t∈R, P), {Ft}t∈R is an increasing right continuous family of
sub-σ-algebras of F that contains all P-null sets. For simplicity in our discussion, we write
p = 2β + 2 and q = 2β+2

2β+1 .
The Ginzburg–Landau equation [1,2] is one of the most studied nonlinear equations

in physics. It describes a vast variety of phenomena from nonlinear waves to second-order
phase transitions, from superconductivity, superfluidity, and Bose–Einstein condensation
to liquid crystals and strings in field theory. The Ginzburg–Landau equation with fractional
derivatives [3] is used to describe processes in media with fractal dispersion or long-range
interaction. In [4], the authors analyzed a one-dimensional fractional complex Ginzburg–
Landau equation. In [5], the dynamics of a two-dimensional fractional complex Ginzburg–
Landau equations is studied. In [6], the authors studied the dynamics of 3-D fractional
complex Ginzburg–Landau equation. During the derivation of these ideal models, small
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perturbations (such as molecular collisions in gases and liquids and electric fluctuations
in resistors) may be neglected. Therefore, one may represent the micro-effects by random
perturbations in the dynamics of the macro observable through additive or multiplicative
noise in the governing equation.

In the past two decades, a great deal with mathematical efforts has been devoted
to the fractional Ginzburg–Landau equation which is driven by an additive noise or a
linear multiplicative noise. Respectively, a fractional Ginzburg–Landau equation on the
line with special nonlinearity and multiplicative noise was analyzed in [7]. A stochastic
fractional complex Ginzburg–Landau equation with multiplicative noise in three spatial
dimensions was studied in [8]. In [9], the author established fractional stochastic Ginzburg–
Landau equation driven by colored noise with a nonlinear diffusion term to the case where
α ∈ ( 1

2 , 1). Time-space fractional stochastic Ginzburg–Landau equations are also studies
in [10,11]. Considering the complexity of the environment, many disturbances can not
be described by multiplicative noise or additive noise, and nonlinear noise can better fit
the phenomenon, at this point it is very necessary to study nonlinear noise. However, in
spite of quite contributions about these literature, there are no result taking into account of
the existence of pathwise pullback random attractors for the stochastic equation (1) with a
nonlinear diffusion term σ.

The purpose of this paper is to establish the well-posedness of (1) and (2) in L2
loc(R;

L2(Rn)) and study the mean random dynamical system generated by the solution operators.
The counterpart of the concept of mean random dynamical system is the pathwise random
dynamical system. The global attractors for pathwise random dynamical system have been
extensively studied, see, e.g., [12–23] and [24–35] for autonomous and non-autonomous
stochastic equations, respectively. There are few results about mean random dynamical
system ([36,37]), but these results are about real-valued functions. This paper is about
complex-valued function.

In Equation (1), we assume that the diffusion coefficient σ(t, ω, u(t)) : R×Ω× H →
L2(U, H) is locally Lipschitz continuous in its third argument uniformly for (t, ω) ∈ R×Ω;
namely, for every r > 0, there exists a positive number Mr depending on r such that for all
t ∈ R, ω ∈ Ω and u1, u2 ∈ H with ‖u1‖ ≤ r and ‖u2‖ ≤ r,

‖σ(t, ω, u1)− σ(t, ω, u2)‖L2(U,H) ≤ Mr‖u1 − u2‖. (3)

In addition, σ(t, ω, u) grows linearly in u ∈ H uniformly for (t, ω) ∈ R×Ω; that is,
there exists a positive number L such that for all t, ω, u ∈ R×Ω× H,

‖σ(t, ω, u)‖L2(U,H) ≤ L(1 + ‖u‖). (4)

We further assume that σ(t, ω, u) : R×Ω → L2(U, H) is progressively measurable
for every fixed u ∈ H.

The arrangement of the article is as follows. In Section 2, we introduce some related
concepts and preliminaries. In Section 3, we prove the well-posedness of (1) and (2) driven
by regular additive noise. In Section 4, we study the existence and uniqueness of solutions
with general additive noise. In Section 5 and Section 6, we respectively investage the
well-posedness of (1) and (2) with globally and locally Lipschitz continuous diffusion
coefficients. In the last Section, we focus on the existence and uniqueness of weak pullback
random attractor for (1) and (2).

2. Preliminaries and Notations

In this section, we first recall the concept of the fractional Laplace operator on Rn as
well as the definition of some spaces, norm and inner product. Then, we introduce the
concept of weak pullback mean random attractors for mean random dynamical systems Φ
over filtered probability spaces and the definition of solutions for the stochastic equations
under investigation. At the last of this section, we list some inequalities and theorems
which will be used in this paper.
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Let S be the Schwartz space of rapidly decaying C∞ functions on Rn. Then by [38],
we have for 0 < α < 1 the fractional Laplace operator (−∆)α is defined by

(−∆)αu(x) = −1
2

C(n, α)
∫
Rn

u(x + y) + u(x− y)− 2u(x)

|y|n+2α
dy, x ∈ Rn, f or u ∈ S , (5)

where C(n, α) is a positive constant given by

C(n, α) =
α4αΓ( n+2α

2 )

π
n
2 Γ(1− α)

. (6)

For 0 < α < 1, the fractional Sobolev space Hα(Rn) is defined by

Hα(Rn) = {u ∈ L2(Rn) :
∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dxdy < ∞},

endowed with the norm

‖u‖Hα(Rn) =

(∫
Rn
|u(x)|2dx +

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dxdy

) 1
2

.

By [39], The norm ‖u‖Hα(Rn) is equivalent to the norm (‖u‖2
L2(Rn)

+ ‖(−∆)
α
2 u‖2

L2(Rn)
)

1
2

for u ∈ Hα(Rn); more precisely, we have

‖u‖2
Hα(Rn) = ‖u‖

2
L2(Rn) +

2
C(n, α)

‖ (−∆)
α
2 u‖2

L2(Rn), f or all u ∈ Hα(Rn). (7)

The inner product of Hα(Rn) in complex field is defined by

(u, v)Hα(Rn) =
∫
Rn

u(x)v̄(x)dx+
∫
Rn

∫
Rn

(u(x)− u(y))(v̄(x)− v̄(y))

|x− y|n+2α
dxdy, u, v ∈ Hα(Rn).

For convenience, we write H = L2(Rn) and V = Hα(Rn). Then, we have V ↪→ H =
H∗ ↪→ V∗, where H∗ and V∗ are the dual spaces of H and V, respectively, H∗ is identified
with H by Riesz’s representation theorem. We respectively denote the norm and the inner
product of L2(Rn) by ‖ · ‖ and (·, ·). L2(U,H) is used for the space of Hilbert-Schmidt
operators from a separable Hilbert space U to H with norm ‖ · ‖L2(U,H).

Let D be a collection of some families of nonempty bounded subsets of L2(Ω,Fτ ; H)
parametrized by τ ∈ R, that is

D =
{

D = {D(τ) ⊆ L2(Ω,Fτ ; H) : D(τ) 6= ∅ bounded, τ ∈ R}

: D satis f ies lim
τ→−∞

eρτ‖D(τ)‖2
L2(Ω,Fτ ;H)=0

}
, (8)

where ‖D‖L2(Ω,Fτ ;H) = sup
u∈D
‖u‖L2(Ω,Fτ ;H) for a subset D in L2(Ω,Fτ ; H).

Definition 1 ([40]). D is called inclusion-closed if D ∈ D and if D̃ = {D̃(τ)}τ∈R is a random
subset of H with D̃(τ) ⊆ D(τ) for all τ ∈ R then D̃ ∈ D.

Definition 2 ([36]). A family Φ = {Φ(t, τ) : t ∈ R+, τ ∈ R} of mapping is called a mean ran-
dom dynamical system on L2(Ω,F ; H) over L2(Ω,F , {Ft}t∈R, P) if for all τ ∈ R and t, s ∈ R+,

(i) Φ(t, τ) maps L2(Ω,Fτ , H) to L2(Ω,Ft+τ , H),
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(ii) Φ(0, τ) is the identity operator on L2(Ω,Fτ , H),
(iii) Φ(t + s, τ) = Φ(t, τ + s) ◦Φ(s, τ).

Definition 3 ([36]). A family K = {K(τ) : τ ∈ R} ∈ D is called aD-pullback weakly attracting
set of mean random dynamical system Φ on L2(Ω,F ; H) over L2(Ω,F , {Ft}t∈R, P), if for every
τ ∈ R, D ∈ D and every weak neighborhood N ω(K(τ)) of K(τ) in L2(Ω,F ; H), there exists
T = T(τ, D,N ω(K(τ))) > 0 such that for all t ≥ T,

Φ(t, τ − t)(D(τ − t)) ⊆ N ω(K(τ)),

where N ω(K(τ)) is the weak neighborhood of K(τ). For a subset K(τ) ∈ L2(Ω,F , H), every
weakly open set containing K(τ) is called a weak neighborhood of K(τ) in L2(Ω,F , H). In addition,
if K(τ) is a weakly compact subset of L2(Ω,F ; H) for every τ ∈ R, then K = {K(τ) : τ ∈ R} is
called a D-pullback weakly compact weakly attracting set for Φ.

Definition 4 ([36]). A family A = {A(τ) : τ ∈ R} ∈ D is called a weak D-pullback mean
random attractor for Φ on L2(Ω,F ; H) over L2(Ω,F , {Ft}t∈R, P) if the following conditions are
fulfilled,

(i) A(τ) is a weakly compact subset of L2(Ω,Fτ ; H) for every τ ∈ R,
(ii) A is a D-pullback weakly attracting set of Φ,
(iii) A is the minimal element ofD with properties (i) and (ii), that is, if D = {D(τ) : τ ∈ R} ∈ D

is a D-pullback weakly compact weakly attracting set of Φ, then A(τ) ⊆ D(τ) for all τ ∈ R.

Theorem 1 ([36]). Let D be an inclusion-closed collection of some families of nonempty bounded
subsets of Lp(Ω,F ; H) as given by (8). If Φ has a weakly compact D-pullback absorbing set B ∈ D
on L2(Ω,F ; H) over L2(Ω,F , {Ft}t∈R, P), then Φ has a unique weak D-pullback mean attractor
A ∈ D on L2(Ω,F ; H) over L2(Ω,F , {Ft}t∈R, P), which is given by, for each τ ∈ R,

A(τ) = Ωω(B, τ) =
⋂
r≥0

⋃
t≥r

Φ(t, τ − t)(B(τ − t))
ω

,

where the closure is taken with respect to the weak topology of L2(Ω,F ; H).

Definition 5. Let u0 ∈ L2(Ω, H) be F0-measurable. Then, a continuous H-valued Ft-adapted
stochastic process u is called a solution of (1) and (2) if

u ∈ L2(Ω, C([0, T], H))
⋂

L2(Ω, L2(0, T; V))
⋂

Lp(Ω, Lp(0, T; Lp(Rn))), ∀T > 0, (9)

such that for all t > 0 and ξ ∈ V
⋂

Lp(Rn),

(u(t), ξ) + (1 + iν)
∫ t

0
((−∆)

α
2 u(s), (−∆)

α
2 ξ)ds +

∫ t

0

∫
Rn
(1 + iµ)|u(s)|2βu(s)ξ(x)dxds

= (u0, ξ) + ρ
∫ t

0
(u(s), ξ)ds +

∫ t

0
(g(s), ξ)ds +

∫ t

0
ξσ(s, u(s))dW, (10)

P—almost surely, where ξ in the stochastic term is identified with the element in H∗ = H by
Riesz’s representation theorem.

Note that if u is a solution of (1) and (2) in the sense of Definition 5, then by (9) we have

(−∆)αu ∈ L2(Ω, L2(0, T; V∗)) .
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Consequently, a continuous H-valued Ft-adapted stochastic process u is a solution of (1)
and (2) in the sense of Definition 5 if and only if u satisfies (9), and for all t ≥ 0,

u(t) + (1 + i ν)
∫ t

0
(−∆)αu(s)ds +

∫ t

0
(1 + iµ)|u(s)|2βu(s)ds = u0

+ρ
∫ t

0
u(s)ds +

∫ t

0
g(s)ds +

∫ t

0
σ(s, u(s))dW in (V

⋂
Lp(Rn))∗, (11)

P–almost surely. In other words, (10) and (11) are equivalent.

3. Existence of Solutions: Regular and Additive Noise

In this section, we study the well-posedness of solution to problem (1) and (2) with
a diffusion term σ taking values in a regular space.

Let V0 be a separable Hilbert space satisfies V0 ↪→ V and V0 ↪→ Lp(Rn). In this section,
we assume that σ : R×Ω→ L2(U, V0) is a progressively measurable process such that

σ ∈ L2(Ω, L2(0, T;L2(U, V0))) f or every T > 0. (12)

Considering the following stochastic equation with additive noise:

du(t) + (1 + iν)(−∆)αu(t) + (1 + iµ)|u(t, x)|2βu(t, x)dt

= ρu(t)dt + g(t, x)dt + σ(t, ω)dW, x ∈ Rn, t > 0,
(13)

with the initial condition

u(0, x) = u0(x), x ∈ Rn. (14)

We need to approximate the locally Lipschitz nonlinearity (1 + iµ)|u|2βu by a globally
Lipschitz function to prove the existence and uniqueness of solutions to (13) and (14).
Therefore, for every n ∈ N, we define a function ξn : C→ C by

ξn(s) =

{
s i f |s| ≤ n,
ns
|s| i f |s| > n.

Then, ξn : C→ C is globally Lipschitz continuous. In fact, we have ξn(0) = 0,

|ξn(s1)− ξn(s2)| ≤ |s1 − s2|, f or all s1, s2 ∈ C, (15)

and

|ξn(s)| ≤ n, |ξn(s)| ≤ |s| f or all s ∈ C. (16)

Given n ∈ N, for almost all (t, x) ∈ [0, T] × Rn, we choose a globally Lipschitz
continuous function (1 + iµ)|ξn(u)|2βξn(u) ; exactly, for every n ∈ N, there exists cn > 0
such that ∣∣∣(1 + iµ)|ξn(u1)|2βξn(u1)− (1 + iµ)|ξn(u2)|2βξn(u2)

∣∣∣ ≤ cn|u1 − u2|, (17)

for all u1, u2 ∈ C and for almost all (t, x) ∈ [0, T]×Rn. By (17) we obtain, for almost all
t ∈ [0, T],

‖(1 + iµ)|ξn(u)|2βξn(u)− (1 + iµ)|ξn(v)|2βξn(v)‖ ≤ cn‖u− v‖, f or all u, v ∈ H. (18)
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Since (1 + iµ)|ξn(0)|2βξn(0) = 0, by (18) we obtain, for almost all t ∈ [0, T],

‖(1 + iµ)|ξn(u)|2βξn(u)‖ ≤ cn‖u‖, f or all u ∈ H. (19)

In addition, for all t ∈ R, we infer that

Re
(
(1 + iµ)|ξn(u)|2βξn(u)− (1 + iµ)|ξn(v)|2βξn(v), u− v

)
≥ 0, f or all u, v ∈ H (20)

and by the definition of ξn, we deduce

ξ̄n(un)un ≥ |ξn(un)|2. (21)

Given n ∈ N, consider the following approximate stochastic equation for (13) and (14)
in V∗ for t > 0:

dun(t) + (1 + iν)(−∆)αun(t)dt + (1 + iµ)|ξn(un)|2βξn(un)dt = ρun(t)dt + g(t)dt + σ(t, ω)dW, (22)

with initial condition

un(0) = u0. (23)

By (18)–(20), it follows from [41] that for every F0-measurable u0 ∈ L2(Ω, H), problem
(22) and (23) has a unique solution un in the sense that un is an H-valued Ft-adapted
continuous process such that

un ∈ L2(Ω, C([0, T], H))
⋂

L2(Ω, L2(0, T; V)), ∀ T > 0,

and for all t ≥ 0,

un(t) + (1 + iν)
∫ t

0
(−∆)αun(s)ds +

∫ t

0
(1 + iµ)|ξn(un)|2βξn(un)ds = u0 + ρ

∫ t

0
un(s)ds

+
∫ t

0
g(s)ds +

∫ t

0
σ(s)dW(s) in V∗, (24)

P–almost surely.
Next, we will derive uniform estimates of the approximate solution un and prove the

limit of this sequence is a solution of problem (13) and (14). The first uniform estimate of
un is given below.

Lemma 1. Suppose (12) holds, then there exists a subset Ω0 of Ω with P(Ω0) = 1 such that for
all ω ∈ Ω0, the solution un of (22) and (23) satisfies

‖un(ω)‖2
C([0,T],H) + ‖un(ω)‖2

L2(0,T;V) + ‖ξn(un(ω)‖p
Lp(0,T;Lp(Rn))

+‖(1 + iµ)|ξn(un)|2βξn(un)‖q
Lq(0,T;Lq(Rn))

≤ L(T, ω),

where L(T, ω) is a positive number depending only on T and ω, but independent of n ∈ N.

Proof. Let vn(t) = un(t)−
∫ t

0 σ(s)dW(s), then we have vn(t) ∈ L2(Ω, L2(0, T; V)), which
implies that there exists a subset Ω1 of Ω with P(Ω1) = 1 such that for all ω ∈ Ω1,

vn ∈ L2(0, T; V). (25)

On the other hand, by (24) we find that there exists a subset Ω2 of Ω with P(Ω2) = 1
such that for all ω ∈ Ω2 and t ≥ 0,
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vn(t) =u0 − (1 + iν)
∫ t

0
((−∆)αun(s)ds−

∫ t

0
(1 + iµ)|ξn(un)|2βξn(un))ds

+ ρ
∫ t

0
un(s)ds +

∫ t

0
g(s)ds in V∗.

(26)

By (26) we obtain that for all ω ∈ Ω2,

dvn

dt
= −(1 + iν)(−∆)αun(t)− (1 + iµ)|ξn(un)|2βξn(un) + ρun(t) + g(t) in L2(0, T; V∗). (27)

Let Ω3 = Ω1
⋂

Ω2. Then, we have P(Ω3) = 1. Moreover, by (25) and (27) we obtain
from [42] that, for all ω ∈ Ω3,

d‖vn(t)‖2

dt
= 2Re〈dvn

dt
, vn(t)〉(V∗ ,V) (28)

on (0, T) in the sense of scalar distribution. It follows from (27) and (28) that for all ω ∈ Ω3,

d‖vn(t)‖2

dt
= −2Re((1 + iν)(−∆)αun(t), vn(t))

−2Re
(
(1 + iµ)|ξn(un)|2βξn(un), vn(t)

)
+ 2Re(ρun(t), vn(t)) + 2Re(g(t), vn(t)), (29)

for almost all t ∈ [0, T].
We now deal with each term on the right-hand side of (29). For the first term on the

right-hand side of (29), by Young’s inequality, we have

−2Re((1 + iν)(−∆)αun(t), vn(t)) = −2Re
(
(1 + iν)(−∆)αun(t), un(t)−

∫ t

0
σ(s)dW(s)

)

≤ −2‖(−∆)
α
2 un(t)‖2 +

1
2
‖(−∆)

α
2 un(t)‖2 + 2‖(−∆)

α
2

∫ t

0
σ(s)dW(s)‖2

+
1
2
‖(−∆)

α
2 un(t)‖2 + 2ν2‖(−∆)

α
2

∫ t

0
σ(s)dW(s)‖2

≤ −‖(−∆)
α
2 un(t)‖2 + 2(1 + ν2)‖

∫ t

0
σ(s)dW(s)‖2

Hα . (30)

For the second term on the right-hand side of (29), By (21), we have

− 2Re
(
(1 + iµ)|ξn(un)|2βξn(un), vn(t)

)
= −2Re

(
(1 + iµ)|ξn(un)|2βξn(un), un(t)−

∫ t

0
σ(s)dW(s)

)
= −2

∫
R
|ξn(un)|2βξn(un)ūndx + 2Re

(
(1 + iµ)|ξn(un)|2βξn(un),

∫ t

0
σ(s)dW(s)

)
≤ −2

∫
Rn
|ξn(un)|2β+2dx + 2

∣∣∣∣((1 + iµ)|ξn(un)|2βξn(un),
∫ t

0
σ(s)dW(s)

)∣∣∣∣.
Then, we estimate the last term on the right-hand side of above inequality. By Young’s

inequality, we have
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2
∣∣∣∣((1 + iµ)|ξn(un)|2βξn(un),

∫ t

0
σ(s)dW(s)

)∣∣∣∣
≤
∫
Rn

2
√

1 + µ2|ξn(un)|2β+1 ·
∣∣∣∣∫ t

0
σ(s)dW(s)

∣∣∣∣dx

≤
∫
Rn
|ξn(un)|2β+2dx + c1

∫
Rn

∣∣∣∣∫ t

0
σ(s)dW(s)

∣∣∣∣2β+2
dx,

(31)

where c1 = (2
√

1 + µ2)2β+2 (2β+1)2β+1

(2β+2)2β+2 , p = 2β + 2 in (31). Then, we have,

−2Re
(
(1 + iµ)|ξn(un)|2βξn(un), vn(t)

)
≤ c1‖

∫ t

0
σ(s)dW(s)‖p

V0
−
∫
Rn
|ξn(un)|pdx, (32)

where p = 2β + 2 in (32). For the third term on the right-hand side of (29), we have

2ρRe
(

vn(t) +
∫ t

0
σ(s)dW(s), vn(t)

)
≤ 2ρ‖vn(t)‖2 + 2ρ‖

∫ t

0
σ(s)dW(s)‖ · ‖vn(t)‖

≤ (2ρ + ρ2)‖vn(t)‖2 + ‖
∫ t

0
σ(s)dW(s)‖2

V0
. (33)

For the last term on the right-hand side of (29), we have

2Re(g(t), vn(t)) ≤ ‖vn(t)‖2 + ‖g(t)‖2, (34)

for almost all t ∈ [0, T], It follows from (29)–(34) that for all ω ∈ Ω3,

d‖vn(t)‖2

dt
+ ‖(−∆)

α
2 un(t)‖2 +

∫
Rn
|ξn(un(t))|pdx

≤ c2‖vn(t)‖2 + c3‖
∫ t

0
σ(s)dW(s)‖p

V0
+ ‖g(t)‖2,

(35)

for almost all t ∈ [0, T], where c2 = (ρ + 1)2, c3 = (c1 + 2ν2 + 3). By (12) and Burkholder–
Davis–Gundy Inequality, we obtain

E( sup
0≤t≤T

‖
∫ t

0
σ(s)dW(s)‖2

V0
) ≤ c4E(

∫ T

0
‖σ(s)‖2

L2(U,V0)
ds) < ∞,

which implies that there exists a subset Ω4 of Ω with P(Ω4) = 1 such that for all ω ∈ Ω4,

c5(T, ω) = sup
0≤t≤T

‖
∫ t

0
σ(s)dW(s)‖V0 < ∞. (36)

Let Ω5 = Ω3
⋂

Ω4. Then, P(Ω5) = 1 and for all ω ∈ Ω5, by (35) and (36) we obtain,

d‖vn(t)‖2

dt
+ ‖(−∆)

α
2 un(t)‖2 +

∫
Rn
|ξn(un(t))|pdx ≤ c2‖vn(t)‖2 + ‖g(t)‖2 + c3c5, (37)

for almost all t ∈ [0, T]. Multiplying (37) by e−c2t and then integrating on (0, t), we obtain,
for all ω ∈ Ω5 and 0 ≤ t ≤ T,

e−c2t‖vn(t)‖2 +
∫ t

0

(
e−c2s

(
‖(−∆)

α
2 un(s)‖2 +

∫
Rn
|ξn(un(s))|pdx

))
ds ≤ ‖vn(0)‖2
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+
∫ t

0
e−c2s(‖g(s)‖2 + c3c5)ds.

Therefore,

‖vn(t)‖2 ≤ (‖u0‖2 + c6)ec2t. (38)

By (38) and (36), we have that for all ω ∈ Ω5,

‖un(t)‖C(0,T,H) = max
0≤t≤T

‖un(t)‖H ≤ c7, (39)

where c7 is a positive number only depending on T and ω. Integrating (37) on [0, T], by
(38) we obtain, for all ω ∈ Ω5,∫ T

0
‖(−∆)

α
2 un(t)‖2dt +

∫ T

0

∫
Rn
|ξn(un(t))|pdxdt ≤ c8, (40)

where c8 is a positive number depending only T and ω. By (39) and (40) we obtain, for all
ω ∈ Ω5, ∫ T

0

∫
Rn

∣∣∣(1 + iµ|ξn(un)|2βξn(un))
∣∣∣qdxdt = c9

∫ T

0

∫
Rn
|ξn(un(t))|pdxdt, (41)

which together with (39)–(41) completes the proof.

Next, we establish uniform estimates on the expectation of the solution.

Lemma 2. Suppose (12) holds, then the solution un(t) of (22) and (23) satisfies

‖un(t)‖2
L2(Ω,C([0,T],H)) + ‖un(t)‖2

L2(Ω,L2([0,T],V)) + ‖ξn(un)‖p
Lp(Ω,Lp(0,T;Lp(Rn)))

≤ L1(T)(‖u0‖2
L2(Ω,H) + ‖g‖

2
L2(0,T;H) + ‖σ‖

2
L2(Ω,L2(0,T;L2(U,H)))),

where L1(T) is a positive number only depending on T.

Proof. By (24) and integration by parts of Ito’s formula, for all 0 ≤ t ≤ T, we obtain

‖un(t)‖2 + 2
∫ t

0
‖(−∆)

α
2 un(s)‖2ds + 2Re

∫ t

0

∫
Rn
(1 + iµ)|ξn(un)|2βξn(un)ūndxds

= ‖u0‖2 + 2ρ
∫ t

0
‖un(s)‖2ds + 2Re

∫ t

0

∫
Rn

g(s)un(s)dxds + 2Re
∫ t

0
σ(s)un(s)dW(s)

+
∫ t

0
‖σ(s)‖2

L2(U,H)ds

(42)

P–almost surely, by Riesz’s representation theorem, un in the stochastic term is identi-
fied with the element in H∗ = H. For the third term on the left-hand side of (42), by (21)
we have, for 0 ≤ t ≤ T,

Re
∫ t

0

∫
Rn
(1 + iµ)|ξn(un)|2βξn(un)ūn(s)dxds =

∫ t

0

∫
Rn
|ξn(un)|2βξn(un)ūn(s)dxds

≥
∫ t

0

∫
Rn
|ξn(un)|2β+2dxds. (43)
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By Young’s inequality, we have

2Re
∫ t

0
(g(s), un(s))ds ≤ 2

∫ t

0
|(g(s), un(s))|ds

≤
∫ t

0
‖un(s)‖2ds +

∫ t

0
‖g(s)‖2ds.

(44)

It follows from (42)–(44) that, for all 0 ≤ t ≤ T,

‖un(t)‖2 + 2
∫ t

0
‖(−∆)

α
2 un(s)‖2ds +

∫ t

0

∫
Rn
|ξn(un(s))|pdxds

≤ ‖u0‖2 + (2ρ + 1)
∫ t

0
‖un(s)‖2ds +

∫ t

0
‖g(s)‖2ds +

∫ t

0
‖σ(s)‖2

L2(U,H)ds

+ 2Re
∫ t

0
un(s)σ(s)dW(s).

(45)

By (45), we imply that for all 0 ≤ t ≤ T,

E( sup
0≤r≤t

(‖un(r)‖2)) ≤ E(‖u0‖2) + (2ρ + 1)
∫ t

0
E( sup

0≤r≤s
(‖un(r)‖2)ds +

∫ T

0
‖g(s)‖2ds

+E
(∫ T

0
‖σ(s)‖2

L2(U,H)ds
)
+ 2E

(
sup

0≤r≤t

∣∣∣∣∫ r

0
un(s)σ(s)dW(s)

∣∣∣∣
)

. (46)

By the Burkholder–Davis–Gundy inequality, we have for all 0 ≤ t ≤ T,

2E
(

sup
0≤r≤t

∣∣∣∣∫ r

0
un(s)σ(s)dW(s)

∣∣∣∣
)
≤ c10E

((∫ t

0
‖un(s)‖2‖σ(s)‖2

L2(U,H)ds
) 1

2
)

≤ c10E
(

sup
0≤s≤t

‖un(s)‖
(∫ t

0
‖σ(s)‖2

L2(U,H)ds
) 1

2
)

≤ 1
2
E
(

sup
0≤r≤t

‖un(r)‖2

)
+

1
2

c2
10E
(∫ t

0
‖σ(s)‖2

L2(U,H)ds
)

.

(47)

By (46) and (47) we obtain, for all 0 ≤ t ≤ T,

E
(

sup
0≤r≤t

‖un(r)‖2

)
≤ 2E(‖u0‖2) + (4ρ + 2)

∫ t

0
E( sup

0≤r≤s
(‖un(r)‖2)ds + 2

∫ T

0
‖g(s)‖2ds

+(c2
10 + 2)E

(∫ T

0
‖σ(s)‖2

L2(U,H)ds
)

. (48)

By (48) and the Gronwall inequality, we find that for all 0 ≤ t ≤ T,

E( sup
0≤r≤t

‖un(r)‖2) ≤ c11e(4ρ+2)t, (49)

where c11 = 2E(‖u0‖2) + 2
∫ T

0 ‖g(s)‖
2ds + (c2

10 + 2)
∫ T

0 E‖σ(s)‖2
L2(U,H)ds.

On the other hand, by (45) with t = T, we obtain

2E
(∫ T

0
‖(−∆)

α
2 un(s)‖2ds

)
+E

(∫ T

0

∫
Rn
|ξn(un(s))|pdxds

)
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≤ E(‖u0‖2) + (2ρ + 1)E
(∫ T

0
‖un(s)‖2ds

)
+
∫ T

0
‖g(s)‖2ds

+(1 +
1
2

c2
10)
∫ T

0
E(‖σ(s)‖2

L2(U,H))ds,

which together with (49) implies that

E
(∫ T

0
‖(−∆)

α
2 un(s)‖2ds

)
+E

(∫ T

0

∫
Rn
|ξn(un(s))|pdxds

)
≤ c11

(
E(‖u0‖2) +

∫ T

0
‖g(s)‖2ds +

∫ T

0
E(‖σ(s)‖2

L2(U,H))ds
)

,
(50)

which together with (49) and (50) completes the proof.

We will prove the existence and uniqueness of solutions to problem (13) and (14).

Lemma 3. Suppose (12) holds and u0 ∈ L2(Ω, H) is F0-measurable, then problem (13) and (14)
has a unique solution u in the sense of Definition 5. Moreover, u satisfies,

‖u(t)‖2
L2(Ω,C([0,T],H)) + ‖u(t)‖

2
L2(Ω,L2([0,T],V)) + ‖u(t)‖

p
Lp(Ω,Lp(0,T;Lp(Rn)))

≤ L2(T)(‖u0‖2
L2(Ω,H) + ‖g‖

2
L2(0,T;H) + ‖σ‖

2
L2(Ω,L2(0,T;L2(U,H)))),

(51)

where L2(T) is a positive number only depending on T.

Proof. We first prove the existence, then the uniqueness, and finally the measurability of
the solutions.

Step 1. Existence of solutions for almost every fixed ω ∈ Ω. Let Ω0 be the subset of
Ω in Lemma 12 with P(Ω0) = 1. Then, for every fixed ω ∈ Ω0, there exist ũ(ω) ∈ H and
u(ω) ∈ L∞(0, T; H))

⋂
L2(0, T; V), χ1(ω) ∈ Lp(0, T; Lp(Rn)), χ2(ω) ∈ Lq(0, T; Lq(Rn))

and a subsequence {nm}∞
m=1 of {n}∞

n=1 such that

unm(ω, T)→ ũ(ω) weakly in H, (52)

unm(ω)→ u(ω) weak− star in L∞(0, T; H), (53)

unm(ω)→ u(ω) weakly in L2(0, T; V), (54)

ξnm(unm(ω))→ χ1(ω) weakly in Lp(0, T; Lp(Rn)), (55)

and

(1 + iµ)|ξnm(unm(ω))|2βξnm(unm(ω))→ χ2(ω) weakly in Lq(0, T; Lq(Rn)). (56)

Let vnm(ω, t) = unm(ω, t) −
∫ t

0 σ(s)dW and v(ω, t) = u(ω, t) −
∫ t

0 σ(s)dW. Then,
by (53) we have

vnm(ω)→ v(ω) weak− star in L∞(0, T; H). (57)

By (54) we obtain

{vnm(ω)}∞
m=1 is bounded in L2(0, T; V). (58)
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On the other hand, by (24), we see that there exists a subset Ω1 of Ω with P(Ω1) = 1
such that for every ω ∈ Ω1,

vnm(ω, t) = −
∫ t

0
(1 + iν)(−∆)αunm(ω, s)ds + ρ

∫ t

0
unm(ω, s)ds

−
∫ t

0
(1 + iµ)|ξnm(unm(ω))|2βξnm(unm(ω, s))ds + u0 +

∫ t

0
g(s)ds in V∗.

(59)

Note that (59) is a deterministic equation parametrized by ω ∈ Ω1, which implies that
for every ω ∈ Ω1,

dvnm(ω, t)
dt

=− (1 + iν)(−∆)αunm(ω, t) + ρunm(ω, t)

− (1 + iµ)|ξnm(unm(ω))|2βξnm(unm(ω, t)) + g(t) in V∗,
(60)

for almost all t ∈ [0, T]. By (54), (56) and (60) we infer that

dvnm(ω)

dt
is bounded in Lq(0, T; (V

⋂
Lp(Rn))∗). (61)

Let ρ̂ : Rn → [0, 1] be a smooth function satisfies ρ̂(x) = 1 if |x| ≤ 1; and ρ̂(x) = 0 if
|x| ≥ 2. Given k ∈ N, denote by Vk = {u ∈ V : u = 0 f or almost all |x| ≥ 2k}, Hk = {u ∈
H : u = 0 f or almost all |x| ≥ 2k} and Lp

k = {u ∈ Lp(Rn) : u = 0 f or almost all |x| ≥ 2k}.
For brevity, we also write Ok = {x ∈ Rn : |x| < k} and ṽnm(ω, t, x) = ρ̂( x

k )vnm(ω, t, x) for
ω ∈ Ω, t ∈ [0, T] and x ∈ Rn. Then, by (58) we have

{ṽnm(ω)}∞
m=1 is bounded in L2(0, T; Vk). (62)

Similar to (61), by (60), we can verify that

dṽnm(ω)

dt
is bounded in Lq(0, T; (Vk

⋂
Lp

k )
∗). (63)

Since the embedding Vk ↪→ Hk is compact and Hk = (Hk)
∗ ↪→ (Vk

⋂
Lp

k )
∗ is continu-

ous, by (62) and (63) and the compactness theorem in [42] we infer from (57) that for every
ω ∈ Ω2 = Ω0

⋂
Ω1 and k ∈ N, there exists a further subsequence (not relabeled) such that

{ṽnm(ω)} → ρ̂(
x
k
)v(ω) strongly in L2(0, T; Hk). (64)

By (64), we have, up to a further subsequence,

ṽnm(ω, t, x)→ ρ̂(
x
k
)v(ω, t, x) f or almost all (t, x) ∈ (0, T)×O2k,

and hence

vnm(ω, t, x)→ v(ω, t, x) f or almost all (t, x) ∈ (0, T)×Ok. (65)

Based on (65), by a diagonal process, we find that, up to a subsequence,

vnm(ω, t, x)→ v(ω, t, x) f or almost all (t, x) ∈ (0, T)×Rn. (66)

By (66) we obtain, for ω ∈ Ω2,

unm(ω, t, x)→ u(ω, t, x) f or almost all (t, x) ∈ (0, T)×Rn. (67)

By (15) we have

|ξnm(unm(ω))− u(ω)| ≤ |ξnm(unm(ω)− ξnm(u(ω))|+ |ξnm(u(ω)− u(ω))|
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≤ |unm(ω)− u(ω)|+ |ξnm(u(ω))− u(ω)|,

which together with (67) implies that, for ω ∈ Ω2,

ξnm(unm(ω, t, x))→ u(ω, t, x) f or almost all (t, x) ∈ (0, T)×Rn. (68)

By (55), (68) and Mazur’s theorem, we obtain χ1(ω) = u(ω) and we have

ξnm(unm(ω, t, x))→ u(ω, t, x) weakly in Lp(0, T; Lp(Rn)). (69)

In addition, by (68), for almost all (t, x) ∈ (0, T)×Rn, we obtain

(1 + iµ)|ξnm(unm(ω, t, x))|2βξnm(unm(ω, t, x))→ (1 + iµ)|u(ω, t, x)|2βu(ω, t, x). (70)

By (56), (70) and Mazur’s theorem, we obtain χ2(ω) = (1 + iµ)|u(ω)|2βu(ω) and

(1 + iµ)|ξnm(unm(ω))|2βξnm(unm(ω, t, x))

→ (1 + iµ)|u(ω)|2βu(ω) weakly in Lq(0, T; Lq(Rn)).
(71)

Next, we take the limits of (22) to prove that u(ω) is a solution of (13) and (14). By (60),
we know that for every ω ∈ Ω2, ξ ∈ V

⋂
Lp(Rn) and ψ ∈ C∞

0 (0, T),

−
∫ T

0
(vnm(ω, t), ξ)ψ′(t)dt + (1 + iν)

∫ T

0
ψ(t)((−∆)

α
2 unm(ω, t), (−∆)

α
2 ξ)dt

+
∫ T

0
ψ(t)((1 + iµ)|ξnm(unm)|2βξnm(unm), ξ)dt

= ρ
∫ T

0
ψ(t)(unm(ω, t), ξ)dt +

∫ T

0
(g(t), ξ)ψ(t)dt. (72)

Letting m→ ∞ in (72), by (54), (57) and (71), we have

−
∫ T

0
(v(ω, t), ξ)ψ′(t)dt + (1 + iν)

∫ T

0
ψ(t)

(
(−∆)

α
2 u(ω, t), (−∆)

α
2 ξ
)

dt

+
∫ T

0
ψ(t)

(
(1 + iµ)|u|2βu, ξ

)
dt = ρ

∫ T

0
ψ(t)(u(ω, t), ξ)dt +

∫ T

0
(g(t), ξ)ψ(t)dt. (73)

By (73) for every ω ∈ Ω2 and ξ ∈ V
⋂

Lp(Rn), we infer that

d(v(ω), ξ)

dt
+ (1 + iν)((−∆)

α
2 u(ω), (−∆)

α
2 ξ) +

∫
Rn
(1 + iµ)|u(ω)|2βu(ω)ξ(x)dx

= ρ(u(ω, t), ξ) + (g(t), ξ)

(74)

on (0, T) in the sense of scalar distribution.
We next prove v(ω) : [0, T]→ H is continuous. Firstly, by (54), (71) and (74) we have

dv(ω)

dt
is in L2(0, T; V∗)

⋃
Lq(0, T; Lq(Rn)). (75)

By (54) and (69) we see that

u(ω) is in L2(0, T; V)
⋂

Lp(0, T; Lp(Rn)),
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and hence

v(ω) is in L2(0, T; V)
⋂

Lp(0, T; Lp(Rn)). (76)

By (75) and (76), it follows from [36] that v(ω) ∈ C([0, T], H) and

d‖v(ω)‖2

dt
= 2〈dv(ω)

dt
, v(ω)〉(V∗ ⋃ Lq(Rn),V

⋂
Lp(Rn)),

in the sense of scalar distribution on (0, T). As a result, we find that u(ω) ∈ C([0, T], H).
Next, we show that u(ω) has initial condition u0(ω) when t = 0. By (60), we infer that for
every ω ∈ Ω2, ξ ∈ V

⋂
Lp(Rn) and ψ ∈ C∞([0, T]),

(vnm(ω, T), ξ)ψ(T)− (vnm(ω, 0), ξ)ψ(0)−
∫ T

0
(vnm(ω, t), ξ)ψ′(t)dt

+(1 + iν)
∫ T

0
((−∆)

α
2 unm(ω, t), (−∆)

α
2 ξ)ψ(t)dt

+
∫ T

0

∫
Rn
(1 + iµ)|ξnm(unm)|2βξnm(unm)ξ(t)ψ(t)dxdt

= ρ
∫ T

0
ψ(t)(unm(ω, t), ξ)dt +

∫ T

0
(g(t), ξ)ψ(t)dt. (77)

Letting m→ ∞ in (77), it follows from (52), (54), (57), (69) and (71) that(
ũ(ω)−

∫ T

0
σ(s)dW, ξ

)
ψ(T)− (u0(ω), ξ)ψ(0)−

∫ T

0
(v(ω), ξ)ψ′(t)dt

+(1 + iν)
∫ T

0

(
(−∆)

α
2 u(ω, t), (−∆)

α
2 ξ
)

ψ(t)dt

+
∫ T

0

∫
Rn
(1 + iµ)|ξnm(unm)|2βξnm(unm)ξ(t)ψ(t)dxdt

= ρ
∫ T

0
ψ(t)(u(ω, t), ξ)dt +

∫ T

0
(g(t), ξ)ψ(t)dt. (78)

On the other hand, by (74), we obtain(
u(ω, T)−

∫ T

0
σ(s)dW, ξ

)
ψ(T)− (u(ω, 0), ξ)ψ(0)−

∫ T

0
(v(ω), ξ)ψ′(t)dt

+ (1 + iν)
∫ T

0
((−∆)

α
2 u(ω, t), (−∆)

α
2 ξ)ψ(t)dt

+
∫ T

0

∫
Rn
(1 + iµ)|u(ω, t)|2βu(ω, t)ξ(t)ψ(t)dxdt

= ρ
∫ T

0
ψ(t)(u(ω, t), ξ)dt +

∫ T

0
(g(t), ξ)ψ(t)dt.

(79)

By (78) and (79), we obtain

(u(ω, T)− ũ(ω), ξ)ψ(T) = (u(ω, 0)− u0(ω), ξ)ψ(0). (80)

Choosing ψ ∈ C∞([0, T]) with ψ(0) = 1 and ψ(T) = 0, we obtain from (80) that for
every ω ∈ Ω2 and ξ ∈ V

⋂
Lp(Rn),

(u(ω, 0)− u0(ω), ξ) = 0,
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which shows that

u(ω, 0) = u0(ω) in H. (81)

Similarly, choosing ψ ∈ C∞([0, T]) with ψ(0) = 0 and ψ(T) = 1, we can obtain
from (80) that for every ω ∈ Ω2,

u(ω, T) = ũ(ω) in H. (82)

By (52) and (82), we know that

unm(ω, T)→ u(ω, T) weakly in H. (83)

By (83), we can also infer that for every t ∈ [0, T],

unm(ω, t)→ u(ω, t) weakly in H. (84)

By (74) we find that for every ω ∈ Ω2, ξ ∈ V
⋂

Lp(Rn) and t ∈ [0, T],

(v(ω, t), ξ) + (1 + iν)
∫ t

0
((−∆)

α
2 u(ω, s), (−∆)

α
2 ξ)ds

+
∫ t

0

∫
Rn
(1 + iµ)|u(ω, s)|2βu(ω, s)ξ(x)dxds

= (v(ω, 0), ξ) + ρ
∫ t

0
(u(ω, s), ξ)ds +

∫ t

0
(g(s), ξ)ds. (85)

By (81) and (85) we obtain, for every ω ∈ Ω2, ξ ∈ V
⋂

Lp(Rn) and t ∈ [0, T],

(u(ω, t), ξ) + (1 + iν)
∫ t

0
((−∆)

α
2 u(ω, s), (−∆)

α
2 ξ)ds

+
∫ t

0

∫
Rn
(1 + iµ)|u(ω, s)|2βu(ω, s)ξ(x)dxds

= (u0(ω), ξ) + ρ
∫ t

0
(u(ω, s), ξ)ds +

∫ t

0
(g(s), ξ)ds +

∫ t

0
ξσ(s)dW(s). (86)

Note that for every fixed ω ∈ Ω2,

u(ω) ∈ C([0, T], H)
⋂

L2(0, T; V)
⋂

Lp(0, T; Lp(Rn)). (87)

Next, we prove the uniqueness of solutions to (86) with property (87).
Step 2. Uniqueness of solutions for almost every fixed ω ∈ Ω. Given ω ∈ Ω2, let u1(ω)

and u2(ω) be the solutions of (86) satisfying (87). We want to show u1(ω, t) = u2(ω, t) in
H for all t ∈ [0, T].

Let u′(ω, t) = u1(ω, t)− u2(ω, t). Then by (87) we have

u′(ω) ∈ C([0, T], H)
⋂

L2(0, T; V)
⋂

Lp(0, T; Lp(Rn)). (88)

On the other hand, by (86) we obtain, for all ξ ∈ V
⋂

Lp(Rn) and t ∈ [0, T],

(u′(ω, t), ξ) + (1 + iν)
∫ t

0
((−∆)

α
2 u′(ω, s), (−∆)

α
2 ξ)ds = ρ

∫ t

0
(u′(ω, s), ξ)ds

−
∫ t

0

∫
Rn

(
(1 + iµ)|u1(ω, s)|2βu1(ω, s)− (1 + iµ)|u2(ω, s)|2βu2(ω, s)

)
ξ(x)dxds,



Mathematics 2022, 10, 4485 16 of 36

which together with (88) implies that

du′(ω)

dt
=− (1 + iν)(−∆)αu′(ω) + ρu′(ω)−

(
(1 + iµ)|u1(ω)|2βu1(ω)

− (1 + iµ)|u2(ω)|2βu2(ω)
)

,
(89)

in L2(0, T; V∗)
⋃

Lq(0, T; Lq(Rn)).
By (88) and (89) we obtain

d‖u′(ω, t)‖2

dt
=2Re〈du′(ω, t)

dt
, u′(ω, t)〉(V∗ ⋃ Lq(Rn),V

⋂
Lp(Rn))

=− 2‖(−∆)
α
2 u′(ω)‖2 + 2ρ‖u′(ω)‖2

− 2Re
(
(1 + iµ|u1|2βu1 − (1 + iµ|u2|2βu2), u′(ω)

)
.

(90)

According to (20), we obtain

d‖u′(ω, t)‖2

dt
≤ 2ρ‖u′(ω, t)‖2,

which together with Gronwall’s inequality, we obtain that for all t ∈ [0, T],

‖u′(ω, t)‖2 ≤ e2ρt‖u′(ω, 0)‖2, (91)

and u′(ω, 0) = u0(ω)− u0(ω) = 0, therefore, u1(ω, t) = u2(ω, t) for all t ∈ [0, T].
Step 3. Measurability and regularity of solutions. By (84) we know that for every

ω ∈ Ω2, there exists a subsequence {unm(ω)}∞
m=1 of {un(ω)}∞

n=1, which may depend on ω,
such that

unm(ω, t)→ u(ω, t) weakly in H. (92)

Since u(ω) is the unique solution of (86) with property (87), we know from (92) that
the entire sequence un(ω, t) (not just a subsequence) weakly converges in H; namely, for
every ω ∈ Ω2 and t ∈ [0, T],

un(ω, t)→ u(ω, t) weakly in H. (93)

Since for each n ∈ N, the process un is Ft-adapted, it follows from (93) that u is also
Ft-adapted.

Next, we show the measurability of u : Ω→ L2(0, T; V). By Lemma 2, we see that un is
bounded in L2(Ω, L2(0, T; V)), hence there exists u′ ∈ L2(Ω, L2(0, T; V)) and a subsequence
(not relabeled) such that

un → u′ weakly in L2(Ω, L2(0, T; V)). (94)

By (94), (67) and Mazur’s theorem, we obtain that u(ω) = u′(ω) in L2(0, T; V) for
almost all ω ∈ Ω, and hence u : Ω→ L2(0, T; V) is measurable and

‖u‖2
L2(Ω,L2(0,T;V)) ≤ lim inf

n→∞
‖un‖2

L2(Ω,L2(0,T;V)). (95)

We now prove the measurability of u : Ω → Lp(0, T; Lp(Rn)). As before, given
ω ∈ Ω2, since u(ω) is the unique solution of (86) with property (87), by (69) we obtain, for
every ω ∈ Ω2,

ξn(un(ω))→ u(ω) weakly in Lp(0, T; Lp(Rn)). (96)
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In addition, by Lemma 2, the sequence {ξn(un)}∞
n=1 is bounded in Lp(Ω, Lp(0, T; Lp(Rn))),

and hence there exists ξ ∈ Lp(Ω, Lp(0, T; Lp(Rn))) and a subsequence (not relabeled) such that

ξn(un)→ ξ weakly in Lp(0, T; Lp(Rn)). (97)

By (96) and (97) and Mazur’s theorem, we find that u(ω) = ξ(ω) in Lp(0, T; Lp(Rn))
for almost all ω ∈ Ω. This implies u : Ω→ Lp(0, T; Lp(Rn)) is measurable and

‖u‖p
Lp(Ω,Lp(0,T;v)) ≤ lim inf

n→∞
‖un‖p

Lp(Ω,Lp(0,T;V))
. (98)

Note that u is a continuous H-valued Ft-adapted process. Therefore, u : Ω →
C([0, T], H) is measurable. By (53) and the uniqueness of solution of (86), for every ω ∈ Ω2,

un(ω)→ u(ω) weak-star in L∞(0, T; H),

which implies

‖u(ω)‖L∞(0,T;H) ≤ lim inf
n→∞

‖un(ω)‖L∞(0,T;H). (99)

By (99) and Fatou’s lemma we obtain∫
Ω
‖u(ω)‖2

L∞(0,T;H)dP ≤
∫

Ω
lim inf

n→∞
‖un(ω)‖2

L∞(0,T;H)dP

≤ lim inf
n→∞

∫
Ω
‖un(ω)‖L∞(0,T;H)dP.

(100)

By (100) and Lemma 2, we obtain
∫

Ω ‖u(ω)‖2
L∞(0,T;H)dP < ∞, which along with the

path continuity of u implies u ∈ L2(Ω, C([0, T], H)). By (86) and the above measurability
of u, we see that u is a solution of (13) and (14) in the sense of Definition 5. We obtain the
uniqueness of the solutions follows from Step2, and the uniform estimates of (51) follows
from (95), (98), (100) and Lemma 2.

4. Existence of Solutions: General Additive Noise

In this section, we study the existence and uniqueness of solutions to problem (1)
and (2) with a general additive noise,

du(t) + (1 + iν)(−∆)αu(t)dt + (1 + iµ)|u(t)|2βu(t)dt =ρu(t)dt + g(t, x)dt

+ σ(t, ω)dW,
(101)

with initial condition

u(0) = u0, (102)

where σ : R×Ω→ L2(U, H) is a progressively measurable process such that

σ ∈ L2(Ω, L2(0, T;L2(U, H))) for every T > 0. (103)

We investigate the existence and uniqueness of solutions to problem (101) and (102)
under condition (103).

Lemma 4. Suppose (103) holds and u0 ∈ L2(Ω, H) is F0-measurable, then problem (101) and
(102) has a unique solution u in the sense of Definition 5. Moreover, u satisfies,

‖u(t)‖2
L2(Ω,C([0,T],H)) + ‖u(t)‖

2
L2(Ω,L2([0,T],V)) + ‖u(t)‖

p
Lp(Ω,Lp(0,T;Lp(Rn)))

≤ L3(T)(‖u0‖2
L2(Ω,H) + ‖g‖

2
L2(0,T;H) + ‖σ‖

2
L2(Ω,L2(0,T;L2(U,H)))),

(104)
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where L3(T) is a positive number depending only on T.

Proof. We first approximate the drift coefficient σ with (103) by regular drift terms and
construct a sequence of approximate solutions. We then derive uniform estimates, and
prove that the limit of the approximate solution is a solution of (101) and (102). Finally, we
show the uniqueness of the solutions.

Step 1. Approximate solutions. We first approximate σ with (103) by regular functions.
Therefore, we choose a positive integer k0 such that k0 > (p−2)n

4p . Then, we obtain that

H2k0(Rn) ↪→ Lp(Rn). Given m ∈ N, denote by

σm = (I − 1
m

∆)−k0 σ.

Then we have σm ∈ L2(Ω, L2(0, T;L2(U, V0))). By Lemma 3 we find that, for every
m ∈ N, there exists a unique continuous H-valued Ft-adapted stochastic process um with

um(ω) ∈ L2(Ω, C([0, T], H))
⋂

L2(Ω, L2(0, T; V))
⋂

Lp(Ω, Lp(0, T; Lp(Rn))), ∀T > 0,

such that for all t ≥ 0 and ξ ∈ V
⋂

Lp(Rn),

(um(ω, t), ξ) + (1 + iν)
∫ t

0
((−∆)

α
2 um(ω, s), (−∆)

α
2 ξ)ds

+
∫ t

0

∫
Rn
(1 + iµ)|um(ω, s)|2βum(ω, s)ξ(x)dxds

= (u0(ω), ξ) + ρ
∫ t

0
(um(ω, s), ξ)ds +

∫ t

0
(g(s), ξ)ds +

∫ t

0
ξσm(s)dW(s),

(105)

P–almost surely. Where ξ in the stochastic term is considered as an element of H∗ by
Riesz’s representation theorem. Moreover, by (51), Lemma 3 and the contractility of the
operator (I− 1

m ∆)−k0 , we find that for all m ∈ N, there exists a positive number C1 = C1(T)
independent of m such that

‖um(t)‖2
L2(Ω,C([0,T],H)) + ‖um(t)‖2

L2(Ω,L2([0,T],V)) + ‖um‖p
Lp(Ω,Lp(0,T;Lp(Rn)))

≤ C1(‖u0‖2
L2(Ω,H) + ‖g‖

2
L2(0,T;H) + ‖σ‖

2
L2(Ω,L2(0,T;L2(U,H)))). (106)

By (41) and (106) we obtain that, for all m ∈ N,

‖(1 + iµ)|um|2βum‖q
Lq(Ω,Lq(0,T;Lq(Rn)))

≤ c9C1(‖u0‖2
L2(Ω,H) + ‖g‖

2
L2(0,T;H) + ‖σ‖

2
L2(Ω,L2(0,T;L2(U,H)))). (107)

Next, we derive further uniform estimates of the approximate solutions.
Step 2. Uniform estimates on {um}∞

m=1. Note that by the proof of Lemma 3, for every
m ∈ N, the solution um of (105) is given by the limit of the solution um,n of the following
equation in V∗,

um,n(t) + (1 + iν)
∫ t

0
((−∆)αum,n(s) + (1 + iµ)|ξn(um,n(s))|2βξn(um,n(s))ds

= u0 + ρ
∫ t

0
um,n(s)ds +

∫ t

0
g(s, x)ds +

∫ t

0
σm(s, ω)dW. (108)
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By (108) and integration by parts of Ito’s formula, we obtain, for all m1, m2 ∈ N, with
ûm,n(t) = um1,n(t)− um2,n(t),

‖ûm,n(t)‖2 + 2
∫ t

0
‖(−∆)

α
2 ûm,n(s)‖2ds

+ 2Re
∫ t

0

∫
Rn
(1 + iµ)

(
|ξn(um1,n(s))|2βξn(um1,n(s))− |ξn(um2,n(s))|2βξn(um2,n(s))

)
dxds

= 2ρ
∫ t

0
‖ûm,n‖2ds +

∫ t

0
‖σm1(ω)− σm2(ω)‖2

L2(U,H)ds

+ 2Re
∫ t

0
ûm,n(s)(σm1(ω)− σm2(ω))dW.

(109)

Together with (20), we obtain

‖ûm,n(t)‖2 + 2
∫ t

0
‖(−∆)

α
2 ûm,n(s)‖2ds ≤ 2ρ

∫ t

0
‖ûm,n‖2ds

+
∫ t

0
‖σm1(ω)− σm2(ω)‖2

L2(U,H)ds + 2Re
∫ t

0
ûm,n(s)(σm1(ω)− σm2(ω))dW,

from which we can deduce that, for each T > 0,

E( sup
0≤r≤t

‖ûm,n(r)‖2)

≤ 2ρ
∫ t

0
E( sup

0≤r≤s
‖ûm,n(r)‖2)ds +E

(∫ T

0
‖σm1(ω)− σm2(ω)‖2

L2(U,H)ds
)

+ 2E
(

sup
0≤r≤t

∣∣∣∣∫ r

0
ûm,n(s)(σm1(ω)− σm2(ω))dW(s)

∣∣∣∣
)

.

By the Burkholder–Davis–Gundy inequality and Young’s inequality, we infer

2E
(

sup
0≤r≤t

∣∣∣∣∫ r

0
ûm,n(s)(σm1(ω)− σm2(ω))dW(s)

∣∣∣∣
)

≤ 1
2
E( sup

0≤r≤t
‖ûm,n(r)‖2) + c12E

(∫ t

0
‖σm1(ω)− σm2(ω)‖2

L2(U,H)ds
)

.

Therefore, we have

E( sup
0≤r≤t

‖ûm,n(r)‖2) ≤4ρ
∫ t

0
E( sup

0≤r≤s
‖ûm,n(r)‖2)ds

+ 2(1 + c12)E
(∫ T

0
‖σm1(ω)− σm2(ω)‖2

L2(U,H)ds
)

.

Applying the Gronwall inequality, for all t ∈ [0, T], we deduce,

E( sup
0≤r≤t

‖ûm,n(r)‖2) ≤ 2(1 + c12)e4ρtE
(∫ T

0
‖σm1(ω)− σm2(ω)‖2

L2(U,H)ds
)

.

By (109), we obtain

2E
(∫ T

0
‖(−∆)

α
2 ûm,n‖2ds

)
≤2ρE

(∫ T

0
‖ûm,n‖2ds

)
+ (c12 + 1)E

(∫ T

0
‖σm1(ω)− σm2(ω)‖2

L2(U,H)ds
)

,



Mathematics 2022, 10, 4485 20 of 36

which together above we can deduce, there exists a positive number c13 = c13(T) indepen-
dent of m1, m2 and n such that

E
(

sup
0≤t≤T

‖um1,n(t)− um2,n(t)‖2

)
+E

(∫ T

0
‖um1,n(t)− um2,n(t)‖2

Hα dt
)

≤ c13E
(∫ T

0
‖σm1(ω)− σm2(ω)‖2

L2(U,H)ds
)

, (110)

where c13 =
(

2(1 + c12)e4ρT [1 + T + 2ρT
C(n,α) ] +

c12+1
C(n,α)

)
.

Note that the proof of Lemma 3, we know that there exists a subset Ω1 of Ω with
P(Ω1) = 1 such that for every ω ∈ Ω1 and every fixed m ∈ N, as n→ ∞,

um,n(ω)→ um(ω) weak-star in L∞(0, T; H), (111)

um,n(ω)→ um(ω) weakly in L2(0, T; V), (112)

ξn(um,n)(ω)→ um(ω) weakly in Lp(0, T; Lp(Rn)), (113)

(1 + iµ)|ξn(um,n(ω))|2βξn(um,n(ω))→(1 + iµ)|um,n(ω)|2βum,n(ω)

weakly in Lq(0, T; Lq(Rn)).
(114)

By (112) and Fatou’s lemma, we obtain

E
(
‖um1 − um2‖2

L2(0,T;V)

)
≤ lim inf

n→∞
E
(
‖um1 − um2‖2

L2(0,T;V)

)
≤c13E

(∫ T

0
‖σm1 − σm2‖2

L2(U,H)ds
)

.
(115)

Similarly, we obtain

E
(
‖um1 − um2‖2

C(0,T;H)

)
≤ c13E

(∫ T

0
‖σm1 − σm2‖2

L2(U,H)ds
)

. (116)

Note that σm → σ in L2(Ω, L2(0, T;L2(U, H))) as m → ∞, and hence {σm}∞
m=1 is a

Cauchy sequence in L2(Ω, C([0, T], H)) ∩ L2(Ω, L2(0, T; V)) such that

lim
m→∞

um = u in L2(Ω, C([0, T], H))
⋂

L2(Ω, L2(0, T; V)). (117)

By (117) we see that u is a continuous H-valued Ft-adapted process. On the other
hand, by (117) we infer that, up to a subsequence (not relabeled) such that

um → u almost everywhere in Ω× [0, T]×Rn. (118)

By (107), there exists χ ∈ Lq(Ω, Lq(0, T; Lq(Rn))) such that, up to a subsequence,

(1 + iµ)|um|2βum → χ weakly in Lq(Ω, Lq(0, T; Lq(Rn))). (119)

By (118) and (119) and Mazur’s theorem, we obtain χ = (1 + iµ)|u|2βu and thus

(1 + iµ)|um|2βum → (1 + iµ)|u|2βu weakly in Lq(Ω, Lq(0, T; Lq(Rn))). (120)
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Similarly, by (106) and (118), we obtain

um → u weakly in Lp(Ω, Lp(0, T; Lp(Rn))). (121)

Next, we take the limit of (105) as m→ ∞.
Step 3. Limit of approximate equation. Let φ ∈ L∞(Ω,R) and ξ ∈ V ∩ Lp(Rn). Then,

by (117) we obtain, for all t ∈ [0, T],

E((um(t), ξ)φ)→ E((u(t), ξ)φ). (122)

In addition, for each t ∈ [0, T], by (117) we obtain

E
(

φ
∫ t

0
((−∆)

α
2 um(s), (−∆)

α
2 ξ)ds

)
= E

(∫ T

0
((−∆)

α
2 um(s), 1[0,t](s)φ(−∆)

α
2 ξ)ds

)

→ E
(∫ T

0
((−∆)

α
2 u(s), 1[0,t](s)φ(−∆)

α
2 ξ)ds

)
= E

(
φ
∫ t

0
((−∆)

α
2 u(s), (−∆)

α
2 ξ)ds

)
. (123)

Similarly, for each t ∈ [0, T], by (120), we obtain

E
(

φ
∫ t

0

∫
Rn
(1 + iµ)|um(s)|2βum(s)ξ(x)dxds

)
→ E

(
φ
∫ t

0

∫
Rn
(1 + iµ)|u(s)|2βu(s)ξ(x)dxds

)
.

(124)

Since σm → σ in L2(Ω, L2(0, T;L2(U, H))), we obtain, for each t ∈ [0, T],

E
(

φ
∫ t

0
ξσm(s)dW(s)

)
→ E

(
φ
∫ t

0
ξσ(s)dW(s)

)
. (125)

Multiplying Equation (105) by φ, taking the expectation, and then letting m → ∞,
by (117) and (122)–(125) we obtain, for each t ∈ [0, T] and ξ ∈ V ∩ Lp(Rn),

E(φ(u(t), ξ)) + (1 + iν)E
(

φ
∫ t

0
((−∆)

α
2 u(s), (−∆)

α
2 ξ)ds

)
+E

(
φ
∫ t

0

∫
Rn
(1 + iµ)|u(s)|2βu(s)ξ(x)dxds

)
= E(φ(u0, ξ)) + ρE

(
φ
∫ t

0
(u(s), ξ)ds

)
+E

(
φ
∫ t

0
(g(s), ξ)ds

)
+E

(
φ
∫ t

0
ξσ(s)dW(s)

)
.

(126)

Since φ ∈ L∞(Ω,R) is arbitrary, by (126), we infer that for every t ∈ [0, T] and
ξ ∈ V ∩ Lp(Rn), there exists a subset Ω2 (depending on t and ξ) of Ω with P(Ω2) = 0 such
that for all ω ∈ Ω\Ω2,

(u(t), ξ) + (1 + iν)
∫ t

0
((−∆)

α
2 u(ω, s), (−∆)

α
2 ξ)ds +

∫ t

0

∫
Rn
(1 + iµ)|u(ω, s)|2βu(ω, s)ξ(x)dxds

= (u0(ω), ξ) + ρ
∫ t

0
(u(ω, s), ξ)ds +

∫ t

0
(g(s), ξ)ds +

∫ t

0
ξσ(s)dW(s). (127)

Note that the subset Ω2 may depend on t ∈ [0, T] and ξ ∈ V ∩ Lp(Rn) in general.
However, since every term in (127) is continuous in t and the space ξ ∈ V ∩ Lp(Rn) is
separable, we are able to choose a subset Ω2 of P-probability zero, which is independent
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of t and ξ, such that (127) is valid for all ω ∈ Ω \Ω2, for all t ∈ [0, T] and ξ ∈ V ∩ Lp(Rn).
By (117) and (121), we have

u ∈ L2(Ω, C([0, T], H))
⋂

L2(Ω, L2(0, T; V))
⋂

Lp(Ω, Lp(0, T; Lp(Rn))). (128)

Moreover, taking the limit in (106) with respect to m, by (128), we know that

‖u(t)‖2
L2(Ω,C([0,T],H)) + ‖u(t)‖

2
L2(Ω,L2([0,T],V)) + ‖u‖

p
Lp(Ω,Lp(0,T;Lp(Rn)))

≤ C1(‖u0‖2
L2(Ω,H) + ‖g‖

2
L2(0,T;H) + ‖σ‖

2
L2(Ω,L2(0,T;L2(U,H)))). (129)

By (127)–(129) we see that u is a solution of (101) and (102) with the desired estimates.
Step 4. Uniqueness of solutions. Suppose u1 and u2 be the solutions of (101) and (102)

in the sense of Definition 5 with initial conditions u0,1 and u0,2, Let û = u1 − u2, then we
have, for all ξ ∈ V ∩ Lp(Rn) and t ∈ [0, T], P–almost surely,

(û(t), ξ) + (1 + iν)
∫ t

0
((−∆)

α
2 û(s), (−∆)

α
2 ξ)ds

= (u0,1 − u0,2, ξ)−
∫ t

0

∫
Rn
((1 + iµ)|u1|2βu1 − (1 + iµ)|u2|2βu2)ξ(x)dxds + ρ

∫ t

0
(û(s), ξ)ds. (130)

Similar to (91), we obtain that

‖û(ω, t)‖2 ≤ ec14t‖û(ω, 0)‖2,

which implies that

E
(
‖u1 − u2‖2

C([0,T],H)

)
≤ ec14TE(‖u0,1 − u0,2‖2),

and hence the solution is unique.

5. Existence of Solutions: Globally Lipschitz Noise

In this section, we suppose that σ : R× Ω × H → L2(U, H) is globally Lipschitz
continuous in its third argument uniformly for (t, ω) ∈ R × Ω; namely, there exists a
positive number L0 such that for all t ∈ R, ω ∈ Ω and u1, u2 ∈ H,

‖σ(t, ω, u1)− σ(t, ω, u2)‖L2(U,H) ≤ L0‖u1 − u2‖. (131)

In addition, σ satisfies (4). We suppose that for every fixed u ∈ H, σ(·, ·, u) : R×Ω→
L2(Ω, H) is progressively measurable.

Lemma 5. Suppose (131) holds and u0 ∈ L2(Ω, H) is F0-measurable, then problem (1) and (2)
has a unique solution u in the sense of Definition 5. Moreover, the solution u is continuous in
u0 from L2(Ω, H) to L2(Ω, C([0, T]; H))

⋂
L2(Ω, L2(Ω, L2(0, T; V))) and u satisfies the energy

equation

‖u(t)‖2 + 2
∫ t

0
‖(−∆)

α
2 u(s)‖2ds + 2

∫ t

0

∫
Rn
|u|2β+2dxds

= ‖u0‖2 + 2ρ
∫ t

0
‖u(s, x)‖2ds + 2Re

∫ t

0
(u(s), g(s))ds + 2Re

∫ t

0
u(s)σ(s, ω(s))dW

+
∫ t

0
‖σ(s, u(s))‖2

L2(U,H)ds,
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for all t ∈ [0, T], P–almost surely. In addition,

‖u(t)‖2
L2(Ω,C([0,T],H)) + ‖u(t)‖

2
L2(Ω,L2([0,T],V)) + ‖u(t)‖

p
Lp(Ω,Lp(0,T;Lp(Rn)))

≤ L4(T)(‖u0‖2
L2(Ω,H) + ‖g‖

2
L2(0,T;H)), (132)

where L4(T) is a positive number only depending on T.

Proof. For an F0-measurable initial condition u0 ∈ L2(Ω, H) and a given progressively
measurable process z ∈ L2(Ω, L2(0, T; H)), we investigate the following stochastic equation:

du(t) + (1 + iν)(−∆)αu(t)dt + (1 + iµ)|u(t)|2βu(t)dt = ρu(t)dt + g(t)dt + σ(t, z(t))dW, (133)

with initial condition

u(0) = u0. (134)

Since z ∈ L2(Ω, L2(0, T; H)) is a progressively measurable process. By (4) and (131),
we notice that σ(·, z(·)) ∈ L2(Ω, L2(0, T;L2(U, H))) is also progressively measurable. Then,
for every F0-measurable u0 ∈ L2(Ω, H), by Lemma 4, problem (133) and (134) has a
unique solution u in the sense of Definition 5 which satisfies (104). We define a map
G:L2(Ω, L2(0, T; H)) → L2(Ω, L2(0, T; H)), for every z ∈ L2(Ω, L2(0, T; H)), G(z) = u,
where u is the unique solution of (133) and (134).

Next we prove that G is a contraction when L2(Ω, L2(0, T; H)) is endowed with an
equivalent norm using Banach fixed point theorem.

Step 1. Contractility of G. Let z1, z2 be progressively measurable in L2(Ω, L2(0, T; H)),
and u1, u2 be the solution of (133) and (134) given by Lemma 4. Let û = u1 − u2 and
ẑ = z1 − z2. Then, we have

û(t) + (1 + iν)
∫ t

0
(−∆)αû(s)ds +

∫ t

0
((1 + iµ)|u1|2βu1 − (1 + iµ)|u2|2βu2)ds

= ρ
∫ t

0
û(s)ds +

∫ t

0
(σ(s, z1(s))− σ(s, z2(s)))dW(s) in

(
V
⋂

Lp(Rn)
)∗

. (135)

Let k0 be a positive integer such that k0 > (2−q)n
4q . Then we have W2k0,q(Rn) ↪→ L2(Rn).

We set that
ûε = (I − ε∆)−k0 û,

fε(t) = (I − ε∆)−k0((1 + iµ)|u1|2βu1 − (1 + iµ)|u2|2βu2),

σε(t) = (I − ε∆)−k0(σ(t, z1)− σ(t, z2)).

Hence, we obtain

ûε(t) + (1 + iν)
∫ t

0
(−∆)αûε(s)ds +

∫ t

0
fε(s)ds = ρ

∫ t

0
ûε(s)ds +

∫ t

0
σε(s)dW(s) in H. (136)

Let θ ≥ 0 be a fixed constant, ûθ
ε = e−θtûε, ûθ = e−θtû. By (136), we obtain that

ûθ
ε (t) + θ

∫ t

0
ûθ

ε (s)ds + (1 + iν)
∫ t

0
(−∆)αûθ

ε (s)ds +
∫ t

0
e−µs fε(s)ds

= ρ
∫ t

0
ûθ

ε (s)ds +
∫ t

0
e−θsσε(s)dW(s)

(137)
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in H. By (137) and integration by parts of Ito’s formula, we obtain

‖ûθ
ε (t)‖2 + 2θ

∫ t

0
‖ûθ

ε (t)‖2ds + 2
∫ t

0
‖(−∆)

α
2 ûθ

ε (s)‖2ds + 2Re
∫ t

0
e−θs( fε(s), ûθ

ε (s))ds

= 2ρ
∫ t

0
‖ûθ

ε (s)‖2ds + 2Re
∫ t

0
e−θsûθ

ε (s)σε(s)dW(s) +
∫ t

0
‖e−θsσε(s)‖2

L2(U,H)ds. (138)

For all r ∈ (1, ∞), h ∈ Lr(Rn), we have

‖(I − ε∆)−1h‖Lr(Rn) ≤ ‖h‖Lr(Rn) and lim
ε→0
‖(I − ε∆)−1h− h‖Lr(Rn) = 0. (139)

By (139) and the dominated convergence theorem, we obtain that, for every t ∈ [0, T],

lim
ε→0
‖ûθ

ε (t)‖2 = ‖ûθ(t)‖2, (140)

lim
ε→0

∫ t

0
‖ûθ

ε (s)‖2ds =
∫ t

0
‖ûθ(s)‖2ds, (141)

lim
ε→0

∫ t

0
‖(−∆)

α
2 ûθ

ε (s)‖2ds =
∫ t

0
‖(−∆)

α
2 ûθ(s)‖2ds, (142)

lim
ε→0

∫ t

0
‖e−θsσε(s)‖2

L2(U,H)ds =
∫ t

0
‖e−θsσ(s, z1(s))− σ(s, z2(s))‖2

L2(U,H)ds, (143)

lim
ε→0
‖ fε(s)− ((1 + iµ)|u1(s)|2βu1(s)− (1 + iµ)|u2(s)|2βu2(s))‖Lq(Rn) = 0,

and
lim
ε→0
‖ûθ

ε (s)− ûθ(s)‖Lp(Rn) = 0.

Then, we obtain

lim
ε→0
‖ fε(s)ûθ

ε (s)− ((1 + iµ)|u1(s)|2βu1(s)− (1 + iµ)|u2(s)|2βu2(s))ûθ(s)‖L1(Rn) = 0.

By (139) and the dominated convergence theorem, we obtain

lim
ε→0

∫ t

0
e−θsRe( fε(s), ûθ

ε (s))ds

=
∫ t

0
e−θs

∫
Rn

ûθ(s)((1 + iµ)|u1(s)|2βu1(s)−(1 + iµ)|u2(s)|2βu2(s))dxds.
(144)

To prove the stochastic term in (138), we need to prove the convergence of quadratic
variation,[

Re
∫ t

0
e−θsûθ

ε (s)σε(s)dW(s)− Re
∫ t

0
e−θsûθ(σ(s, z1(s))− σ(s, z2(s))dW(s))

] 1
2

T

= ‖Re(e−θsûθ
ε (s)σε(s))− Re(e−θsûθ(σ(s, z1(s))− σ(s, z2(s))))‖L2(0,T;L2(U,R))

≤ ‖e−θsûθ
ε (s)σε(s)− e−θsûθ

ε (s)(σ(s, z1(s))− σ(s, z2(s)))‖L2(0,T;L2(U,R))

+‖e−θs(ûθ
ε (s)− ûθ(s))(σ(s, z1(s))− σ(s, z2(s)))‖L2(0,T;L2(U,R)). (145)
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By (139), we have, for s ∈ [0, T],

‖e−θsûθ
ε (s)σε(s)− e−θsûθ

ε (s)(σ(s, z1(s))− σ(s, z2(s)))‖L2(U,R))

≤ e−θs‖ûθ(s)‖‖σε(s)− (σ(s, z1(s))− σ(s, z2(s)))‖L2(U,R) → 0 as ε→ 0. (146)

By (139) and (146), we obtain

‖e−θsûθ
ε (s)σε(s)− e−θsûθ

ε (s)(σ(s, z1(s))− σ(s, z2(s)))‖L2(U,R)

≤ 2e−θs‖ûθ(s)‖‖(σ(s, z1(s))− σ(s, z2(s)))‖L2(U,R)). (147)

It follows from (146) and (147) and the dominated convergence theorem, we have

lim
ε→0
‖e−θsûθ

ε (s)σε(s)− e−θsûθ
ε (s)(σ(s, z1(s))− σ(s, z2(s)))‖L2(0,T;L2(U,R)) = 0 (148)

and

lim
ε→0
‖e−θs(ûθ

ε (s)− ûθ(s)(σ(s, z1(s))− σ(s, z2(s)))‖L2(0,T;L2(U,R)) = 0. (149)

By (145) and (148) and (149), we obtain

lim
ε→0

[∫ t

0
e−θsûθ

ε (s)σε(s)dW(s)−
∫ t

0
e−θsûθ(s)(σ(s, z1(s))− σ(s, z2(s)))dW(s)

] 1
2

T
= 0

in probability, and hence

lim
ε→0

∫ t

0
e−θsûθ

ε (s)σε(s)dW(s) =
∫ t

0
e−θsûθ(s)(σ(s, z1(s))− σ(s, z2(s)))dW(s), (150)

in probability uniformly for t ∈ [0, T]. Letting ε→ 0 in (138). By (140)–(144) and (150), for
t ∈ [0, T] we infer

‖ûθ(t)‖2 + 2θ
∫ t

0
‖ûθ(s)‖2ds + 2

∫ t

0
‖(−∆)

α
2 ûθ‖2ds

+2Re
∫ t

0
e−θs

∫
Rn
((1 + iµ)|u1(s)|2βu1(s)− (1 + iµ)|u2(s)|2βu2(s))ûθ(s)dxds

= 2ρ
∫ t

0
‖ûθ(s)‖2ds + 2Re

∫ t

0
e−θsûθ(s)(σ(s, z1(s))− σ(s, z2(s)))dW(s)

+
∫ t

0
‖e−θs(σ(s, z1(s))− σ(s, z2(s)))‖2

L2(U,H)ds. (151)

Taking the expectation of (151), and applying in (131), we obtain

2θE
(∫ T

0
‖e−θs(u1(s)− u2(s))‖2

)
ds

≤ 2ρE
(∫ T

0
‖e−θs(u1(s)−u2(s))‖2ds

)
+2E

(
sup

0≤t≤T
Re
∫ t

0
e−θsûθ(s)(σ(s, z1(s))−σ(s, z2(s)))dW(s)

)

+E
(∫ T

0
‖e−θs(σ(s, z1(s))−σ(s, z2(s)))‖2

L2(U,H)ds
)

.
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By the Burkholder–Davis–Gundy inequality and Young’s inequality, we obtain

2E
(

sup
0≤t≤T

∣∣∣∣∫ t

0
e−θsûθ(s)(σ(s, z1(s))− σ(s, z2(s)))dW(s)

∣∣∣∣
)

≤ c15E
(∫ T

0
‖ûθ(s)‖2‖e−θsσ(s, z1(s))− σ(s, z2(s))‖2

L2(U,H)

) 1
2

≤
c2

15
4
E
(∫ T

0
‖ûθ(s)‖2ds

)
+E

(∫ T

0
‖e−θs(σ(s, z1(s))− σ(s, z2(s)))‖2ds

)
.

Hence, we have

2θE
(∫ T

0
‖e−θs(u1(s)− u2(s))‖2

)
ds

≤ (2ρ +
c2

15
4
)E
(∫ T

0
‖e−θs(u1(s)− u2(s))‖2

)
ds + 2L2

0E
(∫ T

0
‖e−θs(z1(s)− z2(s))‖2ds

)
. (152)

For fixed θ ≥ 0, denote by L2
θ(Ω, L2(0, T; H)) the space L2(Ω, L2(0, T; H)) equipped

with the equivalent norm

‖u‖L2
θ(Ω,L2(0,T;H)) =

(
E
(∫ T

0
‖e−θsu(s)‖2

)) 1
2

f or u ∈ L2(Ω, L2(0, T; H))).

Then by (152) we obtain, for θ > ρ +
c2

15
8 ,

‖G(z1)− G(z2)‖L2
θ(Ω,L2(0,T;H)) = ‖u1 − u2‖L2

θ(Ω,L2(0,T;H))

≤
√

2L0√
2θ − 2ρ− c2

15
4

‖z1 − z2‖L2
θ(Ω,L2(0,T;H)).

(153)

We choose a positive number θ large enough such that
√

2L0√
2θ−2ρ−

c2
15
4

< 1. Then, we

obtain that G is a contraction. Therefore, it has a unique fixed point, which is the unique
solution of (133) and (134) in the sense of Definition 5.

Step 2. Continuity of solutions in initial date. Let u0,1, u0,2 ∈ L2(Ω, H) be F0-
measurable, u1 = G(u1), u2 = G(u2) be the fixed points of G corresponding to initial
date u0,1 and u0,2. Denote by û = u1 − u2, û0 = u0,1 − u0,2. By (151) with θ = 0, for
t ∈ [0, T], we obtain

‖û(t)‖2 + 2
∫ t

0
‖(−∆)

α
2 û(s)‖2ds ≤ ‖û0‖2 + 2ρ

∫ t

0
‖û(s)‖2ds

+2Re
∫ t

0
û(s)(σ(s, u1(s))− σ(s, u2(s)))dW(s) +

∫ t

0
‖σ(s, u1(s))− σ(s, u2(s))‖2

L2(U,H)ds. (154)

By (154), we find that for all 0 ≤ t ≤ T,

E
(

sup
0≤r≤t

‖û(r)‖2

)
≤ E(‖û0‖2) + 2ρ

∫ t

0
E
(

sup
0≤r≤s

‖û(r)‖2

)
ds

+2E
(

sup
0≤r≤t

∣∣∣∣∫ r

0
û(s)(σ(s, u1(s))− σ(s, u2(s)))dW(s)

∣∣∣∣
)
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+E
(∫ T

0
‖σ(s, u1(s))− σ(s, u2(s))‖2

L2(U,H)ds
)

. (155)

By the Burkholder–Davis–Gundy inequality and (131), we deduce, for all 0 ≤ t ≤ T,

2E
(

sup
0≤r≤t

∣∣∣∣∫ r

0
û(s)(σ(s, u1(s)), σ(s, u2(s)))dW(s)

∣∣∣∣
)

≤ c16E
((∫ t

0
‖û(s)‖2‖σ(s, u1(s))− σ(s, u2(s))‖2

L2(U,H)ds
) 1

2
)

≤ c16E
(

sup
0≤s≤t

‖û(s)‖
(∫ t

0
‖σ(s, u1(s))− σ(s, u2(s))‖2

L2(U,H)ds
) 1

2
)

≤ 1
2
E
(

sup
0≤r≤t

‖û(r)‖2

)
+

1
2

c2
16E
(∫ t

0
‖σ(s, u1(s))− σ(s, u2(s))‖2

L2(U,H)ds
)

≤ 1
2
E
(

sup
0≤r≤t

‖û(r)‖2

)
+

1
2

c2
16L2

0E
(∫ t

0
‖u1(s)− u2(s)‖2ds

)

≤ 1
2
E
(

sup
0≤r≤t

‖û(r)‖2

)
+

1
2

c2
16L2

0

∫ t

0
E
(

sup
0≤r≤s

‖û(r)‖2

)
ds. (156)

By (131), (155) and (156), we obtain, for all 0 ≤ t ≤ T,

E
(

sup
0≤r≤t

‖û(r)‖2

)
≤ 2E(‖û(0)‖2) + (c2

16L2
0 + 2L2

0 + 4ρ)
∫ t

0
E
(

sup
0≤r≤s

‖û(r)‖2

)
ds. (157)

By (157) and the Gronwall inequality, we find that for all 0 ≤ t ≤ T,

E
(

sup
0≤r≤t

‖û(r)‖2

)
≤ 2e(c

2
16L2

0+2L2
0+4ρ)tE(‖û(0)‖2). (158)

In addition, by (156), (158) and (154) with t = T, we obtain

E
(∫ T

0
‖(−∆)

α
2 û(s)‖2ds

)
≤ c17E(‖û0‖2), (159)

where c17 > 0 depending only on T. By (158) and (159), we obtain

‖u1 − u2‖2
L2(Ω,C([0,T],H)) + ‖u1 − u2‖2

L2(Ω,L2(0,T;V)) ≤ c20‖u0,1 − u0,2‖2
L2(Ω,H). (160)

Therefore, the solution is continuous in initial data.
Step 3. Uniform estimates of solutions. We suppose u is the solution of (1) and (2) with

initial data u0 ∈ L2(Ω, H), Then we have

u(t) + (1 + iν)
∫ t

0
(−∆)αu(s)ds +

∫ t

0
(1 + iµ)|u(s)|2βu(s)ds = u0 + ρ

∫ t

0
u(s)ds +

∫ t

0
g(s)ds

+
∫ t

0
σ(s, u(s))dW in (V

⋂
Lp(Rn))∗, (161)

P–almost surely. We set

uε(t) = (I − ε∆)−k0 u(t), u0,ε = (I − ε∆)−k0 u0, gε(t) = (I − ε∆)−k0 g(t)
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and
f ε(t) = (I − ε∆)−k0(1 + iµ)|u(t)|2βu(t), σε(t) = (I − ε∆)−k0 σ(t, u(t)).

Then by (161) we obtain, for t ∈ [0, T],

uε(t) + (1 + iν)
∫ t

0
(−∆)αuε(s)ds +

∫ t

0
f ε(s)ds,

= u0,ε + ρ
∫ t

0
uε(s)ds +

∫ t

0
gε(s)ds +

∫ t

0
σε(s)dW(s) in H, (162)

P–almost surely. By (162) and integration by parts of Ito’s formula, we obtain, for
every t ∈ [0, T],

‖uε(t)‖2 + 2
∫ t

0
‖(−∆)

α
2 uε(s)‖2ds + 2Re

∫ t

0

∫
Rn

f ε(s, x, u(s))ūε(s)dxds

= ‖u0,ε‖2 + 2ρ
∫ t

0
‖uε(s, x)‖2dxds + 2Re

∫ t

0

∫
Rn

gε(s)ūε(s)dxds + 2Re
∫ t

0
uε(s)σε(s, ω(s))dW

+
∫ t

0
‖σε(s, u(s))‖2

L2(U,H)ds, (163)

P–almost surely. Taking the limit of (163) as ε→ 0, we obtain, for t ∈ [0, T],

‖u(t)‖2 + 2
∫ t

0
‖(−∆)

α
2 u(s)‖2ds + 2Re

∫ t

0

∫
Rn
(1 + iµ)|u(s)|2βu(s)ū(s)dxds

= ‖u0‖2 + 2ρ
∫ t

0
‖u(s, x)‖2dxds + 2Re

∫ t

0
(u(s), g(s))ds + 2Re

∫ t

0
u(s)σ(s, ω(s))dW

+
∫ t

0
‖σ(s, u(s))‖2

L2(U,H)ds, (164)

P–almost surely. Similar to the proof of Lemma 2 and by (4), we can derive the uniform
estimates (132).

6. Existence of Solutions: Locally Lipschitz Noise

In this section, we prove the existence and uniqueness of solutions to problem (1)
and (2) with a locally Lipschitz continuous diffusion term.

Let σ : Rn ×Ω × H → L2(U, H) which satisfies condition (3) be locally Lipschitz
continuous in its third argument uniformly for (t, ω) ∈ R×Ω, we introduce a truncation
operator ηn : H → H given by

ηn(u) =

{
u i f ‖u‖ ≤ n,
nu
‖u‖ i f ‖u‖ > n.

Then ηn : H → H is globally Lipschitz continuous with unit Lipschitz coefficient,

‖ηn(u1)− ηn(u2)‖ ≤ ‖u1 − u2‖, f or all u1, u2 ∈ H, (165)

and

‖ηn(u)‖ ≤ n, f or all u ∈ H. (166)
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Given n ∈ N, we set σn(t, ω, u) = σ(t, ω, ηn(u)) for t ∈ R, ω ∈ Ω and u ∈ H. By (3)
and (4) and (165) and (166), we infer

‖σn(t, ω, u1)− σn(t, ω, u2)‖L2(U,H) ≤ Mn‖u1 − u2‖, (167)

and

‖σn(t, ω, u)‖L2(U,H) ≤ L(1 + ‖u‖). (168)

Therefore, we can apply Lemma 5 to approximate σ by globally Lipschitz continuous
function σn. Given n ∈ N, we consider the following stochastic equation:

dun(t) + (1 + iν)(−∆)αun(t)dt + (1 + iµ)|un(t)|2βun(t)dt =ρun(t)dt + g(t, x)dt

+ σn(t, x, un)dW,
(169)

with initial condition

un(0) = u0. (170)

By (167) and (168), for every F0-measurable u0 ∈ L2(Ω, H), problem (169) and (170)
has a unique solution un as given by Lemma 5. In addition, un satisfies (132) and the energy
equation

‖un(t)‖2 + 2
∫ t

0
‖(−∆)

α
2 un(s)‖2ds + 2

∫ t

0

∫
Rn
|un(s)|2β+2dxds

= ‖u0‖2 + 2ρ
∫ t

0
‖un(s, x)‖2dxds + 2Re

∫ t

0
(un(s), g(s, x))ds

+ 2Re
∫ t

0
un(s)σn(s, x, un(s))dW(s) +

∫ t

0
‖σn(s, un(s))‖2

L2(U,H)ds,

(171)

for all t ∈ [0, T], P–almost surely.
Next, we establish the uniform estimates on the sequence {un}∞

n=1 and prove its limit
is a solution of problem (1) and (2).

We define a stopping τn (for each n ∈ N) by

τn = inf{t ≥ 0 : ‖un(t)‖ > n} ∧ T, (172)

where inf{t ≥ 0 : ‖un(t)‖ > n} = +∞ if {t ≥ 0 : ‖un(t)‖ > n} 6= ∅. We write
uτn

n (t) = un(t ∧ τn). We will prove {uτn
n }∞

n=1 is consistent.

Lemma 6. Suppose (3) and (4) hold. Let un be the solution of (169) and (170) and τn be the
stopping time given by (172). Then, uτn

n+1 = uτn
n and τn+1 = τn a.s. for all n ∈ N.

Proof. Let ûn = un+1 − un. Then, we obtain

dûn + (1 + iν)(−∆)αûndt + ((1 + iµ)|un+1|2βun+1 − (1 + iµ)|un|2βun)dt = ρûndt

+(σn+1(t, un+1)− σn(t, un))dW. (173)

Similar to (151) with θ = 0, we can obtain that for t ∈ [0, T],

‖ûn(t ∧ τn)‖2 + 2Re
∫ t∧τn

0

∫
Rn
((1 + iµ)|un+1|2βun+1 − (1 + iµ)|un|2βun)ûn(s)dxds

+2
∫ t∧τn

0
‖(−∆)

α
2 ûn‖2ds = 2Re

∫ t∧τn

0
ûn(s)(σn+1(s, un+1(s))− σn(s, un(s)))dW(s)+
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2ρ
∫ t∧τn

0
‖ûn(s)‖2ds +

∫ t∧τn

0
‖σn+1(s, un+1(s))− σn(s, un(s))‖2

L2(U,H)ds. (174)

By the definition of ηn, we infer from σn(s, un(s)) = σn+1(s, un(s)) for s ∈ [0, τn], for
t ∈ [0, T],

‖ûn(t ∧ τn)‖2 = ‖uτn
n+1(t)− uτn

n (t)‖2 ≤ 2ρ
∫ t∧τn

0
‖un+1(s)− un(s)‖2ds

+2Re
∫ t∧τn

0
(un+1(s)− un(s))(σn+1(s, un+1(s))− σn+1(s, un(s)))dW(s)

+
∫ t∧τn

0
‖σn+1(s, un+1(s))− σn+1(s, un(s))‖2

L2(U,H)ds.

By (167), we imply that for t ∈ [0, T],

E
(

sup
0≤r≤t

‖uτn
n+1(r)− uτn

n (r)‖2

)
≤ 2ρ

∫ t

0
E
(

sup
0≤r≤s

‖uτn
n+1(r)− uτn

n (r)‖2

)
ds

+2E
(

sup
0≤r≤t∧τn

∣∣∣∣∫ r

0
(un+1(s)− un(s))(σn+1(s, un+1(s))− σn+1(s, un(s)))dW(s)

∣∣∣∣
)

+M2
n+1

∫ t

0
E
(

sup
0≤r≤s

‖uτn
n+1(r)− uτn

n (r)‖2

)
ds. (175)

For the second term on the right-hand side of (175), we have

2E
(

sup
0≤r≤t∧τn

∣∣∣∣∫ r

0
(un+1(s)− un(s))(σn+1(s, un+1(s))− σn+1(s, un(s)))dW(s)

∣∣∣∣
)

≤ c18E
((∫ t∧τn

0
‖un+1(s)− un(s)‖2‖σn+1(s, un+1(s))− σn+1(s, un(s))‖2

L2(U,H)ds
) 1

2
)

≤ c18Mn+1E
(

sup
0≤r≤t

‖uτn
n+1(r)− uτn

n (r)‖
(∫ t

0
‖uτn

n+1(s)− uτn
n (s)‖2ds

) 1
2
)

≤ 1
2
E
(

sup
0≤r≤t

‖uτn
n+1(r)− uτn

n (r)‖2

)
+

1
2

c18M2
n+1

∫ t

0
E
(

sup
0≤r≤s

‖uτn
n+1(r)− uτn

n (r)‖2ds

)
. (176)

It follows from (175) and (176) that for t ∈ [0, T],

E
(

sup
0≤r≤t

‖uτn
n+1(r)− uτn

n (r)‖2

)

≤ (4ρ + c18M2
n+1 + 2M2

n+1)
∫ t

0
E
(

sup
0≤r≤s

‖uτn
n+1(r)− uτn

n (r)‖2

)
ds.

By Gronwall inequality, we obtain, for t ∈ [0, T],

E
(

sup
0≤r≤t

‖uτn
n+1(r)− uτn

n (r)‖2

)
= 0.

Therefore, uτn
n+1 = uτn

n . By (172), we can get that for all n ∈ N, we can infer τn+1 ≥
τn.
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Since τn+1 ≥ τn a.s., the stopping time τ is well-defined:

τ = lim
n→∞

τn = sup
n∈N

τn. (177)

Next, we prove τ = T almost everywhere.

Lemma 7. Suppose (3) and (4) hold and u0 ∈ L2(Ω, H) is F0-measurable. Let τ be the stopping
time given by (177). Then, τ = T almost surely.

Proof. For all n ∈ N these estimates are independent of the Lipschitz coefficient Mn of σn
in (167), therefore, the solution un of (169) and (170) satisfies the estimates given by (132).
In addition, by (172) we have {τn < T} ⊆ {‖un‖C([0,T],H) ≥ n}, applying Chebyshev’s
inequality and Lemma 5 yields

P{τn < T} ≤ P{‖un‖C([0,T],H) ≥ n} ≤ 1
n2E(‖un‖2

C([0,T],H)) ≤
c19

n2 .

By the Borel-Cantelli lemma, we have

P(
∞⋂

k=1

∞⋃
n=k

{τn < T}) = 0.

As a result, there exists a subset Ω0 of Ω with P(Ω) = 0 such that for each ω ∈ Ω \Ω0,
there exists n0 = n0(ω) such that τn(ω) = T for all n ≥ n0. Then, τ(ω) = lim

n→∞
τ(n) = T

for all ω ∈ Ω \Ω0.

Next we prove the existence and uniqueness of solution (1) and (2).

Theorem 2. Suppose (3) and (4) hold and u0 ∈ L2(Ω, H) is F0-measurable. Then, problem (1)
and (2) has a unique solution u in the sense of Definition 5. Moreover, u satisfies the energy equation:

‖u(t)‖2 + 2
∫ t

0
‖(−∆)

α
2 u(s)‖2ds + 2

∫ t

0

∫
Rn
|u(s)|2β+2dxds

= ‖u0‖2 + 2ρ
∫ t

0
‖u(s, x)‖2ds + 2Re

∫ t

0
(u(s), g(s))ds + 2Re

∫ t

0
u(s)σ(s, ω(s))dW

+
∫ t

0
‖σ(s, u(s))‖2

L2(U,H)ds, (178)

for all t ∈ [0, T], P–almost surely. In addition,

‖u(t)‖2
L2(Ω,C([0,T],H)) + ‖u(t)‖

2
L2(Ω,L2([0,T],V)) + ‖u(t)‖

p
Lp(Ω,Lp(0,T;Lp(Rn)))

≤ L5(T)(‖u0‖2
L2(Ω,H) + ‖g‖

2
L2(0,T;H)). (179)

where L5(T) is a positive number depending only on T.

Proof. By Lemma 6 and Lemma 7, we know that there exists a measurable set Ω0 of Ω
such that P(Ω0) = 1 and for all ω ∈ Ω0,

τ(ω) = T and uτm
n (ω) = uτm

m (ω), ∀n ≥ m. (180)
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we define a function u : [0, T]×Ω→ H by

u(t, ω) =

{
un(t, ω) i f ω ∈ Ω0 and t ∈ [0, τn(ω)];
u0(ω) i f ω ∈ Ω\Ω0 and t ∈ [0, T].

(181)

By above definitions, we can conclude that u is a continuous H-valued Ft-adapted
process and the fact:

lim
n→∞

un(t, ω) = u(t, ω), f or all t ∈ [0, T] and ω ∈ Ω0. (182)

By Lemma 5, the solution un satisfies (132) for all n ∈ N. By (182) and Fatou’s lemma,
we conclude that there exists a positive number L5(T) depending only on T such that

‖u(t)‖2
L2(Ω,C([0,T],H)) + ‖u(t)‖

2
L2(Ω,L2([0,T],V)) + ‖u(t)‖

p
Lp(Ω,Lp(0,T;Lp(Rn)))

≤ L5(T)(‖u0‖2
L2(Ω,H) + ‖g‖

2
L2(0,T;H)), (183)

which gives (179). We are now prove that u satisfies (1) and (2). un is the solution of (169)
and (170), then we have, for t ∈ [0, T],

un(t ∧ τn) + (1 + iν)
∫ t∧τn

0
(−∆)αun(s)ds +

∫ t∧τn

0
(1 + iµ)|un(s)|2βun(s)ds

= u0 + ρ
∫ t∧τn

0
un(s)ds +

∫ t∧τn

0
g(s)ds +

∫ t∧τn

0
σn(s, un(s))dW(s) in (V ∩ Lp(Rn))∗, (184)

P-almost surely. By (181), we know that un(t ∧ τn) = u(t ∧ τn) for t ∈ [0, T] and
σn(s, un(s)) = σ(s, u(s)), for s ∈ [0, τn] a.s., then, by (184) we obtain, for all t ∈ [0, T],

u(t ∧ τn) + (1 + iν)
∫ t∧τn

0
(−∆)αu(s)ds +

∫ t∧τn

0
(1 + iµ)|u(s)|2βu(s)ds

= u0 + ρ
∫ t∧τn

0
u(s)ds +

∫ t∧τn

0
g(s)ds +

∫ t∧τn

0
σ(s, u(s))dW(s) in (V

⋂
Lp(Rn))∗, (185)

P–almost surely. Letting n→ ∞ in (185) we obtain, for all t ∈ [0, T],

u(t) + (1 + iν)
∫ t

0
(−∆)αu(s)ds +

∫ t

0
(1 + iµ)|u(s)|2βu(s)ds = u0 + ρ

∫ t

0
u(s)ds +

∫ t

0
g(s)ds

+
∫ t

0
σ(s, u(s))dW(s) in (V ∩ Lp(Rn))∗, (186)

P-almost surely. We make t = t ∧ τn with (171), letting n → ∞, we can obtain the
energy equation (178).

7. Weak Mean Random Attractors

In this section, we prove the existence and uniqueness of weak pullback mean random
attractors. For ρ > 0, we consider the following stochastic equation, for t > τ,

du(t) + (1 + iν)(−∆)αu(t)dt + (1 + iµ)|u(t)|2βu(t)dt =ρu(t)dt + g(t, x)dt

+ σ(t, x, u)dW(s),
(187)
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with initial condition

u(τ) = u0. (188)

By Theorem (165), we obtain that for every τ ∈ R and every Fτ-measurable u0 in
L2(Ω, H), the problem (187) and (188) has a unique continuous H-valuedFt-adapted solution
u(t, τ, u0) with initial condition u0 at τ in the sense of Definition 5. Note that u(t, τ, u0) ∈
L2(Ω, C([τ, τ + T], H)) for all T > 0, which implies that u ∈ C([τ, ∞), L2(Ω, H)).

Suppose that Φ is the mean random dynamical system generated by (187) and (188)
on L2(Ω,F ; H). We will investigate the existence and uniqueness of weak pullback mean
random attractors for Φ.

We use D to denote the collection of all families of nonempty bounded sets satisfying
(8), and assume that for all (t, ω, u) ∈ R×Ω× H, the function g(t) satisfies that∫ τ

−∞
eλt‖g(t)‖2dt < ∞, ∀τ ∈ R. (189)

The next lemma is concerned with the uniform estimates of the solutions in L2(Ω, H).

Lemma 8. Suppose (189) holds. Then, for every τ ∈ R and D ∈ D, there exists T = T(τ, D) > 0
such that for all t ≥ T, the solution u of (187) and (188) satisfies

E(‖u(τ, τ − t, u0)‖2) ≤ M1 + M1

∫ τ

−∞
eρ(s−τ)‖g(s)‖2ds,

where u0 ∈ D(τ − t), and M1 is a positive constant independent of τ and D.

Proof. By the energy Equation (178), we have

dE(‖u(t)‖2)

dt
+ 2E

(
‖(−∆)

α
2 u(t)‖2

)
+ 2ReE

(
(1 + iµ)|u(t)|2βu(t), u(t)

)
= 2ρE(‖u(t)‖2)

+2ReE(u(t), g(t)) +E
(
‖σ(t, u(t))‖2

L2(U,H)

)
.

By (4) and Young’s inequality, we deduce

dE(‖u(t)‖2)

dt
+ 2E(‖u(t)‖p)+ ρE(‖u(t)‖2) ≤ (

7ρ

2
+ 2L2)E(‖u(t)‖2)+

2
ρ
E(‖g(t)‖2)+ 2L2.

Applying Young’s Inequality again, we have

dE(‖u(t)‖2)

dt
+ ρE(‖u(t)‖2) ≤ 2

ρ
E(‖g(t)‖2) + c(ρ).

Applying Gronwall’s inequality on the interval (τ − t, τ), we get

E(‖u(τ, τ − t, u0)‖2) ≤ e−ρtE(‖u0‖2) +
c(ρ)

ρ
+

2
ρ

∫ τ

τ−t
eρ(s−τ)‖g(s)‖2ds. (190)

Due to u0 ∈ D(τ − t) and D ∈ D, we have

e−ρtE(‖u0‖2) ≤ e−ρt‖D(τ − t)‖2 → 0, as t→ ∞.

which completes the proof.

Next, we prove the existence of weak D-pullback mean random attractors for Φ.
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Theorem 3. Suppose (189) holds, then problem (187) and (188) has a unique weak D-pullback
mean random attractor as Definition 5 A = {A(τ) : τ ∈ R} ∈ D in L2(Ω,F ; H) over
(Ω,F , {Ft}t∈R, P).

Proof. Given τ ∈ R, denote by

D(τ) = {u ∈ L2(Ω,Fτ ; H) : E(‖u‖2) ≤ L(τ)},

where
L(τ) = M1 + M1

∫ τ

−∞
eρ(s−τ)‖g(s)‖2ds.

Since D(τ) is a closed ball in L2(Ω,Fτ ; H) centered at the origin, we know that D(τ)
is weakly compact in L2(Ω,Fτ ; H). On the other hand, by (190), we have

lim
τ→−∞

eρτ‖D(τ)‖2
L2(Ω,Fτ ;H) = M1 lim

τ→−∞
eρτ + M1 lim

τ→−∞

∫ τ

−∞
eρs‖g(s)‖2ds = 0,

and hence D = {D(τ) : τ ∈ R} ∈ D. By Lemma 8, we infer that D is a weakly compact
D-pullback absorbing set for Φ. According to Theorem 1, we conclude that the existence
and uniqueness of weak D-pullback mean random attractors for Φ.

We emphasize that via Theorem 3, we obtain the long time behavior of the solution of
(1) and (2).

8. Conclusions

In this work, we consider the long-time behavior of the stochastic Ginzburg–Landau
equation driven by nonlinear noise. The existence and uniqueness of the solution of the
equation in the corresponding space is established with detailed discussion in Section 3
(with regular additive noise), Section 4 (with general additive noise), Section 5 (with
global Lipschitz continuity noise) and Section 6 (with local Lipschitz continuity noise).
Meanwhile, the corresponding estimate of the solution in the corresponding space is
obtained respectively. In our analysis for the estimate of the solution, we employ the tools
of the Ito’s formula, Gronwall’s inequality, Young’s inequality and Burkholder–Davis–
Gundy inequality. We point out that in Section 7, based on the theory of weak pullback
attractors established in [36], we obtain the existence of weak pullback random attractors
for the mean stochastic dynamical systems constructed through the Equations (1) and (2).

The detailed discussion in current work will naturally lead us to investigate the
existence of invariant measures for the distribution of solutions of stochastic fractional
Ginzburg–Landau equations. Furthermore, when the parameters, functions and initial
values in the Equation (1) are determined and satisfy the corresponding conditions, the
specific form of the solution can be studied by numerical methods (see [43] for some
discussion).

To end this section, we demonstrate that the method used to study the stochastic
Ginzburg–Landau equation is quite different from those employed to analyze the deter-
ministic one. To be specific, for the deterministic equations, one obtains the estimate for
solutions, the so-called a priori estimates, by first constructing the energy equation through
inner products, then applying suitable inequalities to the resulting energy equations. Based
on the discussion, one then can prove the existence of pullback attractor (for more detailed
discussion, one may refer to [6]). For the stochastic one, one mainly employ the Ito formula
to obtain the estimate of the solutions, and then prove the existence of weak pullback
attractors as analyzed in current work.
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