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Abstract: This paper is concerned with the asymptotic stability derived for the two-dimensional
incompressible Navier–Stokes equations with multidelays on Lipschitz domain, which models the
control theory of 2D fluid flow. By a new retarded Gronwall inequality and estimates of stream
function for Stokes equations, the complete trajectories inside pullback attractors are asymptotically
stable via the restriction on the generalized Grashof number of fluid flow. The results in this presented
paper are some extension of the literature by Yang, Wang, Yan and Miranville in 2021, as well as also
the preprint by Su, Yang, Miranville and Yang in 2022
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1. Introduction

The 2D incompressible Navier–Stokes equations govern the conservation law of fluid
flow for momentum and mass on a bounded domain with smooth boundary, which can be
described by {

∂
∂t u− ν∆u + (u · ∇)u +∇p = F(t, x),
divu = 0,

(1)

where u and p are the velocity field and pressure for incompressible fluid flow such as
water, ν > 0 denotes the viscosity of fluid and F(t, x) is the external force.

A bounded domain Ω ⊂ Rd is said to be Lipschitz if ∂Ω can be covered by finite many
balls Bi = B(Qi, r0) with Qi ∈ ∂Ω, such that for any ball Bi there is a rectangular coordinate
system and a Lipschitz function Ψi : Rd−1 → R with

B(Qi, 3r0) ∩Ω = {(x1, x2, · · · , xd)|xd > Ψi(x1, x2, · · · , xd−1)} ∩Ω,

which can be seen in [1]. The 2D incompressible Navier–Stokes equations defined on the
Lipschitz domain have been studied in Brown, Perry and Shen [1], which presented the
well-posedness and finite fractal dimensional global attractor for an autonomous system,
which has been extended to a non-autonomous case in [2] and some related literature.

The delay on differential equations originates from the controller on boundary in
engineering, which can be described by evolutionary partial differential equations with
delayed term, and were first investigated for ordinary differential equations, such as in [3].
The Navier–Stokes equations with delay have also become interesting topics in the recent
two decades, which are important dominant physical models for fluid mechanics, such as
the wind tunnel model. The research on the well-posedness and dynamics of Navier–Stokes
equations with delay can be seen in [4–12] and the literature therein. For the Navier–Stokes
system with time-varying delay, the tempered pullback dynamics are obtained by energy
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equation approach to achieve compactness, such as in Caraballo and Real [5–7], García-
Luengo and Marín-Rubio [9] and Yang, Wang, Yan and Miranville [12]. Recently, Su,
Yang, Miranville and Yang [11] considered (2) and derived the well-posedness, regularity,
pullback dynamics and robustness. Since stability, observability and controllability are
crucial in the control theory and applications in engineering, the asymptotic stability of
complete trajectories is an important basis for the research on controllability and dynamic
systems. To the best of our knowledge, there are fewer results on the asymptotic stability
and reduction in trajectories inside pullback attractors of 2D incompressible Navier–Stokes
equations defined on Lipschitz domain which are non-smooth, this is our motivation for
this presented research.

This paper investigates the asymptotic stability of trajectories inside pullback attractors
for the two-dimensional incompressible Navier–Stokes equations with multidelays on
Lipschitz domain Ω ⊂ R2 with inhomogeneous boundary, which reads as

∂
∂t u− ν∆u + (u(t− ρ(t)) · ∇)u +∇p = f (t, u(t− ρ(t))) + g(t, x), (t, x) ∈ Ωτ ,
divu = 0, (t, x) ∈ Ωτ ,
u(t, x) = ϕ, ϕ · n = 0, (t, x) ∈ ∂Ωτ ,
u(τ, x) = u(τ), x ∈ Ω,
u(τ + θ, x) = φ(θ, x), (θ, x) ∈ Ωh,

(2)

where Ωτ = (τ,+∞) × Ω, ∂Ωτ = (τ,+∞) × ∂Ω, Ωh = [−h, 0] × Ω, τ ∈ R is the ini-
tial time and h > 0 is a positive constant. ν is the kinematic viscosity of the fluid,
u = (u1(t, x), u2(t, x)) is the unknown velocity field of the fluid, p denotes the unknown
pressure and ν is the kinematic viscosity of the fluid. The non-autonomous external forces
contain g(t, x) and continuous delay f (t, u(t− ρ(t))), where ρ(t) is the delay in [0, h]. The
function φ denotes the initial state in [−h, 0] with u(τ) = φ(0). The forcing boundary
condition ϕ ∈ L∞(∂Ω), where n is the outward unit normal to the boundary ∂Ω.

Originated from [13–16], based on the results in [11], the asymptotic stability of
trajectories inside pullback attractors for (2) are investigated in this presented paper with
features and difficulties as follows.

(I) The problem (2) contains an inhomogeneous boundary on a Lipschitz-like domain;
using the stream function ψ for the corresponding Stokes equations subject to the
same boundary condition, the inhomogeneous problem (2) can be transformed into an
equivalent homogeneous system (10). For the model (2), the delays on external force
f (·, ·) and convective term (u(·)∇)u(·) can be different as ρ1(t) and ρ2(t), which have
the same difficulty under some appropriate hypotheses in Section 2.2. For simplicity,
we assume they are the same as the case ρ1(t) = ρ2(t) = ρ(t).
Based on the global well-posedness of weak solutions and pullback attractors in [11],
the asymptotic stability of complete trajectories inside pullback attractor AMH of (18)
has been achieved by using a new retard Gronwall inequality and some estimates on
stream function for Stokes equations. Since there are two delays contained in (2), the
energy estimates cannot be obtained by using the technique as in [15,17] to achieve
the desired estimate for using differential Gronwall inequalities, which is the main
difficulty here. By introducing a new retard Gronwall inequality in [13], and using
the iteration technique, one sufficient condition (12) on generalized Grashof number
guarantees our asymptotic stability; see Theorem 5 in Section 2.4.

(II) The results in this presented paper are a further research of [15], which is a special
case of (2). The asymptotic stability of (2) is an extension of the recent work [11]. Our
work also implies the exponentially attracting property for the existence of invariant
manifold although the inertial manifolds for 2D Navier–Stokes equation is still open.

The outline is organized as follows. The main results are stated in Section 2 and proved
in the third part, which is based on the preliminary in Section 3.
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2. Main Results
2.1. Preliminary

Let E := {u|u ∈ (D(Ω))2, divu = 0}, H and V are the closure of E in (L2(Ω))2 and
(H1(Ω))2 topology, respectively; the norm and inner product of H is defined as

‖u‖2
H = (u, u), (u, v) =

2

∑
j=1

∫
Ω

uj(x)vj(x)dx

for u, v ∈ H, and for V as ‖u‖2 = ((u, u)) and

((u, v)) =
2

∑
i,j=1

∫
Ω

∂uj

∂xi

∂vj

∂xi
dx

for u, v ∈ V. It is easy to check that H and V are Hilbert spaces, V ↪→ H ≡ H′ ↪→ V′, and
the injections are dense and continuous. ‖ · ‖∗ and 〈·, ·〉 denote the norm in V′ and the dual
product between V and V′, respectively, and also H to itself.

Let PL be the Helmholz–Leray orthogonal projection in (L2(Ω))2 onto H, and A := −PL∆
the Stokes operator. The bilinear and trilinear operators are defined as B(u, v) := PL((u ·
∇)v), b(u, v, w) = 〈B(u, v), w〉, which satisfies b(u, v, v) = 0, b(u, v, w) = −b(u, w, v),
and hence

|b(u, v, w)| ≤ C‖u‖
1
2
H‖u‖

1
2 ‖v‖‖w‖

1
2
H‖w‖

1
2 , ∀ u, v, w ∈ V.

For any t ∈ (τ, T), we define u : (τ − h, T) → (L2(Ω))2, and the delayed functional
space as follows

CX = C([−h, 0]; X), ‖u‖CX = sup
θ∈[−h,0]

‖u(t + θ)‖X , X = H, V,

which are Banach spaces. Moreover, the p-power delayed integrable space can be de-
fined as Lp

X = Lp(−h, 0; X), 1 < p ≤ +∞, and the norm is similar as the general
Lebesgue space in delayed interval [−h, 0]. Moreover, the product space is defined well as
MH = H × (CH ∩ L2

V) with norm

‖(u(t), ut)‖2
MH

= ‖u(t)‖2
H + ‖ut‖2

CH
+ ‖ut‖2

L2
V

.

2.2. Hypotheses

For the well-posedness and pullback dynamics of (2), we force assumptions on ρ(t)
and f (·, ·) as follows.

(H-a) There exists m > 0 such that the external force g(·, ·) ∈ L2
loc(R, V′) satisfies

∫ t

−∞
ems‖g(s, ·)‖2

V′ds < ∞, ∀t ∈ R. (3)

(H-b) The function f (·, u) : [τ,+∞) → H is measurable for all u ∈ H, and f (t, ·) :
CH → H is continuous for all t ≥ τ. The delay ρ ∈ C1([0,+∞); [0, h]), and there exists a
positive constant ρ∗ < 1 such that | dρ

dt | ≤ ρ∗.
(H-c) There exist functions α, β : [τ,+∞) → [0,+∞), where α(·) ∈ L∞(τ, T) and

β(·) ∈ L1(τ, T) with lim sup
τ→−∞

1
t− τ

∫ t

τ
β(s)ds = β̃0 ∈ (0,+∞), such that | f (t, u)|2 ≤

α(t)|u|2 + β(t), ∀ t ≥ τ.
In addition, there exists a constant L(r) > 0 such that | f (t, w1)− f (t, w2)| ≤ L(r)γ1/2(t)

|w1 − w2| for ‖w1‖H ≤ r, ‖w2‖H ≤ r with γ̃(t) ∈ L∞(τ, T).

(H-d) ν− ‖α(t)‖L∞(τ,T)
νλ1(1−ρ∗) > 0.
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(H-e) Denoting

lim sup
τ→−∞

1
t− τ

∫ t

τ
α(r)dr = α0 ∈ [0,+∞), (4)

for arbitrary t ∈ R, then there exists some δ > 0 such that

eνλ1hα0

νλ1(1− ρ∗)
+

Ce
νλ1h

2 ‖ϕ‖L∞(∂Ω)

ν(1− ρ∗)
+ δ < νλ1. (5)

(H-f) Assume that

κδ(t, s) =
(

νλ1 −
Ce

νλ1h
2 ‖ϕ‖L∞(∂Ω)

ν(1− ρ∗)
− δ
)
(t− s)− eνλ1h

νλ1(1− ρ∗)

∫ t

s
α(r)dr, (6)

where

κδ(0, t)− κδ(0, s) = −κδ(t, s) (7)

and

κδ(0, r) ≤ κδ(0, t) +
(

νλ1 −
Ce

νλ1h
2 ‖ϕ‖L∞(∂Ω)

ν(1− ρ∗)
− δ
)

h (8)

if νλ1 −
Ce

νλ1h
2 ‖ϕ‖L∞(∂Ω)

ν(1−ρ∗) − δ > 0 for r ∈ [t− h, t].
The function β(·) satisfies the pullback tempered condition∫ t

−∞
e−κδ(t,s)β(s)ds < +∞. (9)

2.3. Well-Posedness and Pullback Dynamics

The problem (2) can be transformed into the following equivalent homogeneous
system in abstract form

∂v
∂t + νAv + B(v(t− ρ(t)), v) + B(v(t− ρ(t)), ψ) + B(ψ, v)

= PL(g(t, x) + f (t, u(t− ρ(t))) + νF)− B(ψ), (t, x) ∈ Ωτ ,
divv = 0, (t, x) ∈ Ωτ ,
v = 0, (t, x) ∈ ∂Ωτ ,
v(τ, x) = v(τ), x ∈ Ω,
v(θ) = η(θ, x) = η(θ), (θ, x) ∈ Ωh.

(10)

Theorem 1. (Global weak solution) Let (v(τ), η) ∈ MH , and the hypotheses (H-a)-(H-d) hold.
Then, there exists at least one global weak solution v(t, x) to system (10) on [τ − h, T].

Proof. See, e.g., the details in Su, Yang, Miranville and Yang [11].

Theorem 2. (Uniqueness) Assume the hypotheses in Theorem 1 hold. Moreover, we assume that
for any r > 0, there exists a constant L(r) > 0 such that

| f (t, w1)− f (t, w2)| ≤ L(r)γ1/2(t)|w1 − w2|, ∀ t ≥ τ, ‖w1‖H ≤ r, ‖w2‖H ≤ r, (11)

where γ ∈ L∞(τ, T) : [τ, T)→ [0,+∞). Then, the global weak solution in Theorem 1 is unique,
which generates a continuous process {S(t, τ)} in MH .

Proof. See, e.g., the details in Su, Yang, Miranville and Yang [11].
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Remark 1. Originated from the idea to deal with uniform attractors in Chepyzhov and Vishik
[18], based on global well-posedness in the phase space MH , the global solution generates a process
S(t, τ) : MH → MH , which has the similar property of skew product flow as in [18].

The existence of a minimal family of pullback attractors for problem (18) can be stated
as follows.

Theorem 3. (Tempered pullback dynamics) Suppose that f : R×CH → H satisfies the hypotheses
(H-a)–(H-d); let the functions α(·) and β(·) satisfy (H-e)–(H-f). Then, for any (v(τ), η) ∈ MH , the
process (S(t, τ); MH) generated by the global weak solutions of problem (10) possesses a minimal
family of tempered pullback attractors Aκδ

in H × CH , for all κδ ∈ (0, κδ(t, τ)]. Moreover, if we
choose fixed κF

δ for fixed universe to achieve pullback attractors as AF
κF

δ

, then we have the relation

AF
κF

δ

⊂ Aκδ
⊂ Aκδ(t,τ) ⊂ D

H×CH
κδ(t,τ)

.

Proof. See, e.g., the details in Su, Yang, Miranville and Yang [11].

Theorem 4. Assume (v(τ), η) ∈ MH and ν
4 >

Ce
νλ1

2 h‖ϕ‖L∞(∂Ω)

ν(1−ρ∗) +
4e

νλ1
2 h‖α(t)‖L∞(τ,T)

ν(1−ρ∗) , the process
S(t, τ) : MH → MH generated by the system (10) possesses a minimal family of D-pullback
attractors A = {A(t)}t∈R in MH .

Proof. See, e.g., the details in Su, Yang, Miranville and Yang [11].

2.4. Asymptotic stability

Definition 1. The pullback attractors are asymptotically stable if the trajectories inside the at-
tractors reduce to a single orbit as τ → −∞, which also demonstrates the exponentially tracking
property.

Based on the global well-posedness and the existence of tempered and D-pullback
attractors for problems (2) and (18) in [11], we present our main result as the following
theorem.

Theorem 5. Assume the external force g ∈ L2
loc(R; V′) and the hypothesis (H-a)-(H-d) hold,

the initial data (u(τ), φ) ∈ MH . Then, the trajectories’ pullback attractor A = {A(t)}|t≥τ is

asymptotically stable if G(t) + K0 ≤ 2ν
7(1+γ)

, where G2(t) =
〈‖g‖2

V′ 〉|≤t

ν2λ1
is a generalized Grashof

number for the fluid flow, and

2
7(1 + γ)

K0 =
[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

]C|Ω|
νλ1
‖β‖L1(τ,T)

+
C|Ω|
νλ1

β̃0 +
C|Ω|‖ϕ‖2

L∞(∂Ω)

2νλ1
‖α(t)‖L∞(τ,T)

+
[C‖ϕ‖L∞(∂Ω)

ν2λ1
+

C
ν2λ2

1
‖α(t)‖L∞ + 1

][Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

]
, (12)

where γ > 0 is defined by the retard Gronwall inequality determined by the parameters in our problem.

3. The Proof of Theorem 5
3.1. A Retarded Gronwall Inequality

Lemma 1. (See [13]) Considering the following retarded integral inequalities for

y(t) ≤ E(t, τ)‖yτ‖X +
∫ t

τ
K1(t, s)‖ys‖Xds +

∫ ∞

t
K2(t, s)‖ys‖Xds + ρ, ∀ t ≥ τ ≥ 0, (13)
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where E, K1 and K2 are non-negative measurable functions on R2, and ρ ≥ 0 denotes a constant.
Let X be a Banach space with a spatial variable, then we use ‖ · ‖ to denote the norm of space
C([−h, 0]; X) for some h ≥ 0, y(t) ≥ 0 is a continuous function defined on C([−h, T]; X),
yt(s) = y(t + s) for s ∈ [−h, 0]. Let

L(E, K1, K2, ρ) = {y ∈ C([−h, T]; X)|y ≥ 0 and satisfies the inequality (13)},

and

κ(K1, K2) = sup
t≥τ

( ∫ t

τ
K1(t, s)ds +

∫ ∞

t
K2(t, s)ds

)
with κ(K1, K2) < +∞. Assume that limt→+∞ E(t + s, s) = 0 uniformly with respect to s ∈ R+,
and denote ϑ = sup

t≥s≥τ
E(t, s) and κ = κ(K1, K2), then we have the following estimates:

(1) If κ < 1, then for any R, ε > 0, there exists T̃ > 0 such that

‖yt‖X < µρ + ε, (14)

for t > T̃ and all bounded functions y ∈ L(E, K1, K2, ρ) with ‖y0‖ ≤ R, where µ = 1
1−κ .

(2) If κ < 1
1+ϑ , then there exist parameters M > 0 and λ > 0, which are independent on ρ

such that

‖yt‖X ≤ M‖y0‖Xe−λt + γρ, t ≥ τ (15)

for all bounded functions y ∈ L(E, K1, K2, ρ), where γ = µ+1
1−κc and c = max{ ϑ

1−κ , 1}.

3.2. The Stokes Problem on Lipschitz Domains

From [1], the stream function ψ solves the following Stokes system on the Lipschitz do-
main 

−∆u +∇q = 0, x ∈ Ω,
divu = 0, x ∈ Ω,
u = ϕ a.e. x ∈ ∂Ω in the sense of non-tangential convergence.

(16)

Assume that u = (u1, u2) is the solution to (16) with ϕ ∈ L∞(∂Ω) and ϕ · n = 0, then
we define the stream function ψ satisfying (16) and

‖ψ‖L∞(Ω) ≤ C‖ϕ‖L∞(∂Ω),
sup
x∈Ω
|ψ(x)|+ sup

x∈Ω
|∇ψ(x)|dist(x, ∂Ω) ≤ C‖ϕ‖L∞(∂Ω),

‖|∇ψ|dist(·, ∂Ω)
1− 1

p ‖Lp(Ω) ≤ C‖ϕ‖Lp(∂Ω), 2 ≤ p ≤ ∞.

In addition, the stream function ψ can be written as the following form ∆ψ = ∇(qηε) +
F, where suppF ⊂ {x ∈ Ω; C′1ε ≤ dist(x, ∂Ω) ≤ C′2ε} and |F| ≤ C

ε3/2 ‖ϕ‖L2(∂Ω). The above
estimate is based on the singular operator and Hardy’s inequality as

∫
Ω

|u(x)|2
[dist(x, ∂Ω)]2

dx ≤ C
∫

Ω
|∇u(x)|2dx, ∀u ∈ V. (17)

3.3. Proof of Main Results

Proof. By an equivalent system as (18) and stationary equation as (16), the trajectories in
pullback attractors of systems (2) and (18) are synchronous, which implies we only need to
consider the asymptotic stability of trajectories inside the pullback attractor for (18). The
proofs are divided into the following steps.

Step 1: Some estimates of differencing equations
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Setting v = u − ψ and (v(τ), η) ∈ H × (CH ∩ L2
V), then (2) can be transformed

into the following equivalent abstract functional evolutionary differential equations with
homogeneous boundary condition

∂v
∂t + νAv + B(v(t− ρ(t)), v) + B(v(t− ρ(t)), ψ) + B(ψ, v)

= PL( f (t, u(t− ρ(t))) + g(t, x) + νF)− B(ψ),
divv = 0,
v|∂Ω = 0,
v(τ, x) = v(τ),
v(θ) = η(θ), θ ∈ [τ − h, τ].

(18)

Let v(t) and ṽ(t) be two global solution orbits for problem (18) inside the D-pullback
attractor with initial data

v(τ + θ)|θ∈[−h,0] = η(θ), v|t=τ = v(τ),

ṽ(τ + θ)|θ∈[−h,0] = η̃(θ), ṽ|t=τ = ṽ(τ),

respectively.
By the procedure in achieving the D-pullback attractors in [11], the global weak

solution for (18) generates a continuous process S(t, τ) in MH = H × (CH ∩ L2
V) as

(v, vt) = S(t, τ)(v(τ), η) and (ṽ, ṽt) = S(t, τ)(ṽ(τ), η̃), (19)

which are also two trajectories inside the pullback attractors A = {A(t)}t∈R in MH , here,
vt = v(t + s) for s ∈ [−h, 0].

Denoting w = v(t)− ṽ(t) and wt = vt − ṽt by some simple computation, it is easy
to check that w satisfies the following initial and boundary value problem for functional
evolutionary partial differential equations as

∂w
∂t + νAw + B(w(t− ρ(t)), v) + B(ṽ(t− ρ(t)), w) + B(w(t− ρ(t)), ψ) + B(ψ, w)

= PL( f (v(t− ρ(t))) + ψ)− f (ṽ(t− ρ(t)) + ψ)),
divw = 0,
w|∂Ω = 0,
w(t = τ) = v(τ)− ṽ(τ),
w(τ + θ) = η(θ)− η̃(θ), θ ∈ [−h, 0].

(20)

Multiplying (20) by w at both sides, using Poincaré’s inequality, noting the property of
the trilinear operator (B(ṽ(t− ρ(t)), w), w) = 0 and (B(ψ, w), w) = 0, we derive that

1
2

d
dt
‖w‖2

H + ν‖w‖2 ≤
∣∣∣(B(w(t− ρ(t)), v) + B(w(t− ρ(t)), ψ), w)

∣∣∣
+
∣∣∣(PL( f (v(t− ρ(t)) + ψ)− f (ṽ(t− ρ(t)) + ψ)), w)

∣∣∣. (21)

Using the Hardy and Hölder inequalities, we have∣∣∣(B(w(t− ρ(t)), v, w)
∣∣∣ ≤ ∫

Ω
|(w(t− ρ(t))||∇w||v|dx

≤ 1
2
‖v‖2‖w(t)‖2 +

C
2
‖w(t− ρ(t))‖2

H (22)

and ∣∣∣(B(w(t− ρ(t), ψ), w)
∣∣∣ ≤ C‖ϕ‖L∞(∂Ω)

∫
dist(x,∂Ω)≤C′2ε

|w(t)||w(t− ρ(t))|
dist(x, ∂Ω)

dx

≤ ν

4
‖w‖2 +

C‖ϕ‖L∞(∂Ω)

ν
‖w(t− ρ(t))‖2

H (23)
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and

|( f (t, v(t− ρ(t)) + ψ)− f (t, ṽ(t− ρ(t)) + ψ), w)|

≤ ν

4
‖w(t)‖2 +

1
νλ1

L2(r)γ̃(t)‖w(t− ρ(t))‖2
H . (24)

We can use the Poincaré and Gronwall inequalities to achieve the hypothesis in Lemma
1 for the asymptotic stability of trajectories inside D-pullback attractors A in [11], provided
that

νλ1 − ‖v‖2
V > 0, (25)

then, we can obtain

‖w‖2
H ≤ e

∫ t
τ −(νλ1−‖v‖2

V)ds‖v(τ)− ṽ(τ)‖2
H +

+
[C

2
+

C‖ϕ‖L∞(∂Ω)

ν
+

1
νλ1

L2(r)‖γ̃‖L∞(τ,T)

] ∫ t

τ
e−
∫ t

s (νλ1−‖v‖2
V)dσ‖wt‖2

Hds. (26)

Denoting

E(t, τ) = e−
∫ t

τ (νλ1−‖v‖2
V)ds,

K1(t, s) =
[C

2
+

C‖ϕ‖L∞(∂Ω)

ν
+

1
νλ1

L2(r)‖γ̃(t)‖L∞

]
e−
∫ t

s (νλ1−‖v‖2
V)dσ,

Θ = sup
t≥s≥τ

E(t, s), κ(K1, 0) = sup
t≥τ

∫ t

τ
K1(t, s)ds,

noting the assumption and inequality in Lemma 1, choosing κ(K1, 0) < 1
1+Θ . In fact, since

v ∈ L∞(τ, T; H) ∩ L2(τ, T; V), we have

sup
t≥τ

∫ t

τ
K1(t, s)ds ≤ sup

t≥τ

M
(

C
2 +

C‖ϕ‖L∞(∂Ω)

ν + 1
νλ1

L2(r)‖γ̃(t)‖L∞

)
νλ1

[1− e−νλ1(t−τ)] (27)

and there exists a pullback time τ̄ << τ such that κ(K1, 0) < 1
2 , which implies the assump-

tion in Lemma 1 holds.
Hence, from Lemma 1, there exist M̄ > 0 and µ > 0, such that we can obtain the

following estimate

‖w(t− ρ(t))‖2
H ≤ M

[
‖v(τ)− ṽ(τ)‖2

H + ‖η(θ)− η̃(θ)‖2
L2

V

]
e−µ(t−τ). (28)

Substituting (28) into (21), we can conclude the following estimate

‖w‖2
H ≤ e

∫ t
τ −(νλ1−‖v‖2

V)ds‖v(τ)− ṽ(τ)‖2
H +

+M
[
‖v(τ)− ṽ(τ)‖2

H + ‖η(θ)− η̃(θ)‖2
L2

V

]
e−µ(t−τ)

×
[C

2
+

C‖ϕ‖L∞(∂Ω)

ν
+

1
νλ1

L2(r)‖γ̃(t)‖L∞

] ∫ t

τ
e−
∫ t

s (νλ1−‖v‖2
V)dσds. (29)

Step 2: The sufficient condition on asymptotic stability via generalized Grashof
number

Combining (28) with (29), considering the trajectories represented by (19) for fixing
initial data, and letting τ → −∞, we can then conclude that the trajectories inside pullback
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attractors reduce to a single one, which implies the asymptotic stability provided that
νλ1 > 〈‖v‖2

V〉≤t, where 〈h〉≤t is defined as

〈h〉≤t = lim sup
τ→−∞

1
t− τ

∫ t

τ
h(r)dr. (30)

Since v and ṽ are two global weak solutions for (18), we use Lemma 1 for a iteration
procedure and some delicate estimates to present a sufficient condition for asymptotic
stability of trajectories inside the pullback attractors by virtue of the uniform boundedness
of stream function.

Taking the inner product of (18) with u in H, this yields

1
2

d
dt
‖v‖2

H + ν‖v‖2

≤ |(PL( f (t, v(t− ρ(t)) + ψ) + νF), v)|+ |(B(ψ, ψ), v)|
+|(B(v(t− ρ(t)), ψ), v)|+ |〈g, v〉|. (31)

Using the Hardy and Hölder inequalities, by virtue of estimates for stream function in
Section 3.2 and ‖ϕ‖L2(∂Ω) ≤ C|∂Ω|1/2‖ϕ‖L∞(∂Ω) from [1], we obtain

|b(v(t− ρ(t)), ψ, v)| ≤ C‖ϕ‖L∞(∂Ω)

∫
dist(x,∂Ω)≤C′2ε

|v(t)||v(t− ρ(t))|
[dist(x, ∂Ω)]

dx

≤ ν

14
‖v‖2 +

C‖ϕ‖L∞(∂Ω)

ν
‖v(t− ρ(t))‖2

H , (32)

|(B(ψ, ψ), v)| ≤ C‖ϕ‖L∞(∂Ω)

∫
Ω

|v|
dist(x, ∂Ω)

|ψ|dx

≤ Cε1/2‖ϕ‖2
L∞(∂Ω)|∂Ω|1/2‖v‖

≤ ν

14
‖v‖2 +

Cε‖ϕ‖4
L∞(∂Ω)|∂Ω|

ν
(33)

and

ν|〈F, v〉| ≤ Cν√
ε
‖ϕ‖L2(∂Ω)‖v‖ ≤

ν

14
‖v‖2 +

Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω), (34)

|〈g, v〉| ≤ ν

14
‖v‖2 +

7/2
ν
‖g(t)‖2

V′ . (35)

By hypotheses (H-a)-(H-d), the estimates of stream function and the Minkowski
inequality, we can derive that

( f (t, v(t− ρ(t)) + ψ), v(t))

≤ α
1
2 (t)‖v(t− ρ(t))‖H‖v(t)‖H + α

1
2 (t)|ψ|‖v(t)‖H + β

1
2 (t)‖v(t)‖H

≤ C
νλ1

α(t)‖v(t− ρ(t))‖2
H +

ν

14
‖v(t)‖2 +

C|Ω|‖ϕ‖2
L∞(∂Ω)

2νλ1
α(t) +

C|Ω|
νλ1

β(t). (36)

Combining (31)–(36), we obtain

d
dt
‖v‖2 + ν‖v‖2

≤
[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

]
‖v(t− ρ(t))‖2

H +
C|Ω|‖ϕ‖2

L∞(∂Ω)

2νλ1
α(t) +

C|Ω|
νλ1

β(t)

+
Cν|∂Ω|

ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

+
7/2

ν
‖g(t)‖2

V′ . (37)
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By using the Poincaré inequality and Lemma 1, we can conclude that

‖v‖2
H ≤ e−νλ1(t−τ)‖v(τ)‖2

H +
C|Ω|‖ϕ‖2

L∞(∂Ω)

νλ1

∫ t

τ
e−νλ1(t−s)α(s)ds

+
C|Ω|
νλ1

∫ t

τ
e−νλ1(t−s)β(s)ds

+
[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

] ∫ t

τ
e−νλ1(t−s)‖v(s− ρ(s))‖2

Hds

+
1

νλ1

[Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

]
(1− e−νλ1(t−τ))

+
7/2

ν

∫ t

τ
e−νλ1(t−s)‖g‖2

V′ds. (38)

Denoting

E(t, τ) = e−νλ1(t−τ),

K1(t, s) =
[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

]
e−νλ1(t−s),

ρ =
C|Ω|‖ϕ‖2

L∞(∂Ω)

νλ1

∫ t

τ
e−νλ1(t−s)α(s)ds +

C|Ω|
νλ1

∫ t

τ
e−νλ1(t−s)β(s)ds

+
1

νλ1

[Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

]
(1− e−νλ1(t−τ))

+
7/2

ν

∫ t

τ
e−νλ1(t−s)‖g‖2

V′ds,

Θ = sup
t≥s≥τ

E(t, s), κ(K1, 0) = sup
t≥τ

∫ t

τ
K1(t, s)ds,

choosing a small enough τ̃ << τ such that κ(K1, 0) < 1
1+Θ , then by using Lemma 1, there

exist parameters M̂ > 0, γ > 0 and µ̂ > 0, such that we can obtain the estimate

‖v(t− ρ(t))‖2
H ≤ M̂

[
‖v(τ)‖2

H + ‖η‖2
L2

V

]
e−µ̃(t−τ) + γ

[7/2
ν

∫ t

τ
e−νλ1(t−s)‖g‖2

V′ s

+
C|Ω|‖ϕ‖2

L∞(∂Ω)

νλ1

∫ t

τ
e−νλ1(t−s)α(s)ds +

C|Ω|
νλ1

∫ t

τ
e−νλ1(t−s)β(s)ds

+
1

νλ1

(Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

)
(1− e−νλ1(t−τ))

]
(39)

Substituting (39) into (38), integrating (37) over [τ, t], we can obtain

‖v‖2
H ≤ e−νλ1(t−τ)‖v(τ)‖2

H + C1

[
‖v(τ)‖2

H + ‖η‖2
L2

V

]
e−µ̃(t−τ)

+C2

[
‖g(t)‖2

L2(τ,T;V′) + ‖α(t)‖L∞(τ,T) + ‖β(t)‖L1(τ.T) + 1
]

(40)

and
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ν

t− τ

∫ t

τ
‖v(r)‖2

Vdr ≤
[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

]{
M̂
[
‖v(τ)‖2

H + ‖η‖2
L2

V

]
e−µ̃(t−τ)

+γ
[C|Ω|‖ϕ‖2

L∞(∂Ω)

νλ1

∫ t

τ
e−νλ1(t−s)α(s)ds +

C|Ω|
νλ1

∫ t

τ
e−νλ1(t−s)β(s)ds

+
1

νλ1

(Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

)]}
+

C|Ω|‖ϕ‖2
L∞(∂Ω)

2νλ1
‖α(t)‖L∞(τ,T) +

C|Ω|
νλ1

β̃0

+
Cν|∂Ω|

ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

+
7(1 + γ)

2ν
‖g(t)‖2

V′ . (41)

Combining (37)–(41), we conclude the asymptotic stability holds, provided that

〈‖v‖2
V〉|≤t ≤

[C‖ϕ‖L∞(∂Ω)

ν
+

C
νλ1
‖α(t)‖L∞

]C|Ω|
ν2λ1

‖β‖L1(τ,T) +
C|Ω|
ν2λ1

β̃0

+
C|Ω|‖ϕ‖2

L∞(∂Ω)

ν2λ1
‖α(t)‖L∞(τ,T) +

7(1 + γ)

2ν2 〈‖g‖2
V′〉|≤t

+
[C‖ϕ‖L∞(∂Ω)

ν3λ1
+

C
ν3λ2

1
‖α(t)‖L∞ + 1

][Cν|∂Ω|
ε
‖ϕ‖2

L∞(∂Ω) +
Cε‖ϕ‖4

L∞(∂Ω)|∂Ω|
ν

]
≤ νλ1. (42)

If the generalized Grashof number is defined as G(t) =
( 〈‖g‖2

V′ 〉|≤t

ν2λ1

)1/2
, then we can

deduce a sufficient condition for the asymptotic stability of trajectories inside pullback
attractors as

G(t) + K0 ≤
2ν

7(1 + γ)
, (43)

which completes the proof for our work.

4. Conclusions and Further Research

Based on the well-posedness and pullback dynamics for 2D Navier–Stokes equations
with double time-varying delays defined on a Lipschitz-like domain in [11], this presented
work investigated the asymptotic stability of complete trajectories inside a pullback attractor
of problem (2), which is an extension of [11,12]. However, when the delay is infinite, the
dynamics and asymptotic stability are still open, which is our interest in the future.
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