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Abstract: The classical curve-fitting problem to relate two variables, x and y, deals with polynomials.
Generally, this problem is solved by the least squares method (LS), where the minimization function
considers the vertical errors from the data points to the fitting curve. Another curve-fitting method is
total least squares (TLS), which takes into account errors in both x and y variables. A further method
is the orthogonal distances method (OD), which minimizes the sum of the squares of orthogonal
distances from the data points to the fitting curve. In this work, we develop the OD method for the
polynomial fitting of degree n and compare the TLS and OD methods. The results show that TLS and
OD methods are not equivalent in general; however, both methods get the same estimates when a
polynomial of degree 1 without an independent coefficient is considered. As examples, we consider
the calibration curve-fitting problem of a R-type thermocouple by polynomials of degrees 1 to 4, with
and without an independent coefficient, using the LS, TLS and OD methods.

Keywords: polynomial fitting; parameter estimation; orthogonal distances; least squares; total
least squares

MSC: 65D10; 65D15

1. Introduction

The curve-fitting or parameter estimation procedure consists of determining the
parameters of a curve to obtain the best possible fit to observations. Depending on the
curve, this problem can be classified as linear or nonlinear [1,2]. The most used curves
for fitting in biology, physics, statistics and engineering are polynomials y = a0 + a1x +
· · · + an−1xn−1 + anxn [3–7]. The polynomial fitting is a linear problem and the most
popular method used to solve it is least squares (LS) [8–10], which minimizes the sum of the
squares of vertical errors from the data points (x1, y1), . . . , (xm, ym) to the polynomial curve.
Another method that can be used to solve the problem is total least squares (TLS), which
considers that both x and y are subject to errors; this method was developed mainly by
Golub and Van Loan [11] and Van Huffel and Vandewalle [12]; however, the consideration
that both variables x and y are subject to errors dates back at least to 1943 in the work of
Deming [13]. Another way to solve the polynomial fitting is to consider the minimization
of the sum of the squares of orthogonal distances from the data points to the polynomial
curve, called in this article as the orthogonal distances (OD) method. Adcock [14] was the
first to use the OD method for the straight line fitting; however, it has also been studied
and used for the straight line and planes fitting in [15–21].

The remainder of this paper is structured as follows: Section 2 presents a brief descrip-
tion of the LS and TLS methods. The OD method is developed in Section 3 and it is also
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compared with the TLS method using the polynomial of degree 1. The approximation of
the output voltage corresponding to different temperatures of a R-type thermocouple [22]
using polynomials of degrees 1 to 4 by LS, TLS and OD methods is carried out in Section 4.
Finally, a discussion and concluding remarks are presented in Sections 5 and 6, respectively.

In general, this article studies the polynomial fitting problem by the OD method, and
the main contributions are the following:

• Development of the OD method for polynomial fitting of degree n.
• Polynomial fitting of thermoelectric voltage data from a R-type thermocouple by OD,

LS and TLS methods.
• From the numerical experiments studied, the TLS and OD methods are not equivalent

in general. However, both methods obtain the same estimates when the polynomial of
degree 1 without an independent coefficient is used.

2. Polynomial Fitting by LS and TLS Methods

The polynomial fitting of degree n consists of determining the unknown parameters
a0, a1, . . . , an of the polynomial defined for all real numbers x, such that f (x) = a0 + a1x +
· · · + an−1xn−1 + anxn. A brief description of the LS and TLS solutions for polynomial
fitting are presented below.

2.1. The LS Method

The LS method is one of the most widely used minimization criteria for parameter
estimation. The first publication of the method was made by A. M. Legendre in 1805;
however, C. F. Gauss claimed that he used the method 10 years earlier [16]. The classical LS
method seeks to determine the curve y = f (x), which best fits to observations (xi, yi) with
i = 1, . . . , m, minimizing the sum of the squares of vertical errors defined as ri = yi − f (xi);
however, there are some variants of the method, such as weighted least squares, generalized
least squares and maximum likelihood, among others, and it can be applied to different
mathematical models, such as algebraic models, and continuous and discrete dynamic
models [23–28] using the off-line and recursive schemes [20,29,30].

Since the article considers the classical LS method under the off-line scheme, the vector
of vertical errors for the polynomial of degree n and observations (xi, yi) is given by

r =


r1
r2
...

rm

 =


y1
y2
...

ym

−


1 x1 · · · xn
1

1 x2 · · · xn
2

...
...

...
1 xm · · · xn

m




a0
a1
...

an

.

Defining

y :=


y1
y2
...

ym

, A :=


1 x1 · · · xn

1
1 x2 · · · xn

2
...

...
...

1 xm · · · xn
m

, p :=


a0
a1
...

an

,

we obtain

r = y−Ap, (1)

where A ∈ Rm×(n+1), y ∈ Rm and p ∈ R(n+1).

Taking the squared 2-norm of vector (1), we obtain

∥∥r
∥∥2

2 =
∥∥y−Ap

∥∥2
2 =

m

∑
i=1

r2
i . (2)
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The LS solution is the vector p such that it minimizes the functional (2). Since it is a
linear minimization problem, the LS solution can be found by elementary calculus [10,31,32].
The p LS solution which minimizes (2) is unique if matrix A has independent columns,
which means that it has rank ρ(A) = n + 1. Therefore, the p LS solution satisfies the normal
equations A>Ap = A>y and is defined by p = (A>A)−1A>y.

On the other hand, if matrix A has dependent columns or is not invertible, the p LS
solution which minimizes (2) is defined by

p = A†y, (3)

where A† is called the Moore–Penrose pseudoinverse of A, and it is defined by

A† = V
[

Σ−1
q 0
0 0

]
U>.

Equation (3) is called the pseudoinverse solution of the LS method, and the Moore–
Penrose pseudoinverse is defined by the matrices of the singular value decomposition
(SVD) given by the following theorem. Throughout the text, the rank of any matrix will be
denoted by ρ(·).

Theorem 1 ([10]). Let any matrix A ∈ Rm×(n+1). The SVD of A is

A = U
[

Σq 0
0 0

]
V>,

where U ∈ Rm×m and V ∈ R(n+1)×(n+1) are unitary matrices and Σq = diag(σ1, σ2, · · · , σq).
The numbers σ1 ≥ σ2 ≥ · · · ≥ σq > 0 are called the singular values of A and ρ(A) = q.

More properties of the Moore–Penrose pseudoinverse can be found in [10,32].

2.2. The TLS Method

This section presents the most important results of the TLS method from [12] for
polynomial fitting.

Rewriting the system of linear algebraic equations Ap = y as follows

[
A y

][ p
−1

]
= 0,

since A ∈ Rm×(n+1), y ∈ Rm and p ∈ R(n+1), it can be defined Λ :=
[
A y

]
∈ Rm×(n+2)

and z :=
[

p
−1

]
∈ R(n+2) to obtain

Λz = 0. (4)

Since Equation (4) represents a homogeneous system of linear algebraic equations, the
z solution is in the null space of Λ, which means that the parameters vector p is also in the
null space of Λ. If matrix Λ in (4) has rank ρ(Λ) = n + 2, the SVD of Λ is given by

Λ = UΣV> =
n+2

∑
i=1

σiuiv>i ,

where the singular values σi and singular vectors ui and vi satisfy
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Λv1 = σ1u1,

Λv2 = σ2u2,
... (5)

Λvn+1 = σn+1un+1,

Λvn+2 = σn+2un+2.

From (5), it can be see that system (4) does not have a vector v in the null space of Λ,
and therefore the TLS method searches for a matrix Λk with ρ(Λk) = k < n + 2, such that∥∥Λ−Λk

∥∥ is minimal. Once a minimizing Λk is found, any z vector satisfying Λkz = 0 is
called the TLS solution and ∆Λ = Λ−Λk is the TLS correction.

The minimization is found by the Eckart–Young–Mirsky theorem. This theorem was
initially proved by Eckart and Young [33] using the Frobenius norm, and later Mirsky [34]
proved it using the 2-norm. In this work, it is used with the 2-norm. The Eckart–Young–
Mirsky theorem using the 2-norm is presented below.

Theorem 2 ([12]). Let the SVD of Λ ∈ Rm×(n+2) be given by Λ = UΣV> with ρ(Λ) = q and
let k < q; then, the matrix

Λk =
k

∑
i=1

σiuiv>i ,

satisfies

min
ρ(Λ)=k

∥∥Λ− B
∥∥

2 =
∥∥Λ−Λk

∥∥
2 = σk+1.

Applying the Eckart–Young–Mirsky theorem 2 to (4), the best matrix approximation
Λk to the matrix Λ is given by

Λk =
n+1

∑
i=1

σiuiv>i , σ1 ≥ · · · ≥ σn+1 > 0.

Notice that Λk has rank ρ(Λk) = n+ 1, then the singular values σi and singular vectors
ui, vi now satisfy

Λkv1 = σ1u1,

Λkv2 = σ2u2,
... (6)

Λkvn+1 = σn+1un+1,

Λkvn+2 = 0.

From Equation (6), the vector vn+2 is in the null space of Λk, and therefore, a z TLS
solution satisfying Λkz = 0 is given by

z =

[
p
−1

]
= vn+2 =


v1,n+2
v2,n+2

...
vn+2,n+2

. (7)
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The TLS solution will be scaled to obtain −1 in the last row of (7):

z =

[
p
−1

]
= − 1

vn+2,n+2


v1,n+2
v2,n+2

...
vn+2,n+2

,

then, if vn+2,n+2 6= 0, the parameters vector p is given by

p = − 1
vn+2,n+2


v1,n+2
v2,n+2

...
vn+1,n+2

. (8)

An alternative form to obtain (8) is as follows. Since the z solution is also an eigenvector
of Λ>Λ, it is associated with the eigenvalue σ2

n+2. Hence the eigenvalue–eigenvector
equation is given by

Λ>Λ

[
p
−1

]
= σ2

n+2

[
p
−1

]
,

substituting Λ :=
[
A y

]
we obtain[
A>A A>y
y>A y>y

][
p
−1

]
= σ2

n+2

[
p
−1

]
. (9)

Selecting the first row of Equation (9)

A>Ap−A>y = σ2
n+2p,

and solving for the parameters vector p, we obtain

p = (A>A− σ2
n+2I)−1A>y. (10)

The following theorem establishes the uniqueness and existence conditions of the
TLS solution.

Theorem 3 ([12]). Let the singular values of A be σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂n+1 > 0, and the singular
values of

[
A y

]
be σ1 ≥ σ2 ≥ · · · ≥ σn+2 > 0. If σ̂n+1 > σn+2 then the TLS problem has a

unique solution.

As we can see, one problem of the TLS solution is the loss of uniqueness due to
repeated singular values, and another is the indeterminate form in (8) if vn+2,n+2 = 0;
those problems are called nongeneric TLS problems, and more details of them can be found
in [35–37].

3. Polynomial Fitting by OD Method

The OD method minimizes the sum of the squares of the orthogonal distances from
observations (x1, y1), . . . , (xm, ym) to the polynomial curve y = f (x). Considering Figure 1,
where a1 is the vector of the observation (x1, y1), c is a vector on the curve

(
x, f (x)

)
,

c
′

:=
d

dx
c =

(
1, f

′
(x)
)

is the tangent vector at c and the vector d1 is defined by

d1 = a1 − c. (11)
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Figure 1. Orthogonal distance from a point to curve.

The vector d1 in Figure 1 is orthogonal to the curve f (x) at c if the dot product between
vectors d1 and c

′
satisfies

d1 · c
′
= 0. (12)

Substituting c
′

and d1 in (12), we obtain

d1 · c
′
= x1 − x + f

′
(x)
(
y1 − f (x)

)
= 0. (13)

Equation (13) is called the orthogonality condition, and its solution determines the
point

(
x∗1 , f (x∗1)

)
on the curve f (x) where the vectors d1 and c

′
are orthogonal. This

point also determines the orthogonal distance vector d1. The 2-norm of vector d1 is the
orthogonal distance from the observation (x1, y1) to the curve f (x) denoted by ‖d1‖2.

If the polynomial curve considered is f1(x) = a0 + a1x, then by the orthogonality
condition (13) and the squared 2-norm of vector di (11), the squares of the orthogonal
distances for the observations (xi, yi) with i = 1, . . . , m are given by

∥∥di
∥∥2

2 =
r2

i
1 + a2

1
,

with ri = yi− (a0 + a1xi). Defining the distances vector d =
[
‖d1‖2 ‖d2‖2 . . . ‖dm‖2

]>
and taking the squared 2-norm of d, we obtain

∥∥d
∥∥2

2 = d · d =
1

1 + a2
1

m

∑
i=1

r2
i . (14)

Equation (14) is the functional of the sum of the squares of the orthogonal distances
from observations (xi, yi) to the polynomial curve y = a0 + a1x. The parameters a0, a1 that
minimize the functional (14) are defined below.

Considering the function

f (a0, a1) :=
1

1 + a2
1

m

∑
i=1

r2
i , (15)

with ri = yi− (a0 + a1xi). Differentiating (15) with respect to a1 and a0 and equating to zero

fa1 :=
∂ f
∂a1

= −
m

∑
i=1

xiyi + a1

m

∑
i=1

(x2
i − y2

i ) + a0

m

∑
i=1

xi

+a2
1

m

∑
i=1

xiyi − a2
1a0

m

∑
i=1

xi

+2a1a0

m

∑
i=1

yi −ma1a2
0 = 0. (16)
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fa0 :=
∂ f
∂a0

=
m

∑
i=1

yi − a1

m

∑
i=1

xi −ma0 = 0. (17)

From Equation (17) we obtain

a0 =
1
m

(
m

∑
i=1

yi − a1

m

∑
i=1

xi

)
. (18)

Substituting (18) into (16) boils down to

µ1a2
1 + µ2a1 + µ3 = 0, (19)

where

µ1 =
m

∑
i=1

xiyi −
1
m

m

∑
i=1

yi

m

∑
i=1

xi,

µ2 =
m

∑
i=1

(x2
i − y2

i ) +
1
m

( m

∑
i=1

yi

)2
− 1

m

( m

∑
i=1

xi

)2
,

µ3 =
1
m

m

∑
i=1

yi

m

∑
i=1

xi −
m

∑
i=1

xiyi.

Solving quadratic Equation (19)

a(1,2)
1 =

−µ2 ±
√

µ2
2 − 4µ1µ3

2µ1
(20)

and substituting (20) into (18), we obtain

a(1,2)
0 =

1
m

( m

∑
i=1

yi − a(1,2)
1

m

∑
i=1

xi

)
. (21)

Since the sets of values (a(1)1 , a(1)0 ) and (a(2)1 , a(2)0 ) are the critical points of function (15),
the second derivative test is used to determine the minimum.

Definition 1. Let f (a0, a1) be a differentiable function with respect to a0 and a1. Let H f (a∗0 , a∗1) =
fa1a1(a∗0 , a∗1) fa0a0(a∗0 , a∗1)− [ fa0a1(a∗0 , a∗1)]

2. If (a∗, b∗) is a critical point of f , that is, fa0(a∗0 , a∗1) =
0 and fa1(a∗0 , a∗1) = 0. Then

• If H f (a∗0 , a∗1) > 0 and fa1a1(a∗, b∗) > 0, then f (a∗0 , a∗1) is a local minimum value of f .
• If H f (a∗0 , a∗1) > 0 and fa1a1(a∗, b∗) < 0, then f (a∗0 , a∗1) is a local maximum value of f .

The second derivatives of function (15) with respect to a0 and a1 are given by

fa0a0 :=
∂2 f
∂a2

0
=

2m
1 + a2

1
, (22)

fa1a1 :=
∂2 f
∂a2

1
=

1
(1 + a2

1)
3

(
(6a2

1 − 2)
m

∑
i=1

(yi − a1xi − a0)
2

−4(a1 + a3
1)
{
− 2

m

∑
i=1

xiyi + 2a1

m

∑
i=1

x2
i

+2a0

m

∑
i=1

xi

}
+ 2(1 + a2

1)
2

m

∑
i=1

x2
i

)
, (23)
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fa1a0 :=
∂2 f

∂a1∂a0
= fa0a1 :=

∂2 f
∂a0∂a1

=
2

(1 + a2
1)

2

(
m

∑
i=1

xi + 2a1

m

∑
i=1

yi

−a2
1

m

∑
i=1

xi − 2ma1a0

)
. (24)

Using the second derivative test Definition 1, the parameters a0 and a1 that minimize
(15) are determined by (20) and (21).

On the other hand, if we consider now a polynomial of degree 2, f2(x) = a0 + a1x +

a2x2. Then, substituting f2(x) and f
′
2(x) into the orthogonality condition (13) we obtain the

cubic equation

x3 + µ̂1x2 + µ̂2x + µ̂3 = 0, (25)

with

µ̂1 =
3a1

2a2
,

µ̂2 =
1 + a2

1 + 2a0a2 − 2a2yi

2a2
2

,

µ̂3 =
a1a0 − xi − a1yi

2a2
2

.

The real solution of Equation (25) determines the points
(
x∗i , f2(x∗i )

)
on the curve

f2(x), where the orthogonal distances for each observation ‖di‖2 are determined. Then,
solving (25) by Cardano’s formulas [38], the real solution for each observation is determined
by the formula

x∗i =
3

√√√√−ν +
√

ν2 + 4ω3

27

2
+

3

√√√√−ν−
√

ν2 + 4ω3

27

2
− µ̂1

3
, (26)

where

ν = µ̂3 +
2

27
µ̂3

1 −
µ̂1µ̂2

3
,

ω = µ̂2 −
1
3

µ̂2
1.

Hence, the squared 2-norm of vector di (11) is defined by∥∥di
∥∥2

2 = (xi − x∗i )
2 + (yi − f2(x∗i ))

2.

Taking the squared 2-norm of the distances vector d =
[
‖d1‖2 ‖d2‖2 . . . ‖dm‖2

]>,
the functional of the sum of the squares of the orthogonal distances for the polynomial of
degree 2 is defined by

∥∥d
∥∥2

2 = d · d =
m

∑
i=1

(
(xi − x∗i )

2 + (yi − f2(x∗i ))
2
)

. (27)

Notice that the polynomial fitting of degree 2 by OD method is a nonlinear minimiza-
tion problem.

Considering now a cubic polynomial curve, f3(x) = a0 + a1x + a2x2 + a3x3, then by
the orthogonality condition (13), a fifth degree equation is obtained:

x5 + µ̄1x4 + µ̄2x3 + µ̄3x2 + µ̄4x + µ̄5 = 0, (28)



Mathematics 2022, 10, 4596 9 of 17

with

µ̄1 =
5a2

3a3
,

µ̄2 =
4a1a3 + 2a2

2
3a2

3
,

µ̄3 =
a1a2 + a0a3 − a3yi

a2
3

,

µ̄4 =
1 + a2

1 + 2a0a2 − 2a2yi

3a2
3

,

µ̄5 =
a0a1 − a1yi − xi

3a2
3

.

Equation (28) in general cannot be solved analytically; the roots must be obtained
with a numerical method [31,39,40]. Once Equation (28) is solved for each observation, the
points

(
x∗i , f3(x∗i )

)
on the curve determine the orthogonal distance vectors ‖di‖2, then the

squared 2-norm of the distances vector d =
[
‖d1‖2 ‖d2‖2 . . . ‖dm‖2

]> determines the
functional to be minimized:

∥∥d
∥∥2

2 = d · d =
m

∑
i=1

(
(xi − x∗i )

2 + (yi − f3(x∗i ))
2
)

. (29)

The general case is when a polynomial curve of degree n is considered, fn(x) =
a0 + a1x + · · ·+ anxn. From the orthogonality condition (13), an equation of degree 2n− 1
is obtained. Since it is of an odd degree, it has at least one real root. Hence the functional of
the sum of the squares of orthogonal distances to be minimized is given by

∥∥d
∥∥2

2 = d · d =
m

∑
i=1

(
(xi − x∗i )

2 + (yi − fn(x∗i ))
2
)

. (30)

As we can see, there are two numerical problems when the polynomial fitting prob-
lem of degree n is solved by the OD method. Firstly, a real-root-finding problem of an
equation of degree 2n− 1 given by the orthogonality condition (13) and then a nonlinear
minimization problem of the sum of the squares of the orthogonal distances is given by
(30). In this sense, the real-root-finding problem can be solved by the fzero routine from
MATLAB, whereas the fminsearch routine also from MATLAB [41] can be used to solve
the nonlinear minimization problem. It is worth mentioning that the polynomial fitting
problem of degree 1 can be solved by the analytic formulas (20) and (21), and the second
derivative test Definition 1.

Contrasting the OD and TLS Methods

In previous sections, the LS, TLS and OD methods for the polynomial fitting were
presented. However, Golub and Van Loan [11] and Van Huffel and Vandewalle [12]
mentioned that the TLS method also minimizes the orthogonal distances. In order to review
this statement, this section analyzes the parameter estimation by the TLS and OD methods
for the most simple polynomial, the straight line f1(x) = a0 + a1x.

Applying the OD method, the functional of the sum of the squares of the orthogonal
distances for the straight line fitting to be minimized is given by

∥∥d
∥∥2

2 =
1

1 + a2
1

m

∑
i=1

r2
i , (31)

with ri = yi − (a0 + a1xi).
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On the other hand, the z TLS solution for the straight line satisfies the eigenvalue–
eigenvector equation

Λ>Λz = σ2
2 z, (32)

where Λ :=
[
A y

]
and z :=

[
p
−1

]
. Premultiplying Equation (32) by z> and solving for

σ2
2 , we obtain

σ2
2 =

∥∥Λz
∥∥2

2∥∥z
∥∥2

2

,

and substituting Λ and z results in

σ2
2 =

∥∥Ap− y
∥∥2

2∥∥p
∥∥2

2 + 1
. (33)

Notice that the numerator of Equation (33) is the same as in Equation (2), then, substi-
tuting (2) in (33) reduces to

σ2
2 =

1∥∥p
∥∥2

2 + 1

m

∑
i=1

r2
i , (34)

where p is the parameters vector. Since the parameters vector for the straight line is
p =

[
a0 a1

]>, Equation (34) reduces to

σ2
2 =

1
a2

0 + a2
1 + 1

m

∑
i=1

r2
i . (35)

Notice that Equations (35) and (31) are not equal, since

1
1 + a2

1

m

∑
i=1

r2
i 6=

1
a2

0 + a2
1 + 1

m

∑
i=1

r2
i ,

then TLS method does not minimize the orthogonal distances. However, if we consider the
straight line without independent coefficient f1(x) = a1x, Equations (35) and (31) are equal
and both methods minimize the orthogonal distances. Hence the OD and TLS methods are
not equivalent in general.

The next section presents the parameter estimation of polynomial functions of degree
1 to 4 with and without an independent coefficient by the LS, TLS and OD methods.

4. Polynomial Fitting of Thermoelectric Voltage by LS, TLS and OD Methods

Considering the observations of temperature and thermoelectric voltage (Ti, Ei) from
a R-type thermocouple for the temperature range −50 ◦C to 1064 ◦C with increment of
1 ◦C obtained from [22], this section shows the calibration curve fitting of the R-type
thermocouple by polynomials of degree 1 to 4 by LS, TLS and OD methods.

In order to evaluate the predictive performance of the calibration polynomials, the
criteria of the extreme values of errors, the average of the absolute errors, the standard
deviation and the coefficient of determination R2 were used [3,4,6].

The error of calibration polynomial is defined as

ei = Ei − Êi, (36)
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where Ei is thermoelectric voltage data and Êi is the predicted value of the thermoelectric
voltage with the calibration polynomial. The average of the absolute errors is given by

eave =
1
m

m

∑
i=1
|ei|, (37)

where |ei| is the absolute value of ei and m is the number of data. The standard deviation of
the calibration polynomial is defined by

estd =

√
1

m− 1

m

∑
i=1

e2
i . (38)

The coefficient of determination R2 is given by

R2 = 1−

m

∑
i=1

(Ei − Êi)
2

m

∑
i=1

(Ei − Ē)2
, (39)

where Ē is the average of the thermoelectric voltage data.

The calibration polynomial fitting with an independent coefficient is presented below.

4.1. Calibration Polynomial Fitting with Independent Coefficient

The polynomial fitting of functions (40) by LS and TLS methods was solved by Equa-
tions (3) and (10), respectively.

E(T) = a0 +
n

∑
j=1

ajT j. (40)

On the other hand, the polynomial fitting of degree n = 1 by the OD method was
carried out applying Algorithm 1, which uses the analytic formulas (20) and (21), and the
second derivative test Definition 1. The nonlinear minimization of function (27) for the
polynomial fitting of degree n = 2 was solved applying the Algorithm 2 which uses the
fminsearch routine from MATLAB. Finally, the polynomial fitting of functions of degree
n = 3 and n = 4 was solved applying the Algorithm 3 which uses the fzero and fminsearch
routines.

Algorithm 1 Polynomial fitting of degree 1 by OD method
Input Data (xi, yi).
Output Parameters a0, a1.
Step 1. Compute

a(1,2)
1 =

−µ2 ±
√

µ2
2 − 4µ1µ3

2µ1
,

a(1,2)
0 =

1
m

( m

∑
i=1

yi − a(1,2)
1

m

∑
i=1

xi

)
.

Step 2. Compute H f (a∗0 , a∗1) and fa1a1(a∗0 , a∗1).
Step 3. If H f (a∗0 , a∗1) > 0 and fa1a1(a∗0 , a∗1) > 0 then (a∗0 , a∗1) is a local minimum.
Step 4. Output (a∗0 , a∗1).
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Algorithm 2 Polynomial fitting of degree 2 by OD method
Input Data (xi, yi); initial approximation of the parameters P0 = (a0, a1, a2); optimization
options: TolFun, TolX, MaxIter, MaxFunEvals.
Output Parameters P = (a0, a1, a2).
function fun(P, xi, yi)

x∗i =
3

√√√√−ν +
√

ν2 + 4ω3

27

2
+

3

√√√√−ν−
√

ν2 + 4ω3

27

2
− µ̂1

3
;

m

∑
i=1

(
(xi − x∗i )

2 + (yi − f2(x∗i ))
2
)

;

end function
Step 1. Call fminsearch(fun, P0, options).
Step 2. Output P = (a0, a1, a2).

Algorithm 3 Polynomial fitting of degree n > 2 by OD method
Input Data (xi, yi); initial approximation of the orthogonality condition solution x∗0 ; ini-
tial approximation of the parameters P0; optimization options: TolFun, TolX, MaxIter,
MaxFunEvals.
Output Parameters P.
function funZ(P, xi, yi, x∗0)

xi − x + f
′
n(x)

(
yi − fn(x)

)
;

end function
function fun(P, xi, yi, x∗0)

x∗i = fzero(funZ, x∗0 , options);
m

∑
i=1

(
(xi − x∗i )

2 + (yi − fn(x∗i ))
2
)

;

end function
Step 1. Call fminsearch(fun, P0, options).
Step 2. Output P.

Using Algorithms 1–3 and long output display format, the calibration polynomials of
degree 1 to 4 by the LS, TLS and OD methods are presented in Tables 1–4, respectively. The
performance of the calibration polynomials is presented in Table 5.

Table 1. Calibration polynomial of degree 1.

Parameter LS TLS OD

a1 0.0106705919592424 0.0108882799524002 0.0106706009250352
a0 −0.561949764591521 −0.716799304506316 −0.561954310248448

Table 2. Calibration polynomial of degree 2.

Parameter LS TLS OD

a2 3.13324263891139 × 10−6 3.12919113815010 × 10−6 3.13325997351179 × 10−6

a1 0.00749348392338622 0.00749870116623730 0.00749346705386636
a0 −0.0811630813784754 −0.0825736260294239 −0.0811607801463052
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Table 3. Calibration polynomial of degree 3.

Parameter LS TLS OD

a3 −1.78686899229851 × 10−9 −1.78635025917305 × 10−9 −1.78689809449655 × 10−9

a2 5.85107037619782 × 10−6 5.85010421131572 × 10−6 5.85111575583941 × 10−6

a1 0.00644876666562105 0.00644929803644297 0.00644874868154519
a0 −0.0172346997190748 −0.0173148908943473 −0.0172335743482728

Table 4. Calibration polynomial fitting of degree 4.

Parameter LS TLS OD

a4 3.06378459910204 × 10−12 3.06378816842890 × 10−12 3.06382882864091 × 10−12

a3 −8.00022415925578 × 10−9 −8.00023360534995 × 10−9 −8.00031467361401 × 10−9

a2 9.76012119529912 × 10−6 9.76012992574279 × 10−6 9.76017917221101 × 10−6

a1 0.00567926259968995 0.00567925934996503 0.00567925074682013
a0 0.000765570482434280 0.000765962049712438 0.000765883225715231

Table 5. Prediction performance of the calibration polynomials.

Polynomial
Criteria

emax emin eave estd R2

n = 1
LS 0.869479362553643 -0.307193128619244 0.247974185136004 0.295191290947890 0.992673799531263
TLS 1.03521330212633 -0.256564111788997 0.239056263901570 0.306646708107496 0.992094154347717
OD 0.869484356500207 -0.307192716192777 0.247973923511759 0.295191290962009 0.992673799530562

n = 2
LS 0.222004170950508 −0.0780352716454846 0.0418017281536729 0.0525832990751692 0.999767529752450
TLS 0.223685706495914 −0.0775891855822355 0.0416607726718407 0.0525863417404143 0.999767502848486
OD 0.222000982905844 −0.0780392481403069 0.0418020852409217 0.0525832991002195 0.999767529752229

n = 3
LS 0.0988219984355953 −0.0380362681738999 0.0198691042767306 0.0239141892875648 0.999951917942603
TLS 0.0989312384058100 −0.0380051960408253 0.0198639506867380 0.0239142059253218 0.999951917875699
OD 0.0988198567741218 −0.0380358812609328 0.0198692556077872 0.0239141893000085 0.999951917942553

n = 4
LS 0.0317780798401641 −0.0218970177575368 0.00675022233195031 0.00793478730849462 0.999994706507555
TLS 0.0317775027574607 −0.0218970316206750 0.00675023870006046 0.00793478730961125 0.999994706507553
OD 0.0317770179203829 −0.0218980118001859 0.00675025296960785 0.00793478731526725 0.999994706507546

Since each set of parameters in Tables 1–4 is distinct, different calibration polynomials
were obtained with all methods used. It is important to mention that if we had used a
shorter output display format, some parameters estimated would have been the same.

The polynomial fitting without the independent coefficient a0 is presented below.

4.2. Calibration Polynomial Fitting without Independent Coefficient

The calibration polynomials for the R-type thermocouple without independent coeffi-
cient a0 are defined by

E(T) =
n

∑
j=1

ajT j. (41)

Using the observations of temperature and thermoelectric voltage for the temperature
range − 50◦C to 1064 ◦C, the calibration polynomial fitting of degrees 1 to 4 without an
independent coefficient by the LS, TLS and OD methods are presented in Tables 6–9, re-
spectively. The performance of the calibration polynomials is shown in Table 10.
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Table 6. Calibration polynomial of degree 1 without independent coefficient.

Parameter LS TLS OD

a1 0.00988060792856485 0.00988061279849602 0.00988061279849602

Table 7. Calibration polynomial of degree 2 without independent coefficient.

Parameter LS TLS OD

a2 3.36630540516376 × 10−6 3.36630397586626 × 10−6 3.36632169932580 × 10−6

a1 0.00719333493773556 0.00719333615493144 0.00719332224566322

Table 8. Calibration polynomial of degree 3 without independent coefficient.

Parameter LS TLS OD

a3 −1.89795367055803 × 10−9 −1.89795171695059 × 10−9 −1.89797754460899 × 10−9

a2 6.05810804037494 × 10−6 6.05810506932127 × 10−6 6.05814294168891 × 10−6

a1 0.00633478106141306 0.00633478211573470 0.00633476947536766

Table 9. Calibration polynomial of degree 4 without independent coefficient.

Parameter LS TLS OD

a4 3.05426851859784 × 10−12 3.05426721773752 × 10−12 3.05430880341339 × 10−12

a3 −7.97635148760036 × 10−9 −7.97634871709437 × 10−9 −7.97643212780673 × 10−9

a2 9.73945467428371 × 10−6 9.73945283014663 × 10−6 9.73950412699805 × 10−6

a1 0.00568634618059175 0.00568634655477984 0.00568633723894135

Table 10. Prediction performance of the calibration polynomials without independent coefficient.

Polynomial
Criteria

emax emin eave estd R2

n = 1
LS 0.848033164006997 −0.565436360926447 0.373819437547787 0.421821855707890 0.985040059251142
TLS 0.848027982400240 −0.565437933914213 0.373819629178487 0.421821855718038 0.985040059250422
OD 0.848027982400236 −0.565437933914215 0.373819629178487 0.421821855718038 0.985040059250422

n = 2
LS 0.125250983373869 −0.114185743980775 0.0530813308730469 0.0618423117070237 0.999678453972557
TLS 0.125251047806906 −0.114185887189530 0.0530813028252546 0.0618423117072944 0.999678453972554
OD 0.125250308034846 −0.114184278342810 0.0530815613672524 0.0618423117402948 0.999678453972211

n = 3
LS 0.0753565387608956 −0.0452067871939745 0.0212133821710392 0.0246707283771419 0.999948827614715
TLS 0.0753565991488130 −0.0452068669060518 0.0212133734955633 0.0246707283772243 0.999948827614714
OD 0.0753558692210848 −0.0452059328828053 0.0212134738720864 0.0246707283878070 0.999948827614670

n = 4
LS 0.0329525392296870 −0.0218315193646372 0.00671767771415101 0.00793902257617295 0.999994700855144
TLS 0.0329525629038775 −0.0218314997375604 0.00671767650802620 0.00793902257618144 0.999994700855144
OD 0.0329519581835754 −0.0218324861820349 0.00671769420876913 0.00793902258221761 0.999994700855136

From Table 6, regardless of the output display format type, the estimates for a1 by
the TLS and OD methods were the same. On the other hand, since each set of parameters
in Tables 7–9 is distinct, the TLS method also minimizes the orthogonal distances when a
polynomial of degree 1 without an independent coefficient is considered.

5. Discussion

The article presents the OD method for the polynomial fitting problem for which
the minimization criteria are the sum of the squares of the orthogonal distances from
data points to the polynomial curve; hence, the functional obtained is nonlinear, just like
the minimization problem. Applying the OD method to fit calibration polynomials of a
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R-type thermocouple, different polynomials were obtained compared with the LS and
TLS methods. However, if we consider the calibration polynomial of degree 1 without an
independent coefficient, the OD and TLS methods obtain the same estimates. An important
aspect to consider is the output display format of computations, because if a short output
format is used, some results with the OD and TLS methods would be the same. On the other
hand, from a practical point of view, the polynomial fitting by the OD method requires
computations of roots of equations of degree 2n− 1 and a nonlinear minimization, so the
method can be implemented with different minimization and root finding algorithms.

6. Conclusions

This work presented two classical methods for solving the polynomial fitting problem,
the least squares (LS) and total least squares (TLS) methods. Then, using elementary
vector geometry, the orthogonal distances (OD) method for solving the polynomial fitting
problem of degree n was developed. All methods used in this work have advantages and
disadvantages. The LS and TLS solutions are easier to obtain than the OD method, as they
are obtained by Equations (3) and (10), respectively. The OD solution for the polynomial
fitting of degree n > 1 needs to solve two numerical problems. Firstly a real-root finding
routine is applied to an equation of degree 2n− 1 resulting from the orthogonality condition
(13); since it is of an odd degree, it has at least one real root. Then a nonlinear minimization
routine is applied to the functional of the sum of the squares of the orthogonal distances
(30). The polynomial fitting problem of degree 1 by OD method is solved applying the
analytic formulas (20), (21) and the second derivative test Definition 1. On the other hand,
the LS and TLS methods are ill-conditioned problems [10,12,39] which cause deficient
estimates; furthermore, the TLS method has nongeneric problems [35–37]. Since the
OD method considers a different minimization criterion than the LS and TLS methods,
it represents a different alternative for polynomial fitting. Furthermore, the numerical
experiments demonstrated that TLS and OD methods are not equivalent in general, and
that the performance criteria of the LS and OD methods are similar. However, from the
cases studied, TLS and OD methods obtain the same estimates when the polynomial of
degree 1 without an independent coefficient is considered, and therefore, the performance
criteria are also equal. It is important to highlight that when the independent coefficient
is not considered, the performance criteria are similar to the three methods used. On the
other hand, since the minimization of the functional of the OD method is nonlinear and
numerical computations of roots are also needed, the implementation of the OD method
needs a large computing capacity and efficient algorithms.

Finally, future works include applying the calibration curves obtained in practical
applications and solving polynomial fitting problems from different disciplines with the
OD method, using different minimization and root-finding algorithms.
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