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Abstract: Dense breast tissue is a significant factor that increases the risk of breast cancer. Cur-
rent mammographic density classification approaches are unable to provide enough classification
accuracy. However, it remains a difficult problem to classify breast density. This paper proposes
TwoViewDensityNet, an end-to-end deep learning-based method for mammographic breast density
classification. The craniocaudal (CC) and mediolateral oblique (MLO) views of screening mam-
mography provide two different views of each breast. As the two views are complementary, and
dual-view-based methods have proven efficient, we use two views for breast classification. The
loss function plays a key role in training a deep model; we employ the focal loss function because
it focuses on learning hard cases. The method was thoroughly evaluated on two public datasets
using 5-fold cross-validation, and it achieved an overall performance (F-score of 98.63%, AUC of
99.51%, accuracy of 95.83%) on DDSM and (F-score of 97.14%, AUC of 97.44%, accuracy of 96%) on
the INbreast. The comparison shows that the TwoViewDensityNet outperforms the state-of-the-art
methods for classifying breast density into BI-RADS class. It aids healthcare providers in providing
patients with more accurate information and will help improve the diagnostic accuracy and reliability
of mammographic breast density evaluation in clinical care.

Keywords: breast density classification; mammography; craniocaudal (CC) view; mediolateral
oblique (MLO) view; BI-RADS; convolutional neural network (CNN); loss function

MSC: 68T07

1. Introduction

Breast density is a significant risk factor for breast cancer because it indicates the
proportion of fibroglandular tissue to fat tissue in the breast [1–4]. Breast tissue has varied
X-ray attenuation qualities, resulting in a different mammographic density. Fat tissue is
dark (radiolucent), while fibroglandular tissue is white (radiopaque) in appearance [5].
American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-
RADS) results from the reporting system describe density levels [6]. According to the
BI-RADS 5th edition, the distribution of parenchymal density based on the relative mod-
ulating factor hard negatives are the appearance of breast tissue is classified into four
categories: BI-RADS I: fatty (0–25%), BI-RADSII: scattered density (26–50%), BI-RADSIII:
heterogeneously dense (51–75%), BI-RADSIV: extremely dense (76–100%). Figure 1 presents
examples of each type of BI-RADS mammogram from the Digital Database for Screening
Mammography (DDSM). Mammographic breast density classification focuses significantly
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on breast cancer prevention and risk assessment in breast cancer studies. Many researchers
in medical imaging recently applied deep-learning models to address this issue, although
their performance is low and may not be for clinical application [7–10].
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Figure 1. Examples of BI-RADS breast composition categories of breast density in increasing order of
density from left to right [11].

The craniocaudal (CC) and mediolateral oblique (MLO) views of screening mam-
mography provide distinct breast views. Due to the complementing characteristics of
these two views, the dual view can be used for better performance because the dual-view
strategy achieves a more promising performance than using a single view. We introduce
a method for automatically classifying mammographic density from the two views that
provide more information predicting breast cancer risk. The Digital Database for Screening
Mammography (DDSM) dataset was used to test the system. The main contributions of
this study can be summarized as follows:

• We proposed an end-to-end deep learning-based model—TwoViewDensityNet—for
the classification of breast density using dual mammogram views, i.e., craniocaudal
(CC) view and mediolateral oblique (MLO) view. It combines the CC and MLO views
by leveraging the relationship between views and using a CNN as the backbone model.
First, it extracts the complementary information from each view using a CNN model,
fuses them using a concatenation layer, and finally, predicts the density class using an
FC layer with SoftMax activation.

• We evaluated different preprocessing techniques to enhance the mammogram image
before feeding it to the CNN model and found the one that is best suited for the
proposed model.

• We employed different loss functions and their valuable characteristics to tackle the
class-imbalance problem.

The remainder of this paper is organized as follows. Section 2 presents previous works
related to breast density classification. Section 3 describes the proposed system of four
BI-RADS categorizations. We present evaluation protocols in Section 4. Experimental
results, as well as their interpretation and discussion, are presented in Section 5. Finally, we
end up with the conclusions in Section 6.

2. Related Work

Many researchers have focused their attention on the challenge of classifying breast
density into BI-RADS classifications. These approaches were tested with benchmark
datasets such as the Digital Database for Screening Mammography (DDSM), INbreast, and
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Private datasets. Several methods that use deep learning have been proposed, including
single-view-based and multi-view-based, reviewed in the following sections. A summary
of these studies in the recent literature is presented in Table 1.

Table 1. The comparison with different state-of-the-art methods for breast density classification.

References Model Dataset ACC (%) AUC (%) F1-Score (%)

Single View

Li et al. [7] (2021)
ResNet50 + DC + CA

(DC: dilated convolutions.
CA:channel-wise attention)

Private 88.70 97.40 87.10

INbreast 70 84.70 63.50

Jian et al. [14] (2020)

Inception-V4-SE- Attention Private 92.17 - -

ResNeXt-SE-Attention and Private 89.97

DenseNet-SE-Attention Private 89.64

Yi et al. [8] (2019) ResNet-50 DDSM 68 - -

Lehman et al. [10] (2019) ResNet-18 Private 77 - -

Gandomkar et al. [13] (2019) Inception-V3 Private 83.33 - 77.50

Mohamed et al. [15] (2018) AlexNet Private - 92 -

Multi-View

Zhao et al. [12] (2021)
BASCNet (ResNet)

(Bilateral-view adaptive spatial and
channel attention network)

DDSM 85.10 91.54 78.92

INbreast 90.51 99.09 78.11

Li et al. [7] (2021)
ResNet50 + DC + CA

(DC: dilated convolutions. CA:
channel-wise attention)

Private

92.10 98.1 91.2

92.50 98.2 91.7

75.20 93.6 67.9

Timothy and Lakshman
[16] (2020) DualViewNet CBISDDSM - 89.70 -

Wu et al. [9] (2018) VGG Net Private 69.40 84.20 -

Li et al. [7] developed a CNN model based on dilated and attention-guided residual
learning for the mammography density classification task. In addition, a multi-stream archi-
tecture was designed specifically to analyze multi-view mammograms. They achieved an
accuracy of 88.7% and 70.0%, respectively. Yi et al. [8] developed deep convolutional neural
networks (DCNNs) based on ResNet-50 to categorize two-dimensional mammography im-
ages, determine breast laterality, and assess breast tissue density. Their approach achieved
68% accuracy with breast density classification. Wu et al. [9] proposed a multi-view three-
layer CNN to categorize breast density into the four density categories or superclasses
(dense and non-dense), using all four mammography views as input. It gave an accu-
racy of 82.5% for superclasses and a macAUC (macro average) of 0.934 (Class 0: 0.971,
Class 1: 0.859, C2: 0.905, and Class 3: 1) for the four-density classification. Lehman et al. [10]
proposed deep learning based on ResNet-18 for dense and non-dense and BI-RADS density
classification. They showed good agreement (kappa value = 77%) for four BI-RADS catego-
rizations with radiologists in the test set. Zhao et al. [12] proposed a bilateral-view adaptive
spatial and channel attention network (BASCNet) based on ResNet-50 as a backbone for
fully automated breast density classification by integrating left and right breast information
and adaptively capturing distinguishing features in space and channel dimensions. The
method achieved accuracies of 85.10% and 90.51%. Gandomkar et al. [13] addressed the
fine-tuning of the Inception-V3 model for the classification of breast density (i) fatty or
dense, (ii) BI-RADS I, BI-RADS/II, and (iii) BI-RADS III/BI-RADS IV. The method achieved
an accuracy of 83.33% and a Cohen’s kappa of 0.775 for four BI-RADS categorizations.
Jian et al. [14] developed an attention strategy in which the SE-Attention mechanism is
combined with the CNN framework to classify four BI-RADS. This method achieved accu-
racies of 92.17%, 89.97%, 89.64%, and 89.20% for Inception-V4-SE- Attention, Inception-V4,
ResNeXt, and DenseNet models, respectively. Mohamed et al. [15] designed an end-to-end
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CNN model using improved AlexNet to classify breast density into BI-RADS categories. II
and BI-RADS.III. The method achieved an AUC of 0.9421.

The preceding review of state-of-the-art approaches demonstrates that breast density
classification requires additional research. All the methods discussed above use the cross-
entropy function, which is often used for classification problems. We used different loss
functions, such as focal and sum square error loss, to boost the CNN model’s classification
accuracy. Additionally, by utilizing different preprocessing approaches to improve the
training data provided to the CNN, it is possible to learn various density features. The pre-
ceding review of state-of-the-art approaches demonstrates that breast density classification
requires additional research. Unilateral mammography images may not contain enough
information to accurately classify breast density [7,9,12]. The classification accuracy will be
improved by incorporating image information from contralateral or multi-view mammog-
raphy. Previous studies have based their criteria on multi-view (i.e., four views including
left MLO, right MLO, left CC, right CC) or two-view (i.e., similar for two MLO-view or
two CC-view). In addition, the training data provided to the CNN requirement of previous
studies were based on input images of size 224 × 224, whereas we used input images of
size 336 × 224 to accommodate the regular aspect ratio of mammograms.

Timothy and Lakshman [16] developed DualViewNet for density classification similar
to our method. The proposed model classifies MLO and CC mammograms taken from the
same breast. It gave an AUC of 89.70%. The main difference between this method and our
approach is the architecture of the deep models. The method in [16] extracts features using
convolutional layers of two deep models, concatenates them, and classifies them; As the
features from the convolutional layers are concatenated directly, so the dimension of the
feature space becomes very high, which leads to classification layer with a huge number of
learnable parameters. It restricts the use of only the CNN models with a reduced number
of parameters, such as MobileNetV2, to avoid overfitting. On the contrary, our method first
extracts features using the convolutional layers of deep models, then reduces the dimension
of the feature space using global average pooling (GAP) layers and concatenates them. In
this way, the dimension of the feature space is significantly reduced, and the parameter
complexity of the classification layer remains very low. It allows using any pretrained CNN
model as a backbone avoiding the fear of overfitting. Moreover, we first extract the breast
area, unlike the method in [16], to emphasize the breast density, not just color mapping to
magma and resizing to 336 × 224.

3. Proposed Method

In mammography, two views, i.e., CC and MLO, of the ipsilateral breast (i.e., two-view
analysis) and the corresponding views of the contralateral breast (i.e., bilateral analysis)
are captured to analyze the breast for detecting possible abnormalities. Both views have a
complementary relationship and reveal signs of an abnormality better than a single view.
Various multi-view approaches were proposed to improve the detection of breast abnormal-
ities in mammograms. Multiple views of the right and left breasts in CC and MLO views
are used to derive the information for these procedures. The ipsilateral analysis is based on
combining the different projection views of the same breast, and bilateral analysis is based
on combining the same projection view of the left and right breast [17–21]. This observa-
tion has been employed in different techniques for mass classification [22–24] and density
classification. These studies reveal that multi-views result in better performance than a
single view. Inspired by this, we propose a prediction model for breast density classification
into four BI-RADS categories based on dual views, as shown in Figure 2. The proposed
technique is an end-to-end deep learning-based model (we call it TwoViewDensityNet)
that takes two views, i.e., two mammogram images of size 336 × 224 as input and predicts
the label of the density type of the breast according to BI-RADS classification. It consists
of two branches, one for each view. First, each branch preprocesses the corresponding
view and extracts hierarchical features using a convolutional neural network (CNN) as a
backbone model. The features from the two views are fused by the concatenation layer
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and passed to an FC layer, which serves as a classifier and yields the prediction label of the
input mammographic views.
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The precise specification of this method relies on three important design decisions:
(i) which preprocessing technique is suitable, (ii) which backbone CNN model is suited for
this task, and (iii) which loss function helps to train the model so that it has good general-
ization. Each of these design decisions is discussed in detail in the following subsections.

3.1. Preprocessing

Breast tissue is crucial for discrimination between different breast density classes; it
must be adequately separated from the background. Removing all artifacts from the image
leaves only the breast tissue area for the model to learn from. In the first step, we used the
threshold value 200 to generate a binary mask, where 0 (black) is the background pixel, and
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1 (white) is the breast region, artifact, or noise pixel. Afterward, a morphological opening
operator is applied to the binary image with a disk-type structuring element of size 9 × 9
to extract the breast tissue area; it is more prominent than any object; it is binarized as a
single region. As a result, the most significant contours are retained, and the remainder is
discarded. Then, we overlay this mask to eliminate mammography artifacts and keep only
the breast tissue area. Then, the bounding box of the breast tissue is used to crop each view
so that it mainly contains the breast tissue.

Furthermore, we use magma color mapping from 16-bit grayscale to 24-bit RGB, as
used in [16]; it enhances the perceptual quality [25,26] of the fibroglandular tissue and fat
tissue. In addition, it maps the gray-level mammogram image on an RGB image, which can
be passed easily to pretrained CNN models, which are usually pretrained on RGB pictures
from ImageNet [27]. Figure 3 illustrates the whole preprocessing process.
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3.2. Backbone Convolutional Neural Network (CNN) Model

The TwoViewDensityNet model employs two convolutional neural networks for
feature extraction from each view. Greater depth in CNN models allows for extracting
discriminative features, improving classification performance. Various widely used deep
convolutional models, such as ResNet50 [28], EfficientNetb0 [29], and DenseNet201 [30],
etc., can be exploited for feature extraction. We used ResNet-50 pretrained on ImageNet [27];
its architecture is based on residual learning, which allows increasing the depth of a CNN
model that prevents the problem of gradient vanishing [31] and degradation [32,33].

3.3. Concatenation Layer

Different techniques combine the extracted deep features from the two views, such as
concatenation and element-wise operations. In our proposed method, the features from the
two views are fused by the concatenation layer. The output of the global average pooling
(GAP) of ResNet-50 in the left branch is x1 = [α1, α2, . . . , α2048]

T , and the right branch
is x2 = [β1, β2, . . . , β2048]

T . To fuse features from both views, we concatenate them in x
where x = [α1, α2, . . . , α2048, β1, β2, . . . , β2048].
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3.4. Classification Layer

The last layer of the model is the classification layer; it is a fully connected layer with
four output neurons to classify the input views into one of the four breast density categories;
each neuron represents a different BI-RADS class. The output FC layer employs a SoftMax
function as an activation function because it is the most commonly used activation function
in the output layer; it converts the numerical output of a convolutional neural network to
class-specific probability values. The predicted class of the input views is the one for which
the posterior probability is maximum. The difference between the predicted class and the
actual label is then calculated using a loss function at each training iteration.

3.5. Training the TwoViewDensityNet

The training of the network is an iterative process, and it depends on how accurately
the error made by the network is measured, i.e., how the loss function is defined. First, we
discuss the loss functions and then describe the optimization method used for training.

3.5.1. Loss Functions

The critical component of a deep-learning algorithm is the loss function; it indicates
how much error a neural network makes in recognizing the input image. A sample’s
involvement in the optimization problem is measured using a loss function, which assigns
a numerical value to each input instance, i.e., the loss. The model parameters are updated
so that the loss is minimum. We adopt some well-known loss functions.

Weighted cross-entropy loss (WCE) [34].
Let K be the number of classes and N the number of training instances in a batch.

Further, let yni be the predicted posterior probability of nth training example in the batch
that belongs to ith class, then the weighted cross-entropy loss function is calculated as
follows in Equation (1):

Loss = − 1
N

N

∑
n=1

K

∑
i=1

wiTni ln yni (1)

where Tni is the true posterior probability of nth training example in the batch that belongs
to an ith class (in one-hot encoding vector), and wi is the prior of the ith class. Further, if the
total batch size is N and the number of instances of the ith class is mi, then wi = mi

N .
Focal loss (FL) [35].
Let K be the number of classes and N the number of training instances in a batch.

Further, let yni be the predicted posterior probability of nth training example in the batch
that it belongs to ith class, then the focal loss function is calculated as follows in Equation (2):

Loss = − 1
N

N

∑
n=1

K

∑
i=1

Tniα(1 − yni)
γ ln yni (2)

where Tni is the true posterior probability of nth training example in the batch that belongs
to an ith class, and γ is the focusing parameter where γε[0, 0.5].

Sum square error loss (SSE) [36].
Let K be the number of classes and N the number of training instances in a batch.

Further, let yni be the predicted posterior probability of the nth training example in the
batch that belongs to the ith class, then the sum square error loss function is calculated as
follows in Equation (3):

Loss = − 1
N

N

∑
n=1

K

∑
i=1

(yni − Tni)
2 (3)

where Tni is the true posterior probability of nth training example in the batch that belongs
to an ith class.
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3.5.2. Algorithms Used for Training

Fine-tuning involves various hyper-parameters: the optimization algorithm, learning
rate, batch size, and the number of training epochs. We attempt different options to
determine the best values of the hyperparameters. We tested three optimizers (Adam, SGD,
and RMSprop), a learning rate between 1 × 10−4 and 1 × 10−2, four batch sizes (16, 32, 64),
and the number of epochs between 50 and 100. Early stopping is performed with patience
of seven iterations to further reduce overfitting. Finally, we have decided on stochastic
gradient descent (SGD) optimizers to fine-tune the models with a momentum of 0.9 and
an initial learning rate of 1 × 10−4. The training epoch is 50, and the batch size is 64; this
would result in approximately 3–4 h of runtime.

3.5.3. Datasets

To verify the proposed system’s efficiency and robustness, we employed two publicly
available mammographic benchmark datasets:

Digital Database for Screening Mammography (DDSM) [11]. The DDSM database
consists of 2620 mammography screening cases containing a total of 10,480 mammograms
with a resolution of 4000 × 6000 pixels. Moreover, they are stored in portable gray map
(PGM) format with 16 bits; every case includes two views of bilateral breasts craniocaudal
(CC), mediolateral oblique (MLO), breast laterality (right vs. left), and Breast Imaging
Reporting and Data System (BI-RADS) breast density (four categories: almost entirely fatty,
scattered area of fibroglandular density, heterogeneously dense, and extremely dense). We
selected two views of each breast density category, totaling 5406 images, and the image
distribution over the four categories presented in Figure 4a. Five-fold cross-validation is
used to train and test models. Figure 4b shows the data distribution for each fold.
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Figure 4. (a) Data distribution of the DDSM dataset over the four classes; (b) data distribution of the
DDSM dataset for each fold.

INbreast [37] is taken from the Breast Centre at the University of Hospital de São João,
Portugal. It contains 115 cases comprising digital images converted to DICOM format
with a resolution of either 3328 × 4084 or 2560 × 3328 pixels. Each case includes both
craniocaudal (CC) and mediolateral oblique (MLO) views and breast laterality (right vs. left)
annotated with contour points of the ROIs. The density labels are annotated by radiologists
as BI-RADS I, BI-RADS II, BI-RADS III, and BI-RADS IV. Out of the total number of BI-
RADS categories, 136 belong to BI-RADS I, 147 to BI-RADS II, 99 to BI-RADS III, and 28 to
BI-RADS IV. Furthermore, 5-fold cross-validation is used to train and test models.
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3.5.4. Data Augmentation

Training a CNN model on a large number of training instances typically yields good
results and high-performance values. Additionally, data imbalances may be alleviated
with the use of augmentation techniques. To reproduce a large number of breast density
variations in mammogram images, we used rotation (θ = 180◦) and random horizontal and
vertical flipping.

4. Evaluation Protocol

We randomly divided the data into a training set (80%), a validation set (10%), and a
test set (10%) and used a 5-fold cross-validation technique to evaluate the proposed system.
The cross-validation concept is based on partitioning the dataset into k equal-sized folds.
Then, k − 1 folds will be used to train and validate, with the remaining fold to test the
classification models. The final result is calculated as the average of overall classes [38].

Using the confusion matrix in Table 2, a model’s classification performance is evaluated
primarily in terms of overall class accuracy (OCA), individual class accuracy (ICA), recall
(RC), precision (PR), F1-score, Cohen’s kappa [39–41]. The definitions of these performance
measures are described with the help of Equations (4)–(8), as shown below:

Overall Classification Accuracy (OCA.) =
Correct predictions

Total predictions
(4)

Individual Classification Accuracy (ICA.) =
Correct predictions belong to a specific class

Total predictions belong to a specific class
(5)

Precision =
Tp

TP + FP
Recall =

Tp
TP + FN

(6)

F1 Score = 2 × Precision × Recall
Precision + Recall

(7)

Table 2. Confusion matrix.

Confusion Matrix Actual Positive Actual Negative

Predicted Positive TP 1 FP 3

Predicted Negative FN 4 TN 2

1 The number of true positives (TPs): the prediction was positive when the sample was malignant. 2 The number
of true negatives (TNs): the prediction was negative when the sample was benign. 3 The number of false positives
(FPs): the prediction was positive when the sample was benign. 4 The number of false negatives (FNs): the
prediction was negative when the sample was malignant.

Cohen’s kappa is calculated using the following:

Kappa = (Po−Pe)
(1−Pe)

Pe =
(TP+FN)×(TP+FP)+(FP+TN)×(FN+TN)

(TP+TN+FP+FN)2 ; Po =
TP+TN

TP+TN+FP+FN
(8)

Additionally, the breast density classifier’s performance was measured using the area
under the ROC curve (AUC). The area under the receiver operating characteristic (AUC-
ROC) curve is used to evaluate the effectiveness of classification problems with varying
thresholds [42,43]. AUC is the separability measure, while ROC is a probability curve. It
reveals the extent to which the model can differentiate between different types of data. The
multiclass classifier considers the AUC between each class and all other classes (a one vs.
all approach).

The system was implemented, and all experiments were performed in MATLAB
R2021b version 9.11 with a deep-learning toolbox on AMD Ryzen Threadripper 3960X
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24-core processor, 3.79 GHz, RAM 128 GB, and Nvidia graphics processing units (GPU)
based in Santa Clara, CA, USA, GeForce RTX 3090 24 GB.

5. Experimental Results and Discussion
5.1. Ablation Study

This section conducts different ablation tests to validate the proposed system struc-
ture’s efficiency.

5.1.1. Which Backbone Model?

The question of which CNN model to use as the system’s backbone is emerging. The
DDSM dataset was used to test three state-of-the-art CNN models. Based on the obtained
results illustrated in Table 3, the selected backbone model for the breast density classification
task was the ResNet-50. This decision was made because ResNet-50 outperformed other
models in terms of overall classification accuracy. The variation in performance amongst
the investigated CNN models can be attributable to the different design choices.

Table 3. The performance comparison on the DDSM dataset using different convolutional neural
networks (CNN).

Model Overall Classification Accuracy (OCA %)

ResNet 50 [28] 74.94
DenseNet201 [30] 69.58

EfficientNet b0 [29] 64.06

5.1.2. Which Preprocessing Operation?

Breast tissue characteristics in digital mammographic images will be more apparent
after image enhancement, increasing the early breast cancer classification rate. A custom-
tailored image processing technique will likely be needed to best display different image
characteristics. Additionally, different breast density may benefit from specific algorithms
and the performance disparities between the image preprocessing methods. As a result, we
decided on magma color mapping, as presented in Table 4. An overview of different image
preprocessing tasks is shown in Figure 5.

Table 4. The effect of preprocessing full mammograms on the DDSM test performance.

Model Preprocessing (OCA %)

ResNet50

Without 66.83

Contrast-limited adaptive histogram equalization (CLAHE) 67.41

Histogram equalization 65.23

Magma color mapping 74.94

5.1.3. Single View or Dual View?

Comparing the results utilizing dual-view mammography inputs to those using single-
view mammography input, it can be observed that the dual-view mammography inputs
setting is beneficial to the density classification task, and improved statistics were ob-
tained by all of the investigated models, including the backbone model ResNet50, as
shown in Table 5.
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Table 5. The effect of overall classification accuracy of the single view vs. dual View of the DDSM test.

Model Overall Classification Accuracy (OCA %)

Single View

ResNet 50 74.94
DenseNet201 69.58

EfficientNet b0 64.06

Dual View

ResNet 50 91.36
DenseNet201 86.16

EfficientNet b0 73.97

5.1.4. Which Loss Function?

As mentioned in Section 3.5.1, We considered three loss functions: cross-entropy, focal,
and SSE. We used the pretrained ResNet50 model as the backbone CNN model to test the
effect of these loss functions. Figures 6 and 7 show the results of the three-loss function on
the DDSM dataset. The focal loss function yields the best results in terms of all performance
metrics because focal loss does this by decreasing the weight given to simple examples
in the loss function, hence focusing on more hard examples. Table 6 shows the results.
In Table 7, we provide the confusion matrix produced from the best experiment result to
explore the classification behavior of the model.
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Table 6. The effect of different loss functions of the DDSM test.

Loss Function OCA ICB−I ICAB−II ICAB−III ICAB−IV

ResNet-50 CE loss 91.36 ± 3.29 96.28 ± 3.29 96.29 ± 20 89.44 ± 2.10 77.70 ± 16.4
ResNet-50 focal loss 95.83 ± 3.63 94.25 ± 5.72 99.14 ± 0.98 93.17 ± 6.95 93.83 ± 5.86
ResNet-50 SSE loss 94.01 ± 3.61 94.55 ± 5.98 98.10 ± 1.17 92.67 ± 4.76 85.38 ± 9.96
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Table 7. Confusion matrix of 5-folds of the best test (* OCA) and (** ICA).

Confusion Matrix
Accuracy (%)

Fold
Predicted

B-I B-II B-III B-IV OCA ICB−I ICAB−II ICAB−III ICAB−IV

Fold 1

A
ct

ua
l B-I 63 8 0 0

94.03 88.73 98.10 93.17 89.61
B-II 4 206 0 0
B-III 1 6 150 4
B-IV 0 1 7 69

Fold 2

A
ct

ua
l B-I 69 0 0 0

99.38 100 100 100 96.20
B-II 0 210 0 0
B-III 0 0 161 0
B-IV 0 1 2 76

Fold 3

A
ct

ua
l B-I 61 8 0 0

91.89 88.41 98.10 88.20 85.90
B-II 4 206 0 0
B-III 0 0 142 19
B-IV 0 1 10 67

Fold 4

A
ct

ua
l B-I 69 0 0 0

100 100 100 100 100
B-II 0 210 0 0
B-III 0 0 161 0
B-IV 0 0 0 78

Fold 5

A
ct

ua
l B-I 66 4 0 0

93.83 94.29 99.52 84.47 97.44
B-II 1 209 0 0
B-III 0 0 136 25
B-IV 0 0 2 76

* OCA: overall classification accuracy. ** ICABI−RADS: individual classification accuracy for BI-RADS
(I, II, III, IV).

5.2. Comparison with State-of-the-Art Methods for Breast Density Classification

The method of Zhao et al. [12] has been introduced to compare related methods of
the DDSM dataset with a four-view. The bilateral adaptive spatial and channel attention
network (BASCNet) integrates the information of the left and right breasts. Li et al. [7]
added dilated convolution and the channel attention mechanism to the ResNet network
architecture with multi-view inputs (i.e., four-view, as well as two CC views or two MLO
views of the left and right breasts). Wu et al. [9] used a VGG Net with four views as input.
Our proposed method TwoViewDensityNet significantly outperforms the state-of-the-art
methods since we used two views, CC and MLO, from the same breast.

Additionally, we applied different loss functions to improve performance accuracy.
Our proposed method attained the highest accuracy of 95.83 on the DDSM, respectively,
when TwoViewDensityNet used ResNet-50 as the backbone model with focal loss function;
this is significantly higher than the existing methods. The findings were compared using a
dual-view input. With a single-view input, it is evident that the dual-view input option is
beneficial to the classification task and the ResNet50 backbone produced those improved
metrics. Compared to Zhao et al. [12] on DDSM, our proposal outperformed w.r.t. all
evaluation metrics, as presented in Table 8. To be precise, our model increased classification
accuracy by 10% and 5% F1 score by 20% and 19% on the DDSM and INbreast, respectively,
for dual-view inputs.
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Table 8. The comparison with different state-of-the-art methods for breast density classification.

References Model Dataset ACC (%) AUC (%) F1-score (%) Kappa (%)

Single View

Li et al. [7], 2021
ResNet50 + DC + CA

(DC: dilated convolutions.
CA:channel-wise attention)

INbreast 70 84.70 63.50 -

Yi et al. [8], 2019 ResNet-50 DDSM 68 - - -

Lehman et al. [10], 2019 ResNet-18 INbreast 63.80 81.20 48.90 -

Gandomkar et al. [13], 2019 Inception-V3 INbreast 63.90 82.10 53.10 -

Mohamed et al. [15], 2018 AlexNet INbreast 59.60 82 35.4 -

Multi-View

Zhao et al. [12], 2021
BASCNet (ResNet)

(Bilateral-view adaptive spatial and
channel attention network)

DDSM 85.10 91.54 78.92 -

INbreast 90.51 99.09 78.11 -

Proposed system TwoViewDensityNet
DDSM 95.83 99.51 98.63 94.37

INbreast 96 97.44 97.14 94.31

5.3. Discussion

Utilizing the dual-view approach, we built and tested a system for classifying breast
density tissue as B-I, B-II, B-III, or B-IV using the DDSM benchmark dataset as guidance. An
end-to-end CNN model was utilized as the backbone model in the method. We combined
the information from two views and learned which complementary information is essential
in each view. When we fine-tune this backbone for left and right, each view’s weight
and complementary information are classified. Among the well-known CNN models, we
investigated (ResNet-50, DenseNet-201, and Efficient-b0) and determined that ResNet-50 is
the most suitable model for the system. That might be residual learning extracting global
(high-level) features that effectively pay more attention to the semantics of fibroglandular
tissue, which enables accurate discrimination of the four BI-RADS categories.

This study has some limitations. However, for the mammography dataset used in
this study, the accessible images were limited, resulting in a severely uneven distribution
across the four categories. Training a classification network with these datasets is quite
difficult. Furthermore, breast density is a critical clinical characteristic used to determine a
woman’s risk of developing breast cancer. Our proposed system is well classified between
non-dense breasts (fatty or scattered density) and dense breasts (heterogeneously dense or
extremely dense). It is simple to differentiate between fatty and highly dense breasts in the
clinical setting.

On the other hand, radiologists have difficulty visually and consistently distinguishing
between the scatter density and heterogeneously dense categories [44]. According to our
findings, the heterogeneously dense or extremely dense classification results are better than
the fatty or scattered density; this might be because of the similar characteristic between
fatty and heterogeneously dense or scattered density and extremely dense.

The performance of TwoViewDensityNet for the four BI-RADS classification tasks
on the DDSM dataset is (F-score of 98.63%, AUC of 99.51%, accuracy of 95.83%) and the
INbreast dataset is (F-score of 97.14%, AUC of 97.44%, accuracy of 96%).

6. Conclusions

We addressed the challenging problem of discriminating mammographic breast den-
sity and, by leveraging advances in deep learning, developed a system for this problem that
leverages the complementary relationship between the craniocaudal (CC) and mediolateral
oblique (MLO) views to improve the differentiation of BI-RADS class. We extensively tested
the system on the benchmark datasets DDSM and INbreast and discovered that it out-
performs the state-of-the-art approaches. ResNet-50 achieves better results as a backbone
model for the system when focal loss is used for training. We will continue investigating
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deep-learning mammography models and develop more robust models. This would help
radiologists enhance the current clinical breast density assessment. The proposed model
can be used for other similar applications, which will be our future work.
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