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Abstract: Simple regression cannot wholly analyze large-scale wafer backside wall chipping because
the wafer grinding process encounters many problems, such as collected data missing, data showing
a non-linear distribution, and correlated hidden parameters lost. The objective of this study is to
propose a novel approach to solving this problem. First, this study uses time series, random forest,
importance analysis, and correlation analysis to analyze the signals of wafer grinding to screen out
key grinding parameters. Then, we use PCA and Barnes-Hut t-SNE to reduce the dimensionality
of the key grinding parameters and compare their corresponding heat maps to find out which
dimensionality reduction method is more sensitive to the chipping phenomenon. Finally, this study
imported the more sensitive dimensionality reduction data into the Data Driven-Bidirectional LSTM
(DD-BLSTM) model for training and predicting the wafer chipping. It can adjust the key grinding
parameters in time to reduce the occurrence of large-scale wafer chipping and can effectively improve
the degree of deterioration of the grinding blade. As a result, the blades can initially grind three pieces
of the wafers without replacement and successfully expand to more than eight pieces of the wafer.
The accuracy of wafer chipping prediction using DD-BLSTM with Barnes-Hut t-SNE dimensionality
reduction can achieve 93.14%.

Keywords: wafer grinding; backside wall chipping; importance analysis; random forest; dimensionality
reduction; Data Driven-Bidirectional LSTM

MSC: 68T07

1. Introduction

In the promotion of Industry 4.0, innovative technology has brought significant re-
forms to factories, introducing technologies such as cloud computing, big data, the internet
of things, and process simulation into factories, significantly increasing factory produc-
tion capacity. Although the traditional statistical process control (SPC) has been applied
widely in factories, Texas Instruments (TI) has proposed new generation approaches using
advanced process control (APC) [1,2] or advanced equipment control (AEC) in cooperation
with the US military in 1993. TI has tested and improved these process controls over the
past ten years. In recent years, many fabs have introduced high-end process technology
running in a small amount or across the board with the procedure initially from proof
of concept (POC), then proof of service (POS), and finally proof of business (POB). In
fierce market competition, fabs focus on APC to improve process control, AEC to enhance
equipment efficiency, and other methods to reduce wafer manufacturing costs.

In the wafer grinding process, the fab has to analyze the machine-generated data
to understand whether or not there are some signs or common points available before
wafer backside wall chipping (or called the wafer chipping) has occurred. If so, people can
implement preventive measures to avoid this situation as much as possible. Technically
speaking, correlation analyses such as Spearman [3–5], Pearson [6,7], and Kendall [8] can
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analyze the correlation between the wafer grinding parameters. People can determine
whether the data is linear and continuous and which method is appropriate for data
correlation analysis. In consideration of this, it is not a matter of only looking at a single
grinding parameter in the changes; instead, correlations among all of the key grinding
parameters must be examined and the changes in all of them with different combinations
when wafer chipping has occurred must be observed.

Advanced semiconductor manufacturing processes are all controlled by sophisticated
and complex production machines, and the fab can control the process precisely, making the
control parameters of these production machines hundreds or thousands. As long as there
is a slight deviation of any key parameter, it may cause a deviation in the process, reducing
the wafer production yield or scraping it. The fabs will cause unpredictable emergencies
due to early equipment function problems in the wafer grinding process. For example,
when the production line is grinding wafers, it may be affected by different factors, such as
the wear of the blades, the temperature of the cooling water, and even the emission of the
cleaning gas. These situations will have a significant impact on throughput and yield.

There are still many wafer grinding processes in fabs using early grinding machines
(e.g., DFD6560). The production machine often judges the changes in the grinding signals
for adjusting the key grinding parameters in the grinding process to reduce the occurrence
of large-scale wafer chipping. Technically, simple regression cannot wholly analyze large-
scale wafer backside wall chipping because the wafer grinding process encounters many
problems. First, wafer grinding machines often miss some of the collected chipping data. In
other words, the collected data is incomplete. Second, the collected chipping data presents
a non-linear distribution. Third, simple regression may not mine hidden parameters with
correlations from the collected data. Therefore, this study has proposed an approach to
detect and predict chipping happening in the wafer grinding process, which can adequately
adjust the key grinding parameters in time to reduce the occurrence of large-scale chipping,
which can increase the wafer grinding yield, and also reduce the loss of the manufacture
costs significantly.

2. Related Work
2.1. Literature Review

Based on fault detection and classification, abbreviated FDC [9,10], the production
machine will upload the manufacturing parameters to the server or database in the semi-
conductor manufacturing process, as shown in Figure 1. After receiving the manufacturing
parameters, the server and database will use data analysis or related algorithms. The data
analysis will issue abnormal indicators when an abnormal situation has occurred. With the
ability to monitor, improve, and predict these abnormal indicators, the production machine
can detect and classify abnormal situations as early as possible and make the corrections
timely, increasing the production yield and reducing the loss of manufacturing costs.

The fab uses sophisticated and complex machines to control the wafer grinding process.
With the improved technology of the wafer grinding process, the fab can quickly monitor
abnormal machine operations and rapidly respond to the appropriate treatment. FDC is
one of the essential techniques for watching the wafer grinding process. From the initially
set range of grinding parameters, FDC can instantly detect the deviation of the grinding
parameters and issue a warning when the grinding parameters deviate. People can develop
a set of early warning functions combined with FDC to foresee or predict the abnormal
situations that may inevitably arise in the production machine. According to the abnormal
situation predicted in the wafer grinding, we can take preventive measures to avoid wafer
chipping, improving the wafer grinding yield and production capacity significantly.

In recent years, big data analytics have been dealing with enormous amounts of data
for analysis and processing [11]. In addition, people can apply correlation analysis [12]
to understand the correlation between variables and data analysis with a time series [13]
to observe the trend of the data stream. Moreover, the technique of machine learning
is becoming more and more critical for intelligent data-driven applications. Notably,
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the importance analysis can screen out random variables that highly impact a stochastic
process. Random forest [14,15] can estimate which key parameters are essential in deciding
a judgment. Random forests are relatively simple in the estimation method compared with
deep learning approaches. Therefore, random forests are much easier and faster than deep
learning approaches to find critical factors in a stochastic process.

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 28 
 

 

 
Figure 1. Fault Detection and Classification (FDC). 

The fab uses sophisticated and complex machines to control the wafer grinding pro-
cess. With the improved technology of the wafer grinding process, the fab can quickly 
monitor abnormal machine operations and rapidly respond to the appropriate treatment. 
FDC is one of the essential techniques for watching the wafer grinding process. From the 
initially set range of grinding parameters, FDC can instantly detect the deviation of the 
grinding parameters and issue a warning when the grinding parameters deviate. People 
can develop a set of early warning functions combined with FDC to foresee or predict the 
abnormal situations that may inevitably arise in the production machine. According to 
the abnormal situation predicted in the wafer grinding, we can take preventive measures 
to avoid wafer chipping, improving the wafer grinding yield and production capacity 
significantly. 

In recent years, big data analytics have been dealing with enormous amounts of data 
for analysis and processing [11]. In addition, people can apply correlation analysis [12] to 
understand the correlation between variables and data analysis with a time series [13] to 
observe the trend of the data stream. Moreover, the technique of machine learning is 
becoming more and more critical for intelligent data-driven applications. Notably, the 
importance analysis can screen out random variables that highly impact a stochastic 
process. Random forest [14,15] can estimate which key parameters are essential in 
deciding a judgment. Random forests are relatively simple in the estimation method 
compared with deep learning approaches. Therefore, random forests are much easier and 
faster than deep learning approaches to find critical factors in a stochastic process. 

In the literature review of wafer manufacture-related topics and process-related 
studies, it is necessary to retest the grinding wafer through the wafer surface depression 
before wafer assembly. This retest can avoid the situation that induces multiple wafers 
damaged simultaneously after assembling the defective wafers. Thus, we can reduce the 
loss of wafer manufacturing costs. The manufacturing process of various fabs frequently 
adopts this way. The paper [16] has mentioned that many state-of-the-art models for 
detecting wafer surface chipping phenomena are available for training models in practice. 
In addition, the article [17] has described a large amount of data in online databases to 
enable users to train and validate their models with data provided by others. 

Furthermore, we are looking for a way to reduce the loss of production costs by using 
FDC to prevent the chipping from the wafer grinding process as much as possible in 
advance. Although most of the current literature [18] only uses simple statistics or 
machine learning to analyze the machine-generated data from time to time, the prediction 
of the chipping situation in the wafer grinding process is still not very good. Nevertheless, 
the study [19] has proposed long short-term memory (LSTM) and Bidirectional LSTM 
(BLSTM) models to show extremely high accuracy for data prediction with a time series. 

Figure 1. Fault Detection and Classification (FDC).

In the literature review of wafer manufacture-related topics and process-related stud-
ies, it is necessary to retest the grinding wafer through the wafer surface depression before
wafer assembly. This retest can avoid the situation that induces multiple wafers damaged
simultaneously after assembling the defective wafers. Thus, we can reduce the loss of wafer
manufacturing costs. The manufacturing process of various fabs frequently adopts this
way. The paper [16] has mentioned that many state-of-the-art models for detecting wafer
surface chipping phenomena are available for training models in practice. In addition, the
article [17] has described a large amount of data in online databases to enable users to train
and validate their models with data provided by others.

Furthermore, we are looking for a way to reduce the loss of production costs by
using FDC to prevent the chipping from the wafer grinding process as much as possible
in advance. Although most of the current literature [18] only uses simple statistics or
machine learning to analyze the machine-generated data from time to time, the prediction
of the chipping situation in the wafer grinding process is still not very good. Nevertheless,
the study [19] has proposed long short-term memory (LSTM) and Bidirectional LSTM
(BLSTM) models to show extremely high accuracy for data prediction with a time series.
Meanwhile, it has also shown the comparison of the prediction accuracy between the two
models. In short, the BLSTM model yielded a better result in the experiments. Moreover,
the work [20] has launched many BLSTM models to predict abnormal signals and achieve
good jobs. Therefore, this study adopts the BLSTM model to predict large-scale wafer-
chipping situations.

In addition to the BLSTM model, the paper [21] has evaluated the performance of
various models for time series applications. Based on MSDR, they developed a GMSDR
that can perform well in the data set they used in the paper. However, this proposal is
unsuitable for the experiments of our study because of a large amount of missing data on the
machines and the nonlinear distribution of the collected data. The work [22] also proposed
an approach whose framework can implement multiple DGCNs in the application process.
DGCN has a solid ability to find essential parameters and use them to improve the accuracy
of model predictions. However, it lacks the generalization to infer diversification because it
is easier to overfit. The method [23] has proposed a way to help find correlations among
various hidden parameters. The proposed deep learning framework can find the correlated
hidden parameters in the data collected in their study better than a simple correlation
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analysis. However, the experimental data in our study comes from the wafer grinding
machines, and they lack integrity when compared with the data set used in the method.
In other words, our study cannot apply this method because it would possibly lead to
overfitting to excessively find out the hidden relationship between various unimportant
grinding parameters.

AI applications frequently require simplifying the data complexity to ease the compu-
tation burden and improve execution performance. Therefore, dimensionality reduction
reduces the size of a vector from a high-dimensional vector to a low-dimensional vector for
lowering the computation burden in many AI applications, such as clustering and classi-
fication. The paper [24] analyzed the traditional linear dimensionality reduction method
PCA and proposed a new-PCA method. The new-PCA method performs feature screening
through thresholding and uses entropy to optimize the dimensionality reduction effect.
Compared with traditional PCA, it can run faster and obtain more dimensionality reduc-
tion effects. The article [25] proposed a nonlinear dimensionality reduction method t-SNE,
and demonstrated the classification effect of various nonlinear data sets. The study [26]
mentioned that t-SNE does not perform well in big data issues, so it proposed an improved
approach called Barnes-Hut t-SNE to meet the practical applications.

2.2. Dimensionality Reduction

Production machines generate many different signals in the wafer grinding process,
and most of the signals have little effect on the chipping phenomenon. People have to find
some relatively important parameters before data analysis. The importance analysis [27]
can effectively help find its important relative parameters, and dimensionality reduction
reduces the data size to facilitate the model training afterward. Thus, this method can
preserve the high accuracy of the predicted result by just using a few critical parameters in
AI applications.

There are many different methods for data dimensionality reduction. This study will
make a performance comparison between two methods, a linear PCA [24,28,29] and a
nonlinear t-SNE [25,26,30,31]. In a Gaussian distribution, t-SNE converts the Euclidean
distances between sample points in high-dimensional data into conditional probabilities,
pj|i, which represents the similarity in Equation (1), where X is a set of high-dimensional
data, xi represents the data taken out at the moment, xj stands for the following data of
xi, and σ denotes the variance. In Equation (2), we add the obtained pi|j and pj|i, and
then divide it by 2N to obtain the probability density function (PDF) pij, where N is the
total number of data between i and j. Likewise, for low-dimensional data, the conditional
probability of t distribution can give the probability density function qij in Equation (3),
where Y is a set of low-dimensional data, yi represents the data taken out at the moment, and
yj stands for the following data of yi. The reduction result will lose a lot of information after
dimensionality reduction, and thus, outliers will significantly affect the result. That is why
data distribution adopts a t distribution in the low-dimensional vector instead of Gaussian
distribution. According to t distribution, the low-dimensional data take KL divergence in
Equation (4) to obtain the loss function c, and the gradient descent in Equation (5) to get
δC
δyi

. We can use this derivative for continuously updating low-dimensional data.

pij =
exp

(
−||xi−xj||2

)
2σ2

Σk 6=i
exp(−||xi−xk ||2)

2σ2

(1)

pij =
pj|i + pi|j

2N
(2)

qij =
(1 +

∣∣∣∣yi − yj
∣∣∣∣2)−1

Σk 6=i(1 + ||yi − yk||2)
−1 (3)
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C = ∑
i 6=j

pij log
pij

qij
(4)

δC
δyi

= 4·∑
j 6=i

(
pij − qij

)(
yi − yj

)(
1 +

∣∣∣∣yi − yj
∣∣∣∣2)−1

(5)

2.3. BLSTM Model

LSTM is an advanced model of RNN, as shown in Figure 2. Compared with the
traditional RNN model, the LSTM model performs better due to long-term memory. The
parameter ct is a long-term memory used to traverse each cell, storing the previous out-
comes and passing them through each cell. The symbol × represents the three gates as
follows: (a) forget gate, (b) input gate, and (c) output gate. The aggregation of a short-term
memory ht−1 and the current input xt can form an input vector, and then it goes through
the sigmoid function and output to be a designated signal to control the three gates. In
addition, the cell can convert an input vector to be C̃t by tanh function as an intermediate
input signal. Moreover, the cell can convert Ct to be h̃t by tanh function as an intermediate
output signal of this cell. The representation of these three gates includes (a) a forget gate to
control whether the long-term memory Ct−1 information enters this cell for accumulation
into a new long-term memory Ct, (b) an input gate to control whether C̃t can enter this
cell for accumulation into a new long-term memory Ct, and (c) an output gate to control
whether h̃t can exist in this cell as the current output ht, and then transmit it to the next cell.
In such a way, the LSTM model remembers previous outcomes and works on the following
outcome according to long short-term memory.
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BLSTM [20,32] is another model that evolved from the LSTM model, which simul-
taneously used a forward and backward time series in a single LSTM for training, as
shown in Figure 3. Forward data in an LSTM model is used (called Forward LSTM) to
understand how past data affects the present data, inferring causal relationships with each
other. Similarly, backward data can be input into the LSTM model (called Backward LSTM)
to learn the relationship between future data and past data. Finally, we integrate the results
predicted by the forward LSTM model and the backward LSTM model to do the averaging
or summation. The combined results can achieve better prediction than the traditional
one-way LSTM model.
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3. Method

The signals generated by the production machines in the wafer grinding process
output many data sets. People can use data visualization and correlation analysis to find
the trend of data distribution and the dependence between different wafer grinding pa-
rameters. Then, we adopt the importance analysis, one of the machine learning techniques,
to search the key grinding parameters, and monitor them to figure out the pattern of
parameter changes before and after wafer chipping. Tuning the parameters in time might
appropriately avoid wafer chipping and increase the yield of wafer grinding. Therefore,
this section will propose the methods such as data dimensionality reduction, prediction
model establishment, and implementation procedure for solving the problem of large-scale
wafer chipping.

3.1. Dimensionality Reduction of a Parameter Vector

As mentioned above, importance analysis can find the key parameters of wafer grind-
ing, and we aggregate them into a high-dimensional vector. Then, this study performs
dimensionality reduction to reduce a high-dimensional vector to a lower one and utilizes
this low-dimensional vector to implement the wafer chipping detection and prediction.
Before performing dimensionality reduction to a high-dimensional vector, some key grind-
ing parameters with small values may be ignored after dimensionality reduction because
the value gap between different key grinding parameters is too big. Therefore, this study
standardizes the key grinding parameters using the min-max method, which wants to
adjust each grinding parameter to a value between 0 and 1. The standardization formula
for min-max in Equation (6), where x represents the current parameter, xmin stands for the
minimum parameter value, xmax denotes the maximum parameter value, and xnom is the
standardized parameter value

xnom =
x− xmin

xmax − xmin
, xnom ∈ [0, 1] (6)

The vector of the key grinding parameters is not very high dimensional, and thus this
study adopted Barnes-Hut t-SNE for the dimensionality reduction, as shown in Figure 4.
Its computation burden is with the time complexity of O(nlogn), which is faster than
the general t-SNE method with a time complexity of O

(
n2). Therefore, the suggested
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one is suitable for wafer grinding applications in practice. The data size of key grinding
parameters is 223,990 out of 112 different wafers, and these data are inputted and denoted
as xh,m. The parameter Perp determines how many similar points we found, and we usually
set it higher when the amount of data is more considerable. On the contrary, if the amount
of data is small, the parameter Perp with a high value may result in too many points being
connected and not finding subtle changes. Dimensionality reduction gets the approximated
value from the probability density function of Gaussian distribution to obtain its PDF pij in
Equation (2), and form all of pij to get a PDF matrix Pn,n. Next, the method can randomly
generate an initial low-dimensional matrix Yn,n using the t distribution density function to
obtain its PDF qij in Equation (3), and aggregate all of qij to obtain a PDF matrix Qn,n.
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We can calculate the loss function Cij by KL divergence in Equation (4), and collect all
of Cij to form a loss matrix Cn,n according to the preset number of iterations. The closer the
Cij is to 1, the closer the distance between the two points is, and the closer the Cij is to 0,
the farther the distance between the two points is. Furthermore, the updated yi through

the gradient descent
δCij
δyi

in Equation (7) can eventually update Yn,n, where Z represents

Σk 6=i(1 + ||yi − yk||2)
−1.

δCij

δyi
= 4

(
∑
j 6=i

pijqijZ
(
yi − yj

)
−∑

j 6=i
q2

ijZ
(
yi − yj

))
(7)

3.2. Chipping Prediction Model

The data importing to the LSTM model simultaneously with the forward and the
backward directions constructs a BLSTM model. This study executes the dimensionality



Mathematics 2022, 10, 4631 8 of 25

reduction for the key grinding parameters to obtain the condensed information (i.e., an
index). It feeds this information into the BLSTM model to predict the likely chipping in
the wafer grinding process, as shown in Figure 5. Forward data represents a time series,
and backward data means the reverse manner of a time series. This situation is to train two
different LSTM models simultaneously through the forward and backward data. Averaging
two predicted results from two individual cells can obtain a single final output. In Figure 5,
c0 represents the incoming long-term cumulative predicted condensed signal, h0 stands for
the incoming short-term predicted result of the previous condensed signal, s1 denotes the
current condensed signal of a time series, and C̃1 is the intermediate output of the current
cell, i.e., the signal with the aggregation of h0 and where s1 takes the tanh function to form
a new input signal. There are three gates (forget, input, and output) with the sigmoid
function σ.
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The wafer grinding process encounters many problems, such as collected data missing,
data showing a non-linear distribution, and correlated hidden parameters lost. Neverthe-
less, we found that the collected data set can retrieve new information (the hidden feature)
about chipping representation from the cases of wafer chipping area of less than 30%.
Regarding the wafer chipping area ratio, the proportions of 10%, 10~15%, 15~20%, and
20~30% are equal samples during a single blade grinding of the wafers from the beginning
until the replacement. Therefore, to increase the amount of data before training BLSTM, we
will partition the data set into four groups with a coverage area of 10%, 10–15%, 15–20%,
and 20–30%. After that, this study applied average pooling to smooth the four sampled data
picked up from each coverage at the same corresponding sequence to obtain a new datum
increasing the amount of training data, as shown in Figure 6. In such a way, we referred
to this approach as Data Driven-Bidirectional LSTM (DD-BLSTM). The later experiments
will show its technical contribution to improving the chipping detection and prediction
accuracy significantly, which can verify this proposal.
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3.3. Implementation Procedure

This study installed the package Anaconda3 to build a Python programming execution
environment on Windows 10 and collected the wafer grinding-related data tables. Next,
we query and correspond to the collected data tables so that the data about various wafer
grinding parameters can correspond to the coordinates of the wafer grinding position. Then,
this study conducts wafer chipping analysis according to the following execution flow,
as shown in Figure 7. In Figure 7, the blocks with retrieve streaming data from database
and mapping data will be implemented in Step (1), random forest screen out importance
parameters in Steps (2)~(6), dimensionality reduction using Barnes-Hut t-SNE in Step (7),
and training the DD-BLSTM model and implementing wafer chipping prediction in Step (8).
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Figure 7. Execution flow.

(1) We collect the wafer grinding-related data provided by a fab in Taiwan; the data
table shows the coordinates of the chipping positions out of 112 different wafers.
Each chipping position denotes a point marked by orange, as shown in Figure 8. In
Figure 9, the coordinates of each cutting position with two color yellow backgrounds
correspond to a specific blade number, cutline, and channel number.

According to the channel number and cutline, on-site operators think of the following
important signal listed in a summary table for the different parameter code groups with a
color blue, green, yellow, and red background, as shown in Figure 10. Figure 11 displays the
parameter code as a string with a color red and blue background, which can query the data
about various wafer grinding parameters corresponding to the wafer chipping position.



Mathematics 2022, 10, 4631 10 of 25Mathematics 2022, 10, x FOR PEER REVIEW 11 of 28 
 

 

 
Figure 8. A sample wafer chipping. 

 
Figure 9. Cutline, channel number, and blade number of each coordinate. 

According to the channel number and cutline, on-site operators think of the following 
important signal listed in a summary table for the different parameter code groups with 
a color blue, green, yellow, and red background, as shown in Figure 10. Figure 11 displays 
the parameter code as a string with a color red and blue background, which can query the 
data about various wafer grinding parameters corresponding to the wafer chipping 
position. 

Figure 8. A sample wafer chipping.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 28 
 

 

 
Figure 8. A sample wafer chipping. 

 
Figure 9. Cutline, channel number, and blade number of each coordinate. 

According to the channel number and cutline, on-site operators think of the following 
important signal listed in a summary table for the different parameter code groups with 
a color blue, green, yellow, and red background, as shown in Figure 10. Figure 11 displays 
the parameter code as a string with a color red and blue background, which can query the 
data about various wafer grinding parameters corresponding to the wafer chipping 
position. 

Figure 9. Cutline, channel number, and blade number of each coordinate.

(2) We installed the Python programming execution environment of Anaconda3 on Win-
dows 10. Moreover, installing relevant data analysis packages such as Pandas, Numpy,
Scikit-learn, Tensorflow, and Keras is still necessary. In addition, Python programming
requires setting up packages such as Matplotlib and Pyplot for drawing visual graphics.

(3) We have checked the judgment conditions of each key parameter in different decision
trees, as shown in Figure 12. According to the judgment conditions of each node in
the decision tree, we can observe different parameter values, which are the normal
and chipping situations. According to the parameter values within the judgment
conditions, it is possible to know which key parameters will have a greater impact
on the occurrence of wafer chipping. In Figure 12, we found that the parameter
SVID_1772 of the node in the decision tree has eight data values greater than 1112.5, of
which the machines judged six to be chipping situations. Therefore, the key grinding
parameter SVID_1772 has an important influence on whether wafer chipping occurs.
In random forest estimation, we can filter the ten key parameters extracted from the
importance analysis to the eight most important parameters for the next step. These
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key parameters are SpindleCurrent_Z1, SpindleCurrent_Z2, SVID_1772, SVID_1773,
SVID_1775, SVID_1752, SVID_1753, and SVID_1785. Among them, Information Gain
can evaluate the chaos evaluation index of the decision tree in Equation (8), where p is
the probability that the condition is true, and q is the probability that the condition is
false. When Entropy in Equation (9) is 0, it means that the data types classified in this
area of the data are all consistent.
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In f ormation Gain = −p∗ log2 p− q∗ log2 q (8)

Entropy = −∑
j

pj log2 pj (9)

(4) Meanwhile, we use the decision tree presented in the previous step (3) to explore
how every grinding parameter’s importance can affect the wafer grinding result and
determine which ones are the key grinding parameters. After that, we conduct the
correlation analysis on these parameters, as shown in Figure 13. We found that the
spindle current of two blades will significantly impact the yield of wafer grinding
and then continue to pick out the other eight key grinding parameters. The random
forest method can estimate the possible chipping phenomenon caused by these ten
key grinding parameters. We have imported these ten key grinding parameters into
the random forest, and the pairings can achieve 87% accuracy when estimating wafer
chipping coverage areas of less than 30% of the wafer surface area. This estimation
accuracy is higher than the 78% accuracy using all grinding parameters.
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(5) First, this study used a time series analysis to check the data distribution relationship
between the normal situation and the occurrence of chipping. This check goes through
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many wafers to examine whether normal behavior exists in the data distribution
relationship where red dots represent the occurrence of wafer chipping, as shown in
Figure 14. When examining the wafer grinding process, we found that the parameter
SVID_1752 of the cleaning gas emission on the wafer may chip when its pressure is
lower than 586. In addition, we also found that if the air pressure of the parameter
SVID_1753 fluctuates too much, it is easy to cause this chipping phenomenon, as
shown in Figure 15.
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(6) This study has tried three methods for correlation analysis: Pearson, Spearman, and
Kendall tau. Technically speaking, we chose Kendall tau, which is more suitable
for working on non-linear data distribution. It will make a comparison based on
sorting the respective sequence sizes in the two parameters. First, it will make a
comparison based on sorting the respective sequence sizes in the two parameters.
Then, Equation (10) can compute the Kendall tau correlation, where P(c) represents the
total number of concordant pairs and P(d) stands for the total number of discordant
pairs. Finally, we can visualize the result of the correlation matrix among the various
parameters, as shown in Figure 16. We found that the kerf width, kerf displacement,
and the length of each blade between the two blades had a correlation between 0.45
and 0.74. According to the correlation between the parameters mentioned above,
people can judge a considerable degree of mutual influence between the blades.

Kendall =
P(c) − P(d)
P(c) + P(d)

(10)

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 28 
 

 

(10) can compute the Kendall tau correlation, where 𝑃  represents the total number 
of concordant pairs and 𝑃  stands for the total number of discordant pairs. Finally, 
we can visualize the result of the correlation matrix among the various parameters, 
as shown in Figure 16. We found that the kerf width, kerf displacement, and the 
length of each blade between the two blades had a correlation between 0.45 and 0.74. 
According to the correlation between the parameters mentioned above, people can 
judge a considerable degree of mutual influence between the blades. 

 
Figure 16. Correlation coefficient matrix. 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 = 𝑃 − 𝑃𝑃 𝑃  (10) 

(7) This study standardized eight key grinding parameters mentioned above for data 
preprocessing and then aggregated these key parameters into a high-dimensional 
parameter vector. Furthermore, dimensionality reduction can condense this 
parameter vector to a one-dimensional constant value as an index. Finally, we apply 
the heat map analysis to this index, explaining the trend in potential chipping. This 
study has introduced two vector dimensionality reduction methods, PCA and 
Barnes-Hut t-SNE, as shown in Figures 17 and 18. In Figures 17 and 18, the x-axis in 
(a) represents the current cutline map with starting cutline number 0. Since the 
leftmost part of the wafer map in (d) is drawn from coordinate 3, the x-axis of the 
wafer map in (d) corresponding to the cutline map in (a) is the cutline number + 3. 
The x-axis of the cutline map in (c) corresponding to the wafer map in (d) is 81, the 
cutline number. Compared with PCA, Barnes-Hut t-SNE is more pronounced 
concerning the degree of change in the value of dimensionality reduction. This 
discovery indicates that the Barnes-Hut t-SNE data changes are more sensitive than 

Figure 16. Correlation coefficient matrix.



Mathematics 2022, 10, 4631 15 of 25

(7) This study standardized eight key grinding parameters mentioned above for data
preprocessing and then aggregated these key parameters into a high-dimensional
parameter vector. Furthermore, dimensionality reduction can condense this parameter
vector to a one-dimensional constant value as an index. Finally, we apply the heat
map analysis to this index, explaining the trend in potential chipping. This study
has introduced two vector dimensionality reduction methods, PCA and Barnes-Hut
t-SNE, as shown in Figures 17 and 18. In Figures 17 and 18, the x-axis in (a) represents
the current cutline map with starting cutline number 0. Since the leftmost part of
the wafer map in (d) is drawn from coordinate 3, the x-axis of the wafer map in (d)
corresponding to the cutline map in (a) is the cutline number + 3. The x-axis of the
cutline map in (c) corresponding to the wafer map in (d) is 81, the cutline number.
Compared with PCA, Barnes-Hut t-SNE is more pronounced concerning the degree
of change in the value of dimensionality reduction. This discovery indicates that the
Barnes-Hut t-SNE data changes are more sensitive than PCA when chipping occurs.
Therefore, this study selected the Barnes-Hut t-SNE dimensionality reduction to better
judge chipping occurrence than PCA.
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(8) To increase the amount of training data before training DD-BLSTM, we will partition
the data set of wafer chipping area of less than 30% into four groups: 10%, 10~15%,
15~20%, and 20~30%, and then perform average pooling to smooth the four sampled
data picked up from each group at the same corresponding sequence in order to obtain
a new datum, increasing the amount of training data. The dimensionality-reduced
data called index has been imported into the DD-BLSTM model to make an inference
for predicting potential large-scale chipping, as shown in Figure 5. We can use it to
check how effective the key grinding parameters are in predicting the occurrence of
wafer chipping. In addition, we can also verify whether a decisive influence exists on
the occurrence of wafer chipping. Figure 19 shows that the DD-BLSTM model with
index inputs can get a loss (error) of 0.1126 during the training phase. After the test
phase, we can use the trained model to predict the occurrence of wafer chipping in
the other wafer grinding processes, as shown in Figure 20. In Figure 20, we found
that in the early stage of the wafer grinding process, this study imported the index
to the DD-BLSTM model, which can accurately predict the index that will happen
shortly. In such a way, it is possible to determine whether chipping will occur soon.
Therefore, we can use the predicted index to detect whether the wafer chipping has
occurred or, based on the trend in the potential chipping, tell people that chipping
may occur soon.
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4. Experiment Results and Discussion

This section first describes the specifications of the production machines used for
wafer grinding. It then gives the results before and after tuning key grinding parameters
to improve the effect of wafer grinding. Finally, after implementing dimensionality re-
duction using PCA and Barnes-Hut t-SNE methods individually to get their respective
condensed information (i.e., an index), we can import this information (an index) into the
BLSTM model to predict the likely chipping in the wafer grinding process, and make the
comparison of the accuracy of the chipping prediction with/without tuning key grinding
parameters in the wafer grinding process.

4.1. Experiment Setting

In Figure 21, the production machine is DISCO DS6560, which was used in the experi-
ments of wafer grinding in this section. The hardware specifications are shown in detail
and are listed in Table 1.
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Table 1. Specifications of DISCO DS6560. 

Specification Unit 
High Speed (Option) with 1.8 kW 

Z1 Z2 

Max. workpiece size mm Φ300 

X-axis 
Cutting range mm 310 

Cutting speed mm/s 0.1~1000 

Y1·Y2-axis 

Cutting range mm 310 
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Table 1. Specifications of DISCO DS6560.

Specification Unit
High Speed (Option) with 1.8 kW

Z1 Z2

Max. workpiece size mm Φ300

X-axis
Cutting range mm 310

Cutting speed mm/s 0.1~1000

Y1·Y2-axis

Cutting range mm 310

Index step mm 0.0001

Positioning accuracy mm Within 0.002/310
(Single error) Within 0.002/5

Z-axis

Max. stroke mm 14.2 (For Φ2 inch blade)

Moving resolution mm 0.00005

Repeatability accuracy mm 0.001

θ-axis Max. rotating angle deg 380

Spindle
Rated torque N·m 0.29 0.19

Revolution speed range min−1 6000~60,000 20,000~80,000

Machine dimensions (W × D × H) mm 1240 × 1550 × 1960 81 mm convex
(left side)

Machine weight kg Approx. 1640

The recipe of packages is available for applications used in this section, as listed
in Table 2. The packages of Pandas and Numpy can perform data preprocessing. The
machine learning suite Scikit-learn provides two dimensionality reduction methods, PCA
and Barnes-Hut t-SNE. We used Tensorflow and Keras to build the deep learning model.
Finally, Matplotlib or Pyplot package can show the experimental results visually.
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Table 2. Recipe of Packages.

Software Version

Anaconda® Individual Edition 4.10.3
Jupyter Notebook 4.3.1

Tensorflow 2.6.2
Keras 2.6.0

Pandas 1.1.5
Numpy 1.19.5

Matplotlib 3.3.4
Pyplot 5.5.0

Scikit-learn 0.23.2

4.2. Experimental Design
4.2.1. Settings for Parameter Dimensionality Reduction

As mentioned above, the importance analysis yielded seven important parameters
of wafer grinding, including a spindle current, three kinds of water flow, and three kinds
of cleaning gas emissions. We aggregated them into a seven-dimensional vector. Then,
this study uses the Barnes-Hut t-SNE method to reduce the vector dimension. People
can set either the exact or barnes_hut option in the t-SNE manual, and this experiment
sets the barnes_hut option to speed up the calculation of dimensionality reduction. This
setting can complete the calculation with time complexity O(n[log]n). This is faster than
the other one with O(n2). This parameter setting is suitable for the application of wafer
grinding in practice. The dimensionality reduction has generated 223,990 data concerning
the key parameters from 112 pieces of wafer grinding. Since the amount of data is rela-
tively large, we set the parameter perplexity to 50. This study chooses the parameter of
early_exaggeration with the default 4.0 and the parameter learning_rate of 1000. If the cost
function value of KL divergence increases in early training, people can consider reducing
the parameters learning_rate and early_exaggeration. We set 1000 for the parameter n_iter,
which represents the maximum number of iterations during optimization, and 30 for the
parameter n_iter_without_progress, which means that the iteration will stop if there is
no progress after 30 iterations. This study set 0.2 as the parameter angle, which is the
relaxation degree of fault tolerance. However, the time required for calculation can be
increased and can make the calculation result more accurate.

4.2.2. Settings for Chipping Prediction

A single LSTM model has three layers and a total of 640 neurons, as shown in Figure 5.
In Figure 5, the activation function σ is the sigmoid function, and tanh is the hyperbolic
tangent. The loss function is a mean-square error (MSE) and the optimizer adaptive
moment estimation (Adam). If the accuracy rate does not increase after ten training rounds,
the process will terminate the training. We set the batch size to 128 and the maximum
number of training rounds to 150. This study set the parameter return_sequences to true,
which can return short-term output results between multiple units. In the training phase,
we had a training data set with 167,993 signals used to train the BLSTM model, which
collected the front-end grinding signals and their corresponding backend grinding signals
of 82 different wafers.

Consequently, the trained model can infer the backend grinding signals according to
the front-end grinding signals. We picked up 10% of the training data set in the training
phase as validation to verify the training results. In the test phase, we tested the trained DD-
BLSTM model using the test data set that had a total of 55,997 pairs of front-end grinding
signals and their corresponding backend grinding signals out of 30 different wafers.
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4.3. Experimental Results
4.3.1. Chipping Prediction Accuracy

After implementing dimensionality reduction methods PCA and Barnes-Hut t-SNE
to obtain the condensed information (i.e., an index), we trained a DD-BLSTM model of
index prediction for wafer chipping with different dimensionality reduction methods, PCA
and Barnes-Hut t-SNE, as shown in Figure 22. Then, we imported this index into the
trained DD-BLSTM model to predict the likely chipping of wafer grinding and compared
the predicting accuracy between different dimensionality reductions, as listed in Table 3.
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Table 3. Accuracy of chipping prediction using different dimensionality reductions.

Dimensionality
Reduction PCA Barnes-Hut t-SNE

Chipping Area of a Wafer

Class I: Less than 30% 0.7612 0.9314
Class II: More than 30% 0.5236 0.8412

In Table 3, the fab has categorized the samples of wafer chipping obtained from the
machines during the wafer grinding process into two classes. The first class is that the
chipping area of a single wafer is less than 30%, and the second class is more significant
than 30%. The ratio of the number of samples from the former to the number of samples
from the latter is 11:1. First, we have trained the prediction model DD-BLSTM using
the collected samples of wafer chipping mentioned above to obtain the trained model
accordingly. As a result, the prediction accuracy of the first class of wafer chipping is higher
than that of the second class of wafer chipping by 9.02% in the test. Next, according to the
wafer-chipping samples mentioned above, the chipping data have scattered a non-linear
distribution. Therefore, the prediction accuracy using the Barnes-Hut t-SNE dimensionality
reduction method will be higher than that of the PCA dimensionality reduction method by
17.02% in the test.

Table 4 compares the prediction accuracy among models using Barnes-Hut t-SNE
dimensionality reduction. In Table 4, DD-BLSTM has achieved the best accuracy in both
Classes. LSTM has the worst prediction accuracy in Class I, whereas Auto Encoder has the
worst prediction accuracy in Class II.

Table 5 compares prediction accuracy with different dimensionality reductions using
the Barnes-Hut t-SNE method after dimensionality. After the test, the case of 1-dimensional
can obtain the best prediction accuracy.
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Table 4. The accuracy of prediction models using Barnes-Hut t-SNE.

Models
LSTM AutoEncoder BLSTM DD-BLSTMWafer Chipping Area

Class I: Less than 30% 0.8122 0.8611 0.9234 0.9314
Class II: More than 30% 0.6413 0.5219 0.8216 0.8412

Table 5. Comparison of the prediction accuracy with different dimensionality reduction.

Model and Class DD-BLSTM

Dimensionality Class I Class II

1-dimensional 0.9314 0.8412
2-dimensional 0.9223 0.8212
3-dimensional 0.9121 0.8303
4-dimensional 0.9222 0.8083
5-dimensional 0.9313 0.8155
6-dimensional 0.8771 0.7798
7-dimensional 0.8511 0.7421
8-dimensional 0.8365 0.7254

4.3.2. Wafer Grinding Results

In wafer grinding, the nonlinear Barnes-Hut t-SNE reduces the dimensionality of the
input vector to obtain the condensed information (i.e., an index) and this information is
imported into the DD-BLSTM model to predict the likely chipping. This study proposed
two approaches in the experiments. In the first approach, the production machine runs
wafer grinding without tuning the key grinding parameters. In the second approach,
the production machine can tune the key grinding parameters in a timely way during
the grinding process and check whether or not it can effectively control large-scale wafer
chipping. In wafer grinding, the probability of wafer chipping will gradually increase due
to the rapid wear of the blade, as shown in Figure 23. In Figure 23, when grinding at the
third wafer, the production machine must change the blades to alleviate the occurrence of
large-scale chipping.

In contrast, in the second approach, the production machine can tune the key grinding
parameters to stabilize the spindle current, monitor the water flow rate, and clean the
gas emissions at any time during the grinding process. Consequently, it can defer the
deterioration of the blades, and thus the speed of wafer chipping gets slower, as shown in
Figure 24. Compared with the first approach, the second can extend the useful life of the
blade to grind more wafers, as listed in Table 6. As a result, the proposed approach can
significantly improve wafer grinding yield and thus reduce the loss of manufacturing costs.

Table 6. Wafer grinding using different approaches.

Method Original Approach Proposed Approach
Attribute

Number of grinding wafers needed to change kerf immediately 3 8
Backside wall chipping distributed Whole wafer The bottom half of a wafer

4.4. Discussion

This study used the random forest method to estimate the chipping phenomenon
during wafer grinding, which can effectively explore the important grinding parameters.
This paper has shown that the prediction accuracy of a wafer chipping coverage area of less
than 30% can be as high as 87% of the wafer surface area. However, the random forest can
only estimate most of the errors after the wafer chipping has occurred and cannot do it in
the process of chipping. The sensitivity of chipping detection and prediction during wafer
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grinding is poor. Moreover, if we have tested a wafer with around 50% chipping coverage
area, the estimation accuracy of the random forest will drop to 52%. After chipping, the
estimation misclassified them as normal, and most estimation errors arose. The estimation
process only can pick out a few chippings successfully. The random forest needs to observe
the judgment conditions of nodes, focus several key nodes on judging whether or not it
could cause chipping, and then screen out the key grinding parameters.
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In addition, the paper [32] compares the detection ability of outliers between the LSTM
model and the BLSTM model. The wafer chipping frequency will increase over time because
the blade will continue to wear while grinding until the machine replaces it. The article [19]
uses the LSTM model to provide better prediction accuracy for data with temporal causality.
With the same parameter settings, the BLSTM model will achieve better prediction accuracy
than the LSTM model. Furthermore, this study has proposed a DD-BLSTM to replace a
BLSTM model to get the best chipping detection and prediction performance.

The limitation of this experiment is that the earlier wafer grinding machines used in
this experiment and the data generated by the machines are somewhat lacking. Therefore,
it is necessary to mark the area where the chipping has occurred manually. Then, according
to the manually marked areas, we must find each piece of chipping data individually, which
requires a lot of workforce to aggregate the data. In addition, if the chipping coverage area
accounts for more than 70% of the wafer surface area and the other extreme conditions, the
currently trained model cannot provide the prediction accuracy as well as we expected.
Fabs will not allow the worn blade to be in this lousy situation without replacing the blade
during wafer grinding. Nevertheless, the currently trained model can successfully run
chipping detection in the wafer grinding process.
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5. Conclusions

Fabs have adopted many methods to adjust the parameters of the wafer grinding.
However, simple regression cannot wholly analyze large-scale wafer backside wall chipping
because the wafer grinding process encounters many problems, such as collected data
missing, data showing a non-linear distribution, and correlated hidden parameters lost. The
main contribution of this study was to propose a novel approach to solving this problem.
We adopted importance analysis to find the key grinding parameters, used the Barnes-Hut
t-SNE method to reduce the dimensionality of the key grinding parameters, and established
a DD-BLSTM model to predict the occurrence of large-scale chipping. The objective of
this study is to adjust the key grinding parameters in time to reduce the occurrence of
large-scale wafer chipping. As a result, the proposed approach can significantly increase
the yield of wafer grinding and reduce the loss of wafer manufacturing costs.

The experiments operated with the earlier machines, and the machines generated
various signals that were not as detailed and precise as the latest machines. Suppose we
can obtain a new machine that can capture more parameters, such as audio or video signals.
In that case, we can effectively establish a powerful prediction model to improve accuracy.
In future work, if a new machine can make the output data more complete, the assistance
of visual algorithms and related packages through the program can automatically mark the
abnormal values generated from the machines. As mentioned above, collecting data will
save a lot regarding workforce and time.
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