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Abstract: A numerical investigation of unsteady boundary layer flow with heat and mass transfer of
non-Newtonian fluid model, namely, Jeffrey fluid subject, to the significance of Soret and Dufour
effects is carried out by using the local nonsimilarity method and homotopy analysis method. An
excellent agreement in the numerical results obtained by both methods is observed and we establish
a new mathematical approach to obtain the solutions of unsteady-state flow with heat and mass
transfer phenomenons. Similarity transformation is applied to governing boundary layer partial
differential equations to obtain the set of self-similar, nondimensional partial differential equations.
Graphical results for different emerging parameters are discussed. The dimensionless quantities
of interest skin friction coefficient, Sherwood number, and Nusselt number are discussed through
tabulated results. The main novelty of the current work is that the average residual error of the
mth-order approximation of the OHAM scheme for steady-state solution is decreased for higher-order
approximation. Further, a rapid development of the boundary layer thickness with the increasing
values of dimensionless time τ is observed. It is noted that for large values of τ, the steady state in the
flow pattern is gained. It is worth mentioning that the magnitude of Sherwood number is increased
with the increasing values of Schmidt number Sc and Dufour number D f . The magnitude of local
Nisselt number is increased for the increasing values of Soret number, Sr.

Keywords: Jeffery fluid; stretching; Soret and Dufour effects

MSC: 76D05, 76D10

1. Introduction

The significance of boundary layer flow of Newtonian/non-Newtonian fluids past a
stretching surface has gained the attention of many researchers due to their applications in
science and engineering, e.g., polymer extrusion, food processing, and many others. With
this understanding, first, we focus on the work of the community engaged in this field.
Initially, the boundary layer flow of viscous fluid was discussed by Crane [1] theoretically.
The case of heat and mass transfer analysis with suction and blowing was studied by
Gupta and Gupta [2]. Magnetohydrodynamic flow and heat transfer of viscous fluid past
stretching sheet was discussed by Chakrabarti and Gupta [3] numerically. The uniqueness
of solutions of the Navier–Stokes fluid past a stretching sheet was determined by Mcleod
and Rajagopal [4] in detail. The numerical solutions of boundary layer flow of viscous
fluid past stretching plate were simulated by Liao [5], and they presented the obtained
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results graphically as well as in tabular form. Magnetohydrodynamic flow due to vertical
stretching sheet with heat transfer was studied by Ishak et al. [6] theoretically. Further,
the MHD free convection flow past vertical stretching plate under the influence of heat
generation and viscous dissipation was studied by Khaleque and Samad [7]. The stagnation
point flow of upper convected Maxwell fluid past stretching sheet with melting heat transfer
was studied by Hayat et al. [8]. Further extension in this model for similar flow for third-
grade fluid with viscous dissipation was discussed by Hayat et al. [9]. Three-dimensional
flow of Oldroyd-B fluid over a bidirectional stretching sheet with surface temperature and
surface heat flux generation was studied by Hayat et al. [10].

The real-world formulation of emerging phenomenons is not adequate when the
constitutive relations for viscous fluid are applied. Therefore, to completely describe the
true behavior, we must take into consideration non-Newtonian fluid models which are
more adequate to describe the nature of fluid flow. A large variety of non-Newtonian fluid
models have been studied for boundary layer flows of non-Newtonian fluids, among which
is the Jeffrey fluid model. This fluid model is capable of describing the characteristics of
relaxation and retardation times of the non-Newtonian fluids. Analysis of an endoscope and
magnetic field on the peristalsis involving Jeffrey fluid were carried out by Hayat et al. [11].
Magnetohydrodynamic peristaltic flow of Jeffery fluid through finite length of cylindrical
tube was studied by Tripathi et al. [12]. Further, the MHD peristaltic flow of a Jeffrey fluid
under the influence of slip and heat transfer in inclined asymmetric porous channel was
studied by Das [13], and heat source or sink effects past stretching sheet for Jeffrey fluid
were discussed by Qasim [14]. Three-dimensional stretched flow of Jeffrey fluid under the
influence of variable thermal conductivity and thermal radiation was discussed by Hayat
et al. [15]. Lifting of a Jeffrey fluid on a vertical belt under influence of magnetic field and
wall slip conditions was discussed by Farooq et al. [16]. The time-dependent analysis of flow
and heat transfer of Jeffrey fluid along stretching sheet was carried out by Hayat et al. [17].
The stagnation-point flow of Jeffrey fluid under the effects of melting heat transfer and mass
transfer with Soret and Dufour effects was studied by Hayat et al. [18]. Moreover, the Jeffrey
fluid flow between two torsionally oscillating disks was discussed by Reddy et al. [19].

When heat and mass transfer occur simultaneously between two mediums, the rela-
tions between the fluxes and the driving potentials are significant in nature. Experimental
studies showed that an energy flux can be generated not only by temperature gradients
but by composition of gradient as well, which can be given by the Fick’s laws of diffu-
sion. This type of energy flux is known as Dufour or diffusion-thermo effect. In a similar
manner, we also have mass fluxes being created by temperature gradient, which can be
given by the Fourier’s laws of heat conduction, and this phenomenon is known as Soret
or thermal-diffusion. The energy and concentration generation due to Dufour and Soret
effects are comparatively small in magnitude as compared to other effects; however, these
effects are significantly important for the light molecular weight substances. Forced and
natural convection boundary layer flow with the significance of Soret and Dufour effects
was studied by Abreu et al. [20]. Soret and Dufour effects with the inclusion of variable wall
temperature and concentration are discussed by Cheng [21]. The MHD Hiemenz flow and
mass transfer with Soret and Dufour effects through porous medium along the stretching
sheet were studied by Addel-Rahman [22]. Mixed convection flow of second-grade fluid
subject to Hall and ion-slip currents with Soret and Dufour effects were studied by Hayat
and Nawaz [23]. Three-dimensional flow in a viscoelastic fluid past stretching surface
with significance of Soret and Dufour effects was studied by Hayat et al. [24]. The natural
convection heat and mass transfer flow past a horizontal surface in porous medium with
variable viscosity with significance of Soret and Dufour effects was investigated by Moorthy
et al. [25]. Axisymmetric flow of a Jeffery fluid over a stretching surface with significance of
Newtonian heating along with thermal-diffusion and diffusion-thermo effects was studied
by Awais et al. [26].

Homotopy analysis method was developed by Liao [27]. The homotopy analysis
method has been successfully applied to many highly nonlinear problems in the last
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decade; some of them are [5,8–10,15,17,18,23,24,26]. The development in the homotopy
analysis method was made by many researchers. One of them is the optimal homotopy
analysis method (OHAM), in which the convergence of homotopy solution is determined by
the optimization of convergence control parameters against the residual error, as mentioned
in [28,29]. The local nonsimilarity method was introduced by Sparrow and Yu [30], and
the solutions of nonsimilar equations arising in mixed convection flow was discussed. The
numerical analysis of the local nonsimilarity method at third level of truncation was carried
out by Yu and Sparrow [31], and Rabadi and Dweik applied this method in the mixed con-
vective flow with flux [32]. Massoudi discussed the local nonsimilarity solutions for the flow
of a non-Newtonian fluid over a wedge [33]. Yian and Norsarahaida [34] studied vertical
free convection boundary layers flow using local nonsimilarity method. Mushtaq et al. [35]
studied the mixed convection flow of second-grade subject to vertical stretching flat sur-
face with variable surface temperature. Recently, Kairi et al. [36] conducted a numerical
study on the influence of viscous dissipation and thermo-diffusion subjected to double-
diffusive convection over a vertical cone in a non-Darcy porous medium saturated by a
non-Newtonian fluid with variable heat and mass fluxes. Sardar et al. [37] investigated
the local nonsimilar solutions in the convective flow of Carreau fluid with the inclusion
of MHD and radiative heat transfer. Swarajya and Rao [38] applied this method to study
variations in drag and heat transfer at a vertical plate due to steady flow of a colloidal
suspension of the nanofluid. RamReddy et al. [39] studied the significance of nonlinear
Boussinesq approximation on natural convective flow with the method of local nonsimi-
larity approach. Keeping in view the above literature review, our current problem deals
with the unsteady flow and heat transfer of Jeffrey fluid past a stretching sheet with the
inclusion of Soret and Dufour effects. As far as our approach and knowledge, the local
nonsimilarity method has never been applied to unsteady flow phenomenons so far, so we
are the first to use this method in conjunction with the homotopy analysis method and also
carry out a numerical compression for both approaches.

2. Mathematical Formulation

We consider the unsteady incompressible bidirectional boundary layer flow of the
Jeffrey fluid with constant viscosity µ and density ρ past a stretching sheet. Initially, the
fluid and the plate are at rest. The flow is induced by the sudden stretching of the sheet
with constant velocity uw(x) = cx, where c is a positive (stretching sheet) constant. The
stretching sheet is raised to a temperature Tw, and T∞ is the embedded temperature of
the fluid such that (Tw > T∞), as shown in Figure 1. The conservation equations for the
proposed model take the following forms:

∇ ·V = 0, (1)

ρ
DV
Dt

= divτ1 + ρF, (2)

ρCp

(
DT
Dt

)
= k∇2T + Φ + J, (3)

DC
Dt

= D∇2C + Rc. (4)

where V is the velocity, ρ is density, T is the temperature, Cp is the specific heat and constant
pressure, k is thermal conductivity of the fluid, Φ is the viscous dissipation, J is the Dufour
effect, C is the concentration of diffusion species, D is the diffusion coefficient, Rc is the

Soret effect,
D
Dt

is the material derivative, F is the body for force, and τ1 is the Cauchy stress
tensor. For incompressible Jeffrey fluid, this tensor is given by

τ1 = −pI + S, (5)
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where p is pressure and the extra stress tensor S is given by

S =
µ

1 + λ1

[
A1 + λ2

DA1

Dt

]
, (6)

where µ is the viscosity of the fluid, λ2 is the ratio of relaxation and retardation time, and
λ1 is retardation time, respectively. A1 is the first Rivlin–Erickson tensor, given by

A1 = (∇V) + (∇V)?, (7)

where ? denotes the transpose. The heat flux J, also known as known as Dufour or diffusion-
thermo effect, can be given by Frick’s law of diffusion, as follows:

J =
ρDKt

Cs
∇2C, (8)

where Cs is the specific heat capacity of the solid surface, KT is the thermal diffusion ratio,
and Rc is the concentration flux generated by the temperature gradient, known as Soret or
thermo-diffusion effect, given by Fourier’s law of heat conduction:

Rc =
q.

A
=

DkT∇2T
Tm

. (9)

where Tm is the mean temperature of the fluid. We assume that viscous dissipation Φ
is insignificant and we consider the thermal and radiative heat transfer along with the
Soret and Dufour effect in this unsteady fluid flow. It is also assumed that all the thermal
properties are taken as constant. Body forces are negligible and the pressure p is constant
for the fluid flow. The governing boundary layer equations under the standard Prandtl
boundary layer approximations are given by

∂u
∂x

+
∂v
∂y

= 0, (10)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
ν

1 + λ2

[
∂2u
∂y2 + λ1

(
∂3u

∂y2∂t
+ u

∂3u
∂x∂y2 −

∂u
∂x

∂2u
∂y2 +

∂u
∂y

∂2u
∂x∂y

+ v
∂3u
∂y3

)]
, (11)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
k

ρCP

∂2T
∂y2 +

16σ∗T3
∞

3ρCPk∗
∂2T
∂y2 +

DkT
CS

∂2C
∂y2 , (12)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= D
∂2C
∂y2 +

DkT
Tm

∂2T
∂y2 , (13)

subject to boundary conditions

t ≤ 0 : u = 0, v = 0, T = T∞, C = C∞ for any x, y

t > 0 : u = uw(x) = ax, v = 0, T = Tw, C = Cw at y = 0,

u→ 0, v→ 0, T → T∞, C → C∞ as y→ ∞,

(14)

where σ∗ is the Stefan–Boltzmann constant and k∗ is Rosseland mean absorption coefficient.
The expressions for skin friction coefficient C fx , local Nusselt number Nux, and local
Sherwood number Sh are given by

C fx =
τw

1/2ρ[uw(x)]2
, Nux =

xqw

k(Tw − T∞)
, Shx =

xjw
D(Cw − C∞)

, (15)
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where the wall skin friction τw, wall heat flux qw, and mass flux jw are given by

τw =
µ

1 + λ2

[
∂u
∂y

+ λ1

{
u

∂2u
∂y∂x

+
∂2u
∂y∂t

+ v
∂2u
∂y2

}]
y=0

,

qw = −
[(

k +
16σ∗T3

∞
3k∗

)
∂T
∂y

]
y=0

, jw = −D
(

∂C
∂y

)
y=0

.
(16)

We introduce the similarity variables of the form

η =

√
a

νξ
y, u = ax f ′(η, ξ), v = −

√
aνξ f (η, ξ), ξ = 1− exp[−τ],

τ = at, θ(η, ξ) =
T − T∞

Tw − T∞
, φ(η, ξ) =

C− C∞

Cw − C∞
,

(17)

Using (17) in Equations (10)–(13) along the initial and boundary conditions (14), we
obtain the following transformed system of self-similar partial differential equations:

{ξ − β(1− ξ)} f ′′′ + (1 + λ2)

{
ξ(1− ξ)(

η

2
f ′′ − ξ

∂ f ′

∂ξ
)− ξ2( f ′2 − f f ′′)

}
+β

{
ξ(1− ξ)

∂ f ′′′

∂ξ
− η

2
(1− ξ) f iv + ξ

(
f ′′2 − f f ′′′′

)}
= 0,

(18)

θ′′ + Pre f f (1− ξ)

[
η

2
θ′ − ξ

∂θ

∂ξ

]
+ Pre f f ξ f θ′ + Pre f f D f φ′′ = 0, (19)

φ′′ + Sc(1− ξ)

[
η

2
φ′ − ξ

∂φ

∂ξ

]
+ Scξ f φ′ + ScSrθ′′ = 0, (20)

with the initial and boundary conditions

f (0, ξ) = 0, f ′(0, ξ) = 1, θ(0, ξ) = 1, φ(0, ξ) = 1,

f ′(∞, ξ) = 0, θ(∞, ξ) = 0, φ(∞, ξ) = 0,
(21)

where

β = aλ1, Pr =
ρCPυ

k
, Rd =

4σ∗T3
∞

kk∗
, Pre f f =

Pr
1 + 4

3 Rd
,

D f =
DkT(Cw − C∞)

CPCS(Tw − T∞)
, Sc =

υ

D
, Sr =

DkT(Tw − T∞)

Tm(Cw − C∞)
,

(22)

where prime denotes the derivatives with respect to η, β is the Deborah number, Pr is
Prandtl number, Rd is the radiation parameter, Pre f f is the effective Prandtl number, D f is
the Dufour number, Sc is the Schmidt number, and Sr is the Soret number. The similarity
expression for skin friction coefficient C fx , local Nusselt number Nux, and local Sherwood
number Shx are given by using (17) in Equations (15) and (16). We have

1/2ξ
1
2 (Rex)

1/2C f =
1

1 + λ2

[
(1 + β) f ′′(0, ξ) + β(1− ξ)

{
∂ f ′′(0, ξ)

∂ξ
− 1

2ξ
f ′′(0, ξ)

}]
,

ξ
1
2 (Rex)

−1/2Nux = −
(

1 +
4
3

Rd

)
θ′(0, ξ), ξ

1
2 (Rex)

−1/2Sh = −φ′(0, ξ),
(23)

where Rex = ax2/ν = Uwx/ν is the local Reynolds number.
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Figure 1. The physical geometry of the fluid flow.

3. Steady-State Flow

To obtain the steady-state flow problem we input ξ = 1 in Equations (18)–(20), and
we obtain

f ′′′ + (1 + λ2)(− f ′2 + f f ′′) + β
(

f ′′2 − f f ′′′′
)
= 0, (24)

θ′′ + Pre f f f θ′ + Pre f f D f φ′′ = 0, (25)

φ′′ + Sc f φ′ + ScSrθ′′ = 0, (26)

with the conditions

f (0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1,

f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0. (27)

It is important to note that the exact solution of Equation (24), subject to boundary
conditions (27), has the form

f (η) =
1− e−mη

m
; m =

√
1 + λ2

1 + β
. (28)

Substituting the expression of f (η) from Equation (28) into Equations (25) and (26),
the resulting differential equation can be solved numerically by the symbolic computation
software Mathematica version 13.1, Wolfram Research, Champaign, Illinois.

4. Solution Methodology
4.1. Local Nonsimilarity Method
4.1.1. First Level of Truncation

At the first level of truncation, the terms containing ξ
∂(.)
∂ξ

in Equations (18)–(20) are

neglected under the assumption that the terms involving ξ are small [37]. This is particularly

true when ξ << 1. Thus, the terms with ξ
∂(.)
∂ξ

of Equations (18)–(20) are neglected to obtain

the following system of equations:

{ξ − β(1− ξ)} f ′′′ + (1 + λ2)
{

ξ(1− ξ)(
η

2
f ′′)− ξ2( f ′2 − f f ′′)

}
+β
{

ξ
(

f ′′2 − f f iv − η

2
(1− ξ) f iv

)}
= 0,

(29)

θ′′ + Pre f f (1− ξ)
[η

2
θ′
]
+ Pre f f ξ f θ′ + Pre f f D f φ′′ = 0, (30)
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φ′′ + Sc(1− ξ)
[η

2
φ′
]
+ Scξ f φ′ + ScSrθ′′ = 0, (31)

with the initial and boundary conditions

f (0, ξ) = 0, f ′(0, ξ) = 1, θ(0, ξ) = 1, φ(0, ξ) = 1,

f ′(∞, ξ) = 0, θ(∞, ξ) = 0, φ(∞, ξ) = 0,
(32)

It can be seen that Equations (29)–(31) can be treated as a system of ordinary differential
equations for the functions f (η) and θ(η) and φ(η) with ξ as a parameter.

4.1.2. Second Level of Truncation

To find the higher level of truncation, we introduce the following new functions:

g(η, ξ) =
∂ f
∂ξ

, h(η, ξ) =
∂ f
∂ξ

, j(η, ξ) =
∂ f
∂ξ

, (33)

At the second level, the governing equations, Equations (18)–(20), for the function
f (η, ξ), θ(η, ξ), and φ(η, ξ), respectively, are retained intact, and are as follows:

{ξ − β(1− ξ)} f ′′′ + (1 + λ2)
{

ξ(1− ξ)(
η

2
f ′′ − ξg′)− ξ2( f ′2 − f f ′′)

}
+β
{

ξ(1− ξ)g′′′ − η

2
(1− ξ) f iv + ξ

(
f ′′2 − f f ′′′′

)}
= 0,

(34)

θ′′ + Pre f f (1− ξ)
[η

2
θ′ − ξh′

]
+ Pre f f ξ f θ′ + Pre f f D f φ′′ = 0, (35)

φ′′ + Sc(1− ξ)
[η

2
φ′ − ξ j′

]
+ Scξ f φ′ + ScSrθ′′ = 0, (36)

with the initial and boundary conditions

f (0, ξ) = 0, f ′(0, ξ) = 1, θ(0, ξ) = 1, φ(0, ξ) = 1,

f ′(∞, ξ) = 0, θ(∞, ξ) = 0, φ(∞, ξ) = 0,
(37)

To derive the subsidiary equations for g(η; ξ), h(η; ξ), and j(η; ξ) and their boundary
conditions, we take the derivatives of Equations (34)–(36) with respect to ξ. Thus, we obtain

(1 + β) f ′′′ + ξ(1− β)g′′′ + (1 + λ2)

{
(1− 2ξ)

η

2
f ′′ + (3ξ2 − 2ξ)g′ + ξ(1− ξ)

η

2
g′′ − 2ξ

(
f ′2 − f f ′′

)
−ξ2(2 f ′g′ − f ′′g− f g′′

)}
+ β

{
η

2
f (iv) − η

2
(1− ξ)g(iv) + f ′′2 − f f iv + ξ

(
2 f ′′g′′ − g f (iv) − f g(iv)

)}
= 0,

(38)

h′′ + Pre f f

[
(2ξ − 1)h− η

2
θ′ + (1− ξ)

η

2
h′
]
+ Pre f f

[
f θ′ + ξ

(
gθ′ + f h′

)]
+ Pre f f D f j′′ = 0 (39)

j′′ + Sc
[
(2ξ − 1)j− η

2
φ′ + (1− ξ)

η

2
j′
]
+ Sc

[
f φ′ + ξ

(
gφ′ + f j′

)]
+ ScSrh′′ = 0 (40)

subject to boundary conditions

g(0, ξ) = 0, g′(0, ξ) = 0, h(0, ξ) = 0, j(0, ξ) = 0,

g′(∞, ξ) = 0, h(∞, ξ) = 0, j(∞, ξ) = 0.
(41)

At this level of truncation, the terms
∂g
∂ξ

,
∂h
∂ξ

, and
∂j
∂ξ

and their derivative terms with

respect to η are neglected. Considering the present scheme, solutions of the equations
for the functions f (η; ξ), θ(η; ξ), φ(η; ξ), g(η; ξ), h(η; ξ), and j(η; ξ) are obtained using the
MatLab built-in package bvp4c.
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4.2. Homotopy Analysis Method

We select the initial guesses and the linear operator for the homotopy analysis method
(HAM) and the optimal homotopy analysis method (OHAM) as

f0(η) = 1− e−η , θ0(η) = e−η , φ0(η) = e−η , (42)

L f ( f ) = f ′′′ − f ′,

Lθ( f ) = f ′′ − f ,

Lφ( f ) = f ′′ − f ,

(43)

where L f , Lθ , and Lφ satisfy the following properties:

L f
[
A1 + A2eη + A3e−η

]
= 0,

Lθ

[
A4eη + A5e−η

]
= 0,

Lφ

[
A6eη + A7e−η

]
= 0,

(44)

where Ai(i = 1–7) are the arbitrary constants and have to be determined later.

5. Results and Discussion

The system of self-similar partial differential Equations (18)–(20) subject to the bound-
ary conditions (21) is solved directly by the homotopy analysis method, whereas local
nonsimilarity is applied at the second level of truncation. The system of self-similar or-
dinary differential Equations (34)–(36) subject to the boundary conditions (37) for the
functions f , θ, and φ and Equations (38)–(40) subject to the boundary conditions (41) for
the g, h, and j with ξ as a parameter is solved numerically. Table 1 shows the numerical
comparison of the values of f ′′(0, ξ), θ′(0, ξ), and φ′(0, ξ) obtained by the 15th-order homo-
topy analysis method, and with the values of convergence control parameters } f = −0.70,
}θ = −1.2, and }φ = −0.16 and the numerical solution of system of ordinary differential
equations with the help of computer software MatLab by considering arbitrary values of
the emerging parameters. We observe a significant agreement in the numerical results
obtained by both mathematical approaches.

Table 1. Comparison of numerical solutions with β = 0.1, λ2 = 0.2, Pre f f = 1.0, D f = 0.5, Sc = 1.0,
and Sr = 0.5 for τ = 0.75 and η ∈ [0, 10].

HAM LNS

f ′′(0, ξ) −0.837139 −0.833349
θ′(0, ξ) −0.414291 −0.414302
φ′(0, ξ) −0.668850 −0.661738

For ξ = 1, the steady-state flow given by Equations (24)–(26), we first obtain the
optimized values of the convergence control parameter by using Module GetOptiVar[m] of
the MATHEMATICA package BVPH 2.0. Table 2 shows the corresponding values of con-
vergence control parameters at different order of homotopy approximations. Table 3 shows
the average residual error of mth-order approximation of OHAM steady-state solution, and
we observe a decrease in the residual error for higher-order approximations. Table 4 shows
the convergence of steady-state approximations of OHAM solutions with optimized values
of convergence control parameters as } f = −1.3, }θ = −1.0, and }φ = −1.0.
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Table 2. Optimal values of convergence control parameters with β = 0.1, λ2 = 0.2, Pre f f = 1.0,
D f = 0.5, Sc = 1.0, and Sr = 0.5 for η ∈ [0, 10] and ξ = 1.0.

Order of Approximation
m } f }θ }φ Etot

m

2 −1.3564 −0.8199 −0.8199 1.0655× 10−3

4 −1.3864 −0.9012 −0.9012 9.3333× 10−5

6 −1.4128 −0.9500 −0.9500 1.4189× 10−6

8 −1.4325 −0.9832 −0.9832 2.7762× 10−6

10 −1.3173 −1.0091 −1.0091 7.0329× 10−7

Table 3. Average residual error of mth-order approximation of OHAM steady-state solution β = 0.1,
λ2 = 0.2, Pre f f = 1.0, D f = 0.5, Sc = 1.0, and Sr = 0.5 for η ∈ [0, 10] and ξ = 1.0.

Order of Approximation
m E f

m at } f = −1.31 Eθ
m at }θ = −1.0 Eφ

m at }φ = −1.0 Etot
m

6 8.2948× 10−8 1.2977× 10−5 1.2968× 10−5 2.6028× 10−5

10 3.2795× 10−10 3.4395× 10−7 3.4347× 10−7 6.8775× 10−7

16 1.1893× 10−13 3.3040× 10−9 3.2979× 10−9 6.6020× 10−9

24 5.0280× 10−18 1.5758× 10−10 1.5733× 10−10 3.1492× 10−10

30 3.3298× 10−21 8.8380× 10−12 8.8210× 10−12 1.7659× 10−11

36 2.5201× 10−24 5.5078× 10−13 5.4987× 10−13 1.1006× 10−12

40 2.2124× 10−26 9.0373× 10−14 9.0217× 10−14 1.8059× 10−13

44 2.2907× 10−27 1.5235× 10−14 1.5203× 10−14 3.0439× 10−14

Table 4. The convergence of steady-state approximations of OHAM solutions with β = 0.1, λ2 = 0.2,
Pre f f = 1.0, D f = 0.5, Sc = 1.0, Sr = 0.5, and ξ = 1.0.

m − f ′′(0) −θ′(0) −φ′(0)

5 1.04567 0.43765 0.43765
10 1.04446 0.43206 0.43206
14 1.04446 0.43043 0.43043
20 1.04446 0.42987 0.42987
25 1.04446 0.42976 0.42976
30 1.04446 0.42973 0.42973
35 1.04446 0.42972 0.42972
40 1.04446 0.42972 0.42972
45 1.04446 0.42972 0.42972
50 1.04446 0.42972 0.42972

5.1. Analysis of Solutions
5.1.1. Transient-State Solutions

Three-dimensional plots are shown in Figures 2–4; these surfaces are generated for
dimensionless time unsteady parameter ξ ∈ [0, 1] and for η ∈ [0, ∞]. The growth of solution
is observed with increase in ξ, and the effect of stretch vanishes for large values of η.

Figures 5–7 show the behavior of the dimensionless time τ on the development
of boundary layer thickness of velocity profile f ′(η, ξ), temperature profile θ(η, ξ), and
concentration profile φ(η, ξ), respectively. We observe a rapid development of boundary
layer thickness with increases in dimensionless time τ and gain the steady-state flow as
τ → ∞. Figures 8 and 9 show the influence of the β and λ2 on velocity profile, respectively,
and it is found that the velocity profile is increasing function of β and decreasing function
of λ2. Figures 10 and 11 show the influence of the D f and Pre f f on temperature profile,
respectively, and it is found that the temperature profile is increasing function of D f and
decreasing function of Pre f f . Figures 12 and 13 show the influence of the Sc and Sr on
concentration profile, respectively, and it is found that the velocity profile is decreasing
function of Sc and increasing function of Sr.
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Figure 2. Surface of f ′(ξ, η) for ξ ∈ [0, 1] and for η ∈ [0, ∞].

Figure 3. Surface of θ(ξ, η) for ξ ∈ [0, 1] and for η ∈ [0, ∞].

Figure 4. Surface of φ(ξ, η) for ξ ∈ [0, 1] and for η ∈ [0, ∞].
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Figure 5. Influence of τ on f ′(η, ξ).

Figure 6. Influence of τ on θ(η, ξ).

Figure 7. Influence of τ on φ(η, ξ).
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Figure 8. Influence of β on f ′(η, ξ).

Figure 9. Influence of λ2 on f ′(η, ξ).

Figure 10. Influence of D f on θ(η, ξ).
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Figure 11. Influence of Pre f f on θ(η, ξ).

Figure 12. Influence of Sc on φ(η, ξ).

Figure 13. Influence of Sr on φ(η, ξ).
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5.1.2. Steady-State Solutions

In Figures 14 and 15, we compare the exact solutions of f ′(η) and the analytical series
solution derived by OHAM . It is found that the derived series solution agrees with the
exact solution for different values of β and λ2. Moreover, the small values of Deborah
number β are associated with the liquid-like behavior of the matter, and for the large
values of Deborah number β, solid-like behavior is associated. Keeping this fact in mind,
we plotted the graphs with only small values of Deborah number β. We observed that
the velocity profile f ′(η) is an increasing function with the increase in Deborah number
β. On the other hand, the velocity profile f ′(η) is a decreasing function of increasing
relaxation time λ2. Figures 16 and 17 show that the OHAM solution of θ(η) agrees with the
numerical solutions obtained by MATHEMATICA. As we know, for the small values of
effective Prandtl number Pre f f the fluid is highly conductive. Physically, if Pre f f increases,
the thermal diffusivity decreases and this effect leads to the decrease in thermal energy
transfer ability; thus, we have a decrease in thermal boundary layer thickness. Figure 17
shows the influence of effective Prandtl number Pre f f on the temperature profile θ(η), and,
as expected, with increase in Pre f f , we observe a decrease in temperature and thermal
boundary layer thickness. Figure 16 represents the effect of Dufour number D f on the
temperature profile and thermal boundary layer thickness; it is found that the temperature
is an increasing function of the Dufour number D f and we observe increased thermal
boundary layer thickness with increasing Dufour number D f . Figures 18 and 19 show
the effect of Schmidt number Sc on the concentration profile and it is found that the
concentration profile is the decreasing function of the Schmidt number Sc. There is aneffect
of Soret number Sr on the concentration profile, and it is found that the concentration
profile is the rapidly increasing function of the Soret number Sr.

Figure 14. Influence of λ2 on f ′(η). Solid line: OHAM solution, solid circles: exact solution.
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Figure 15. Influence of β on f ′(η). Solid line: OHAM solution, solid circles: exact solution.

Figure 16. Influence of D f on θ(η). Solid line: OHAM solution, solid circles: numerical solution.

Figure 17. Influence of Pre f f on θ(η). Solid line: OHAM solution, solid circles: numerical solution.
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Figure 18. Influence of Sc on φ(η). Solid line: OHAM solution, solid circles: numerical solution.

Figure 19. Influence of Sr on φ(η). Solid line: OHAM solution, solid circles: numerical solution.

5.2. Dimensionless Numbers Analysis

The combined effect of Deborah number β and λ2 on the skin friction coefficient is
shown in Table 5. Similar behavior is obtained by HAM and LNS methods, and results
indicate that the magnitude of the skin friction coefficient is a decreasing function of β and
increasing function of λ2. Table 6 shows the numerical values of local Nusselt number
and Sherwood number given by (15) with different values of emerging parameters with
ξ = 0.5 and Rd = 0.1. The results indicate that the magnitude of local Nusselt number
and Sherwood number increases with increase in Deborah number β and decreases with
increase in λ2, respectively. The magnitude of local Nusselt number increases with increase
in effective Prandtl number Pre f f , whereas Sherwood number is a decreasing function of
this parameter. The magnitude of local Nusselt number decreases with increase in Dufour
number D f ,; in other words, an increase in D f decreases the temperature. On the other
hand, magnitude of Sherwood number increases with increase in D f . The magnitude of
local Nusselt number decreases with increase in Schmidt number Sc,; in other words, an
increase in Sc decreases the temperature. On the other hand, magnitude of Sherwood
number increases with increase in Sc. The magnitude of local Nusselt number increases
with increase in Soret number Sr; in other words, an increase in Sr increases the temperature.
On the other hand, magnitude of Sherwood number decreases with increase in Sr.
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Table 5. The impact of emerging parameters on the local skin friction coefficient C fx .

β λ2 1/2ξ
1
2 (Rex)

1/2C fx

HAM LNS

0.1 0.2 −0.810916 −0.810136579708008
0.2 −0.865708 −0.862813397684096
0.3 −0.92212 −0.928645306198704
0.4 −1.02733 −1.016061707634548
0.1 0.5 −0.716637 −0.715574452433584

0.6 −0.691239 −0.693642216319338
0.7 −0.670491 −0.673674640038218
0.8 −0.655178 −0.655395338946309

Table 6. The impact of emerging parameters on the Nusselt number Nux and Sherwood number Shx

with Rd = 0.1.

β λ2 Pre f f D f Sc Sr ξ
1
2 (Rex)

−1/2Nux ξ
1
2 (Rex)

−1/2Shx

HAM LNS HAM LNS

0.1 0.2 0.1 0.3 0.2 0.3 −0.191064 −0.193536 −0.292952 −0.292298
0.2 −0.191180 −0.193776 −0.293074 −0.293147
0.3 −0.191271 −0.193961 −0.293169 −0.293917
0.4 −0.191341 −0.194120 −0.293238 −0.294629
0.1 0.5 −0.192781 −0.192170 −0.285601 −0.287609

0.6 −0.192543 −0.191798 −0.285316 −0.286282
0.7 −0.192313 −0.191454 −0.285040 −0.285050
0.8 −0.192091 −0.191134 −0.284773 −0.283899
0.2 0.1 −0.193556 −0.193536 −0.292952 −0.292298

0.2 −0.272448 −0.277065 −0.286259 −0.288730
0.3 −0.347235 −0.344452 −0.285995 −0.286049
0.4 −0.402231 −0.400301 −0.285730 −0.283756
0.1 0.1 −0.198235 −0.197816 −0.292952 −0.292119

0.2 −0.195624 −0.195677 −0.286259 −0.292208
0.3 −0.192757 −0.193536 −0.285995 −0.292298
0.4 −0.402231 −0.191393 −0.285730 −0.292388
0.3 0.1 −0.196925 −0.196511 −0.198721 −0.196626

0.2 −0.192260 −0.193536 −0.290406 −0.292298
0.3 −0.191285 −0.191183 −0.366907 −0.369898
0.4 −0.186176 −0.189153 −0.433794 −0.435793
0.3 0.1 −0.193544 −0.193439 −0.298659 −0.295350

0.2 −0.193550 −0.193487 −0.297816 −0.293824
0.3 −0.193556 −0.193536 −0.293339 −0.292298
0.4 −0.193561 −0.193585 −0.290047 −0.290770

5.3. Closing Remarks

The unsteady flow with heat and mass transfer over stretching sheet with Soret and
Dufour effects is numerically studied using two different methods. The homotopy analysis
method is straightforward to apply on partial differential equations but requires very long
processing time at higher order of approximations, which may be considered as a disadvan-
tage of the homotopy analysis method. On the other hand, the numerical solutions of system
of ordinary differential equations at second level of truncation are easily computed with
very small processing time. The results obtained by both methods are very close and the
impact of emerging parameters is equivalent in both approaches. On the basis of processing
time, the local nonsimilarity method is the recommended option. The influence of emerg-
ing parameters on velocity, temperature, and concentration profiles can be summarized
as follows:
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• The analytical solution obtained by OHAM for the similarity equations agrees with
the exact solution of steady-state velocity profile and with the numerical solution of
steady-state temperature and concentration profile.

• The velocity profile is found to be the increasing function of Deborah number β and
decreasing function of λ2.

• The temperature profile decreases with increase in effective Prandtl number Pre f f ,
whereas it increases with increase in Dufour number D f . There is no significant effect of
Soret number Sr and Schmidt number Sc on the temperature profile in the steady case.

• The concentration profile φ(η) is an increasing function of Soret number Sr and decreas-
ing function of Schmidt number Sc. There is no significant effect of effective Prandtl
number Pre f f and Dufour number D f on the concentration profile in the steady case.

• The behavior of effective Prandtl number Pre f f on the temperature profile is the same as
the behavior of Schmidt number Sc on the concentration profile. Similarly, the behavior
of Dufour number D f on the temperature profile is the same as the behavior of Soret
number Sr on the concentration profile, in both steady and transient flow cases.

• We observed a development of velocity, temperature, and concentration boundary
layers as the dimensionless time τ increased from 0 and the boundary layers gained the
steady state as dimensionless time τ → ∞.

• The behavior of all emerging parameters for all profiles is the same as in the case of
steady-state flow.

• The skin friction coefficient is a decreasing function of β and increasing function of λ2,
local Nusselt number is an increasing function of effective Prandtl number Pre f f , and
Sherwood number is a decreasing function of this parameter.

• The local Nusselt number decreases with increase in Dufour number D f , and Sher-
wood number increases with increase in D f .

• The local Nusselt number decreases with increase in Schmidt number Sc, and Sher-
wood number increases with increase in Sc.

• The local Nusselt number increases with increase in Soret number Sr, and Sherwood
number decreases with increase in Sr.

Author Contributions: Formal analysis, S.I.A.; Investigation, S.I.A. and M.A.H.; Methodology,
H.A.N., M.M. and M.A.; Project administration, H.A.N.; Resources, A.M.R.; Software, M.N.; Super-
vision, M.A. and A.M.R.; Visualization, M.A.H.; Writing—original draft, H.A.N., M.M., M.N. and
M.A.; Writing—review & editing, M.M. and M.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Deputyship for Research & Innovation, Ministry of
Education in Saudi Arabia grant number (IF2/PSAU/2022/01/22970).

Data Availability Statement: The data is generated by the authors by using FORTRAN Laher-90, no
from other source.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research and
Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project
number (IF2/PSAU/2022/01/22970).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Crane, L.J. Flow Past a Stretching Plate. J. Appl. Math. Phys. (ZAMP) 1970, 21, 60–74. [CrossRef]
2. Gupta, P.S.; Gupta, A.S. Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing. Can. J. Chem. Eng. 1977, 55, 744–746.

[CrossRef]
3. Chakrabarti, A.; Gupta, A.S. Hydromagnetic Flow and Heat Transfer Over a Stretching Sheet. Q. Appl. Math. 1979, 33, 73–78.

[CrossRef]
4. McLeodK, J.B.; Rajagopal, R. On the Uniqueness of Flow of a Navier-Stokes Fluid Due to a Stretching Boundary. In Analysis and

Continuum Mechanics; Springer: Berlin/Heidelberg, Germany, 1987; Volume 98, pp. 385–393.
5. Liao, S.J. A new branch of solutions of boundary-layer flows over an impermeable stretched plate. Int. J. Heat Mass Transf. 2005,

48, 2529–2539. [CrossRef]

http://doi.org/10.1007/BF01587695
http://dx.doi.org/10.1002/cjce.5450550619
http://dx.doi.org/10.1090/qam/99636
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.01.005


Mathematics 2022, 10, 4634 19 of 20

6. Ishak, A.; Nazar, R.; Pop, I. Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. WSEAS Trans. Heat Mass
Transf. 2008, 44, 921–927. [CrossRef]

7. Khaleque, T.; Abdus Samad, M. Effects of Radiation, Heat Generation and Viscous Dissipation on MHD Free Convection Flow
along a Stretching Sheet. Res. J. Appl. Sci. Eng. Technol. 2010, 2, 368–377.

8. Hayat, T.; Mustafa, M.; Shehzad, S.A.; Obaidat, S. Melting heat transfer in the stagnation point flow of an upper convected
Maxwell fluid past a stretching sheet. Int. J. Numer. Methods Fluids 2012, 68, 233–243. [CrossRef]

9. Hayat, T.; Iqbal, Z.; Mustafa, M.; Hendi, A. Melting heat transfer in the stagnation point flow of third grade fluid past a stretching
sheet with viscous dissipation. Therm. Sci. 2013, 17, 865–875. [CrossRef]

10. Hayat, T.; Shehzad, S.A.; Al-Mezel, S.; Alsaedi, A. Three-dimensional flow of an Oldroyd-B fluid over a bidirectional stretching
surface with prescribed surface temperature and prescribed surface heat flux. J. Hydrol. Hydromechan. 2014, 62, 117–125. [CrossRef]

11. Hayat, T.; Niaz, A.; Ali, N. Effects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluid. Commun.
Nonlinear Sci. Numer. Simul. 2008, 13, 1581–1591. [CrossRef]

12. Tripathi, D.; Ali, N.; Hayat, T.; Chaube, M.K.; Hendi, A.A. Peristaltic flow of MHD Jeffrey fluid through finite length cylindrical
tube. Appl. Math. Mech. Engl. Ed. 2011, 32, 1231–1243. [CrossRef]

13. Das, K. Influence of slip and heat transfer on MHD peristaltic flow of a Jeffrey fluid in an inclined asymmetric porous channel.
Indian J. Math. 2012, 54, 19–45.

14. Qasim, M. Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alex. Eng. J. 2013, 52, 571–575.
[CrossRef]

15. Hayat, T.; Shehzad, S.A.; Alsaedi, A. Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and
thermal radiation. Appl. Math. Mech. Engl. Ed. 2013, 34, 823–832. [CrossRef]

16. Farooq, A.A.; Batiha, B.; Siddiqui, A.M. Lifting of a Jeffrey fluid on a vertical belt under the simultaneous effects of magnetic field
and wall slip conditions. Int. J. Adv. Math. Sci. 2013, 1, 91–97. [CrossRef]

17. Hayat, T.; Iqbal, Z.; Mustafa, M.; Alsaedi, A. Unsteady flow and heat transfer of Jeffrey fluid over a stretching sheet. Therm. Sci.
2014, 18, 1069–1078. [CrossRef]

18. Hayat, T.; Iqbal, Z.; Mustafa, M.; Alsaedi, A. Stagnation-point flow of Jeffrey fluid with melting heat transfer and Soret and
Dufour effects. Int. J. Numer. Methods Heat Fluid Flow 2014, 24, 402–418. [CrossRef]

19. Reddy, G.B.; Sreenadh, S.; Reddy, R.H.; Kavitha, A. Flow of a Jeffrey fluid between torsionally oscillating disks. Ain Shams Eng. J.
2015, 6, 355–362. [CrossRef]

20. Abreu, C.R.A.; Alfradique, M.F.; Telles, A.S. Boundary layer flows with Dufour and Soret effects: I: Forced and natural convection.
Chem. Eng. Sci. 2006, 61, 4282–4289. [CrossRef]

21. Cheng, C.Y. Soret and Dufour effects on heat and mass transfer by natural convection from a vertical truncated cone in a fluid-
saturated Porous medium with variable wall temperature and concentration. Int. Commun. Heat Mass Transf. 2010, 37, 1031–1035.
[CrossRef]

22. Abdel-Rahman, G.M. Thermal-diffusion and MHD for Soret and Dufour’s effects on Hiemenz flow and mass transfer of fluid
flow through porous medium onto a stretching surface. Physica B 2010, 405, 2560–2569. [CrossRef]

23. Hayat, T.; Nawaz, M. Soret and Dufour effects on the mixed convection flow of a second grade fluid subject to Hall and ion-slip
currents. Int. J. Numer. Methods Fluids 2011, 67, 1073–1099. [CrossRef]

24. Hayat, T.; Safdar, A.; Awais, M.; Mesloub, S. Soret and Dufour effects for three-dimensional flow in a viscoelastic fluid over a
stretching surface. Int. J. Heat Mass Transf. 2012, 55, 2129–2136. [CrossRef]

25. Moorthy, M.B.K.; Kannan, T.; Senthilvadivu, K. Soret and Dufour Effects on Natural Convection Heat and Mass Transfer Flow
past a Horizontal Surface in a Porous Medium with Variable Viscosity. WSEAS Trans. Heat Mass Transf. 2013, 8, 121–130.

26. Awais, M.; Hayat, T.; Nawaz, M.; Alsaedi, A. Newtonian heating, thermal-diffusion and diffusion-thermo effects in an axisymmetric
flow of a Jeffery fluid over a stretching surface. Braz. J. Chem. Eng. 2015, 32, 555–561. [CrossRef]

27. Liao, S.J. Beyond Perturbation: Introduction to Homotopy Analysis Method; CRC Press LLC: Boca Raton, FL, USA, 2004.
28. Liao, S.J. Homotopy Analysis Method in Nonlinear Differential Equations; Higher Education Press: Beijing, China, 2012.
29. Liao, S.J. Advances in the Homotopy Analysis Method; World Scientific Publishing Co., Pte. Ltd.: Singapore, 2014.
30. Sparrow, E.M.; Yu, H.S. Local Non-Similarity Thermal Boundary-Layer Solutions. J. Heat Transf. 1971, 93, 328–334. [CrossRef]
31. Chen, T.S.; Sparrow, E.M. Flow and Heat Transfer Over a Flat Plate With Uniformly Distributed, Vectored Surface Mass Transfer.

J. Heat Transf. 1976, 98, 674–676. [CrossRef]
32. Rabadi, N.; Dweik, Y. Local Non-similarity Solutions for Mixed Convection Flow with Lateral Mass Flux over an Inclined Flat

Plate Embedded in a Saturated Porous Medium. J. King Saud Univ.-Eng. Sci. 1995, 7, 267–286. . [CrossRef]
33. Massoudi, M. Local non-similarity solutions for the flow of a non-Newtonian fluid over a wedge. Int. J. Non-Linear Mech. 2001,

36, 961–976. [CrossRef]
34. Lok, Y.; Norsarahaida, A. Local Nonsimilarity Solution for Vertical Free Convection Boundary Layers. Matematika 2002, 18, 21–31.
35. Mushtaq, M.; Asghar, S.; Hossain, M. Mixed convection flow of second grade fluid along a vertical stretching flat surface with

variable surface temperature. Heat Mass Transf. 2007, 43, 1049–1061. [CrossRef]
36. Kairi, R.R.; RamReddy, C.; Raut, S. Influence of viscous dissipation and thermo-diffusion on double diffusive convection over a

vertical cone in a non-Darcy porous medium saturated by a non-Newtonian fluid with variable heat and mass fluxes. Nonlinear
Eng. 2017, 7, 65–72. [CrossRef]

http://dx.doi.org/10.1007/s00231-007-0322-z
http://dx.doi.org/10.1002/fld.2503
http://dx.doi.org/10.2298/TSCI110405119H
http://dx.doi.org/10.2478/johh-2014-0016
http://dx.doi.org/10.1016/j.cnsns.2007.02.008
http://dx.doi.org/10.1007/s10483-011-1496-7
http://dx.doi.org/10.1016/j.aej.2013.08.004
http://dx.doi.org/10.1007/s10483-013-1710-7
http://dx.doi.org/10.14419/ijams.v1i2.741
http://dx.doi.org/10.2298/TSCI110907092H
http://dx.doi.org/10.1108/HFF-02-2012-0023
http://dx.doi.org/10.1016/j.asej.2014.09.004
http://dx.doi.org/10.1016/j.ces.2005.10.030
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.06.008
http://dx.doi.org/10.1016/j.physb.2010.03.032
http://dx.doi.org/10.1002/fld.2405
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.12.016
http://dx.doi.org/10.1590/0104-6632.20150322s00001918
http://dx.doi.org/10.1115/1.3449827
http://dx.doi.org/10.1115/1.3450620
http://dx.doi.org/10.1016/S1018-3639(18)30630-5
http://dx.doi.org/10.1016/S0020-7462(00)00061-5
http://dx.doi.org/10.1007/s00231-006-0177-8
http://dx.doi.org/10.1515/nleng-2016-0054


Mathematics 2022, 10, 4634 20 of 20

37. Sardar, H.; Khan, M.; Ahmad, L. Local non-similar solutions of convective flow of Carreau fluid in the presence of MHD and
radiative heat transfer. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 1–13. [CrossRef]

38. Kucharlapati, S.L.; Rao, C. Variations in drag and heat transfer at a vertical plate due to steady flow of a colloidal suspension of
nano particles in a base fluid. Mater. Today Proc. 2019, 18, 2084–2088. [CrossRef]

39. RamReddy, C.; Naveen, P.; Srinivasacharya, D. Influence of Non-linear Boussinesq Approximation on Natural Convective Flow
of a Power-Law Fluid along an Inclined Plate under Convective Thermal Boundary Condition. Nonlinear Eng. 2019, 8, 94–106.
[CrossRef]

http://dx.doi.org/10.1007/s40430-018-1561-2
http://dx.doi.org/10.1016/j.matpr.2019.06.264
http://dx.doi.org/10.1515/nleng-2017-0138

	Introduction
	Mathematical Formulation
	Steady-State Flow
	Solution Methodology
	Local Nonsimilarity Method
	First Level of Truncation
	Second Level of Truncation

	Homotopy Analysis Method

	Results and Discussion
	Analysis of Solutions
	Transient-State Solutions
	Steady-State Solutions

	Dimensionless Numbers Analysis
	Closing Remarks

	References

