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Abstract: In this paper, we construct a highly simplified mathematical model for studying the problem
of conjugate heat transfer in gas turbine blades and their cooling ducts. Our simple model focuses on
the relevant coupling structures and aims to reduce the unrelated complexity as much as possible.
Then, we apply the port-Hamiltonian formalism to this model and its subsystems and investigate the
interconnections. Finally, we apply a simple spatial discretization to the system to investigate the
properties of the resulting finite-dimensional port-Hamiltonian system and to determine whether the
order of coupling and discretization affect the resulting semi-discrete system.
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1. Introduction

The role of gas turbines in the power grid will most likely change as the share of
renewable energy sources continues to rise. Their short start-up times and high efficiency
make them well suited as backup power plants, and leading manufacturers are working on
new technologies to make them suitable for use in an energy storage system, in which they
would run on hydrogen or synthetic methane. This brings new requirements and places
new demands on the design process. While there is an almost overwhelming amount
of engineering research and development, surprisingly little has been conducted on the
mathematics for gas turbines. A mathematical approach to the turbine blade design is being
attempted as part of the GivEn project [1], which aims to combine multiphysics simulations
with multicriteria shape optimization.

One of the physical processes that must be considered to obtain useful results from
shape optimization is heat transfer within the turbine blade. Since gas turbines operate
at extreme temperatures for efficiency reasons—often close to or even above the nominal
melting point of the alloy used for the turbine blades—measures must be taken to protect
the blade from the 1200 °C to 1500 °C of the combustion gas surrounding it. One method
is to insert small cooling channels into the turbine blade, filled with a continuous stream
of relatively cool air, to cool the blade by convection cooling from the inside. The shape,
arrangement, and wall structure of these channels are themselves the subject of extensive
engineering research, as described, for example, in [2,3]. Because the flow in these cooling
channels is intentionally kept highly turbulent to optimize heat transfer, it is difficult to
simulate the flow explicitly. While it is possible, it is usually too sensitive and costly to do so
as part of a multiphysics simulation. Instead, in most cases, a parametric one-dimensional
model is used. Although quite dated, [4,5] gives a reasonable overview of the basics of
such a one-dimensional model. For more details on the background of port-Hamiltonian
systems and their variety of applications, we refer the interested reader to [6–9].
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Combining these cooling channels with the heat transfer inside the turbine blade, we
obtain the so-called conjugate heat transfer (CHT) problem, i.e., strong thermal interactions
between solids and fluids. Although [10] focuses on the coupling with the hot fluid
surrounding the blade and not with the internal cooling fluid, both problems belong to the
same large group. Alternatively, [11] considers both the external and internal fluids, but
places little emphasis on coupling.

In this paper, we present a highly simplified model of conjugate heat transfer involving
the turbine blade and a cooling channel. While this model is too simplified to be useful for
actual engineering purposes, it is intended to represent the coupling structure between the
turbine blade and a cooling channel and to allow us to study this coupling without having to
deal with other engineering difficulties that might cloud the results. We extend and improve
on the work conducted in [12,13], in which we had considered a one-dimensional model
for heat conduction within the blade metal, which led to strange and undesirable behaviors
and properties of the system. Instead, we will consider a two-dimensional heat equation
and investigate whether this eliminates the problems of the one-dimensional model. We
then formulate the model system as an infinite-dimensional port-Hamiltonian system (pHS)
and apply a spatial discretization to obtain a finite-dimensional pHS. Port-Hamiltonian
systems are closely related to the Hamiltonian formalism, which was originally developed
in theoretical physics, and are therefore well suited for modeling physical systems. The
formalism makes conservation laws, a property central to virtually all physical systems,
explicit and allows the construction of new port-Hamiltonian systems by connecting two
pHSs with a suitable coupling. For a formal discussion of infinite-dimensional pHSs
with boundary flow, see [14]. It also allows time discretization schemes that preserve the
conservation laws of the continuous system [15]. The proposed discretization is a discrete
form of the port-Hamiltonian system and hence we immediately obtain a discrete form of
the dissipativity of the scheme and hence the stability.

The present paper is organized as follows. In Section 2, we introduce and motivate
the mathematical model of the coupled system we study. In Section 3, we present a port-
Hamiltonian formulation for each of the subsystems and study the coupling structure of
their connection to determine whether the connection of these two subsystems forms a pHS
for the overall system. Section 4 will contain a spatial discretization of the pHS formulated
in Section 3. Here, we will investigate whether the resulting semi-discrete systems form
finite-dimensional port Hamiltonian systems and whether there is a difference between
the coupling of the discretized systems and the discretization of the coupled system.
Finally, we will summarize the results in Section 5, outline open questions, and make some
concluding remarks.

2. The Model System

Here, we introduce the mathematical model of the coupled system under investigation.
Let Ωm = (0, 1) × (0, 1) ⊂ R2 denote the spatial domain of the blade metal. The heat
equation on Ωm is given by

∂T
∂t

(x, y, t) =
1

cmρm
div
(
λ grad T(x, y, t)

)
for (x, y) ∈ Ωm, (1)

where λ is the material’s conductivity and ρm is the density of the blade metal. Here,
cm denotes the isochoric specific heat capacity of the metal, i.e., the specific heat capacity at
constant volume. Analogous definitions hold for ρc, cc and the cooling channel. In Figure 1,
we give a rough sketch of the model setting.
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For ∂ Ωc, we then have the boundary condition

−λ
∂T
∂x

(1,y, t) = h1
(
T (1,y, t)−Θ(y, t)

)
for (1,y) ∈ ∂ Ω, (3)

where h1 is the heat flux coefficient of the interface to the cooling channel and Θ denotes the
temperature of the cooling channel and is governed by a transport equation with constant velocity v
and an additional source term describing the heat flux into the channel:

∂ Θ
∂ t

(y, t) = −v
∂ Θ
∂y

(y, t)+
h1

ccρc

(
T (1,y, t)−Θ(y, t)

)
, (4)

Θ(0, t) = Θin(t). (5)

3. Port-Hamiltonian Formulation 75

In this section, we formulate port-Hamiltonian systems for each of the two subsystems. To this 76

end, we will use quadratic Hamiltonians (referred to as the Lyapunov formulation in [26]) rather 77

than physical (thermodynamic) energy for two reasons. First, the resulting boundary ports of the 78

heat equation will involve measurable quantities relevant in practice. Second, and more importantly, 79

the transport equation causes problems with a non-quadratic Hamiltonian. 80

3.1. Heat Equation 81

For the heat equation in the metal we choose the Hamiltonian

H(t) =
1
2

∫

Ωm

1
ρ(z)cm(z)

q(t,z)2 dz (6)

with q(t,z) the internal energy density, at point z = (x,y)⊤ and time t. We assume a Dulong-Petit-like 82

model for q, i.e. q(t,z) = ρ(z)cm(z)T (t,z) with T (t,z) the temperature. For further thermodynamic 83

details, we refer the reader to [4]. These assumptions and choice of Hamiltonian are similar to those 84

made in [26], there called “Lyapunov formulation”. 85

Please note that the chosen Hamiltonian is neither the physical energy nor the physical en- 86

tropy. While it is not a physically meaningful quantity, it still satisfies all properties required for a 87

Hamiltonian. It also has a few advantages for our use case, such as nice boundary port variables and 88

compatibility with the transport equation, as seen later on. 89

Choosing the Lebesgue space L2(Ωm) as state space and q as our state variable, we obtain the
flow and effort variables

eT = δqH = T , fT = ∂tq = ρcm∂tT , (7)
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Figure 1. Schematic of the 2D model system with ∂ Ωext marked as a red line and ∂ Ωc as a blue line.

Figure 1. Schematic of the 2D model system with ∂Ωext marked as a red line and ∂Ωc as a blue line.

For alternative (variational) formulations of the heat equation, we refer the reader to
the classical work of Goodman [16] and especially the approach of Biot [17].

The left, upper and lower boundary (x = 0, y = 0 and y = 1) should be in contact
with a thermal reservoir with a given temperature Text, leading to a Robin-BC:

−λ
∂T
∂x

(x, y, t) = h0
(
Text(t)− T(x, y, t)

)
for x = 0, y ∈ [0, 1] (2a)

−λ
∂T
∂y

(x, y, t) = h0
(
Text(t)− T(x, y, t)

)
for x ∈ (0, 1), y = 0 (2b)

λ
∂T
∂y

(x, y, t) = h0
(
Text(t)− T(x, y, t)

)
for x ∈ (0, 1), y = 1, (2c)

where h0 denotes the heat flux coefficient across the boundary to the thermal reservoir.
In the following, we denote these parts of the boundary with ∂Ωext. The right boundary
(x = 1), which is in contact with the cooling channel, will be denoted by ∂Ωc, so that
∂Ωm = ∂Ωext ∪ ∂Ωc.

For ∂Ωc, we then have the boundary condition

− λ
∂T
∂x

(1, y, t) = h1
(
T(1, y, t)−Θ(y, t)

)
for (1, y) ∈ ∂Ω, (3)

where h1 is the heat flux coefficient of the interface to the cooling channel and Θ denotes the
temperature of the cooling channel and is governed by a transport equation with constant
velocity v and an additional source term describing the heat flux into the channel:

∂Θ
∂t

(y, t) = −v
∂Θ
∂y

(y, t) +
h1

ccρc

(
T(1, y, t)−Θ(y, t)

)
, (4)

Θ(0, t) = Θin(t). (5)

3. Port-Hamiltonian Formulation

In this section, we formulate port-Hamiltonian systems for each of the two subsystems.
To this end, we will use quadratic Hamiltonians (referred to as the Lyapunov formulation in [18])
rather than physical (thermodynamic) energy for two reasons. First, the resulting boundary
ports of the heat equation will involve measurable quantities relevant in practice. Second, and
more importantly, the transport equation causes problems with a non-quadratic Hamiltonian.
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3.1. Heat Equation

For the heat equation in the metal, we choose the Hamiltonian

H(t) =
1
2

∫

Ωm

1
ρ(z)cm(z)

q(t, z)2 dz (6)

with q(t, z) being the internal energy density, at point z = (x, y)> and time t. We assume a
Dulong-Petit-like model for q, i.e. q(t, z) = ρ(z)cm(z)T(t, z) with T(t, z) the temperature.
For further thermodynamic details, we refer the reader to [19]. These assumptions and
choice of Hamiltonian are similar to those made in [18], called the “Lyapunov formulation”.

Please note that the chosen Hamiltonian is neither the physical energy nor the physical
entropy. While it is not a physically meaningful quantity, it still satisfies all properties
required for a Hamiltonian. It also has a few advantages for our use case, such as nice
boundary port variables and compatibility with the transport equation, as observed later on.

Choosing the Lebesgue space L2(Ωm) as state space and q as our state variable, we
obtain the flow and effort variables

eT = δq H = T, fT = ∂tq = ρcm∂tT, (7)

with δq denoting the variational derivative with regards to the internal energy density, q.
With the above mentioned assumptions, the first law of thermodynamics gives us

∂tq(t, z) = −div ΦQ(t, z), (8)

with the heat flux ΦQ. From the (isotropic) Fourier’s law, we have

ΦQ(t, z) = −λ grad T(t, z). (9)

Note that an anisotropic thermal conductivity would also be possible, as in [18],
but would not add anything interesting to the model, while complicating the coupling
formulation. Therefore, we introduce the additional flow and effort variables similar to [18]

eQ = ΦQ, fQ = − grad T, (10)

to obtain the system of equations
(

fT
fQ

)
=

(
0 −div

− grad 0

)(
eT
eQ

)
, (11)

eQ = λ fQ. (12)

We can now calculate the time derivative of the Hamiltonian:

dtH =
∫

Ωm
ρ(z)cm(z)∂tT(t, z)T(t, z)dx

= −
∫

Ωm
div(ΦQ)T dx

=
∫

Ωm
ΦQ grad(T)dx−

∫

∂Ωm
TΦQn dγ

= −
∫

Ωm
eQ fQ dx−

∫

∂Ωm
eT(eQn)dγ,

(13)

recovering the same boundary port variables as [18], i.e., the temperature T and the heat
flux into the system −ΦQ · n. Both of these quantities are commonly used as boundary
conditions in engineering applications. In the following, we present the special case of a
Robin boundary condition involving both of them.
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Since
(

0 −div
− grad 0

)
is skew-adjoint on the space L2(Ωm)× L2(Ωm)2 with suit-

able boundary conditions, cf. e.g., [20], we can now formulate the Dirac structure Dm ⊂
(L2(Ωm)× L2(Ωm)2 × L2(∂Ωm))2 for our system:

Dm =










fT
fQ
f∂


,




eT
eQ
e∂




 ∈ (L2(Ωm)× L2(Ωm)

2 × L2(∂Ωm))
2

∣∣∣∣∣∣
eT ∈ H1(Ωm),

eQ ∈ H(div) and
(

fT
fQ

)
=

(
0 −div

− grad 0

)(
eT
eQ

)
,

e∂ = eT |∂Ωm ,
f∂ = eQ · n|∂Ωm

}
.

Here, H1(Ωm) denotes the classical Sobolev space and H(div) consists of all functions f in
L2(Ωm), which are weakly differentiable with div f ∈ L2(Ωm) and f · n|∂Ωm ∈ L2(∂Ωm).

Since our model system from Section 2 has different boundary conditions on different
parts of the boundary, we first split the single boundary port into two ports, one each for
∂Ωext and ∂Ωc, giving us

f∂,e = f∂|∂Ωext , e∂,e = e∂|∂Ωext , f∂,c = f∂|∂Ωc , e∂,c = e∂|∂Ωc . (14)

The latter part will then be coupled to the cooling channel later. To replicate the Robin
boundary conditions (2), we set

eQn = ΦQn = h0(T − Text) on ∂Ωext (15)

which is equivalent to the Dirac structure

De =

{((
f∂,e
w

)
,
(

e∂,e
u

))
∈ (L2(∂Ωext)

2)2
∣∣∣∣
(

f∂,e
w

)
=

(
h0 −h0
h0 0

)(
e∂,e
u

)}

with the new input u = Text and the new output w = h0T.
The power balance of Equation (13) becomes

dtH = −
∫

Ωm
eQ fQ dx−

∫

∂Ωm
eT(eQn)dγ

= −
∫

Ωm
eQ fQ dx−

∫

∂Ωext
h0e2

T dγ +
∫

∂Ωext
h0eTText dγ−

∫

∂Ωc
eT(eQn)dγ

= −
∫

Ωm
eQ fQ dx−

∫

∂Ωext
h0e2

∂,e dγ +
∫

∂Ωext
uw dγ−

∫

∂Ωc
e∂,c f∂,c dγ,

(16)

presenting an additional dissipative term on the boundary. We can also observe the new
inputs and outputs u = Text and y = h0T for the external boundary, as well as f∂,c and e∂,c
for the coupling boundary.

Remark 1. Had we used the physical energy as a Hamiltonian, the additional term would be linear
in the temperature instead of quadratic. We would then have to ensure the temperature always stays
positive for it to be dissipative. While that is a reasonable requirement from a physical point of view,
it restricts the choice of numerical schemes.

Remark 2. The above model, including the splitting of the boundary into two parts with separate
boundary conditions, is not restricted to the square shape used as an example. It also holds for more
general shapes and can be extended to higher dimensions, so long as the boundary is sufficiently
well-behaved.
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3.2. Cooling Channel

We remind the reader that the cooling channel is modelled by the following PDE:

∂Θ
∂t

(t, y) = −v
∂Θ
∂y

(t, y) +
h1

ccρc

(
T(t, 1, y)−Θ(t, y)

)
, (17)

with the temperature of the cooling fluid Θ(t, y) in the cooling channel, the heat transfer
coefficient h1 and assuming that ρc and cc are constant. To model this kind of PDE as a pHS,
we require a Hamiltonian quadratic in Θ. For consistency with the previous sub-system,
we choose the Hamiltonian

H =
1
2

∫ 1

0

1
ρccc

q2
c (t, y)dy, (18)

with the internal energy qc(t, y) = ρcccΘ(t, y). We then have

eΘ = δqc H = Θ, fΘ =
∂qc

∂t
= ρccc

∂Θ
∂t

. (19)

In regard to the proper spaces of these variables, as well as the ones below, we refer the
reader to [21], where this question has been considered in detail. We choose

J = −vρccc
∂

∂y
, R = h1,

B = 0, P = −h1,

S = h1,

fd = T(t, 1, y), ed = h1(T(t, 1, y)−Θ(t, y),

e∂ =
1√
2

(
Θ(t, 1) + Θ(t, 0)

)
, f∂ = − 1√

2
vρccc

(
Θ(t, 1)−Θ(t, 0)

)
,

resulting in the system, cf. [22]

fΘ = (J − R)eΘ + (B− P) fd, (20)

ed = (B + P)>eΘ + S fd, (21)

e∂ =
1√
2

(
Θ(1, t) + Θ(0, t)

)
, (22)

f∂ = − 1√
2

vρccc
(
Θ(1, t)−Θ(0, t)

)
. (23)

This gives us the Dirac structure for our cooling channel, cf. [15,22]

Dc =










fΘ
fd
f∂


,




eΘ
ed
e∂




 ∈ (L2((0, 1))2 ×R)2

∣∣∣∣∣∣
eΘ ∈ H1((0, 1)),

(
fΘ
ed

)
=

(
J − R B− P

(B + P)> S

)(
eΘ
fd

)
,

e∂ = 1√
2

(
eΘ(1, t) + eΘ(0, t)

)

f∂ = − 1√
2

vρccc
(
eΘ(1, t)− eΘ(0, t)

)
}

.

To check that this Dirac structure, combined with our Hamiltonian of Equation (18),
does actually form a port-Hamiltonian system, we calculate the power balance
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dH
dt

=
∫ 1

0
eΘ fΘ dy =

∫ 1

0
ρcccΘ

∂Θ
∂t

dy

=
∫ 1

0
Θ
(
−vρccc

∂Θ
∂y
− h1Θ + h1T

)
dy

= −vρccc

∫ 1

0
Θ

∂Θ
∂y

dy
︸ ︷︷ ︸

=− v
2 ρccc [Θ2]

y=1
y=0

+
∫ 1

0
Θh1(T −Θ)dy.

(24)

For the system to be dissipative, we need

dH
dt
≤ e∂ f∂ +

∫ 1

0
ed fd dy = −v

2
ρccc[Θ2]

y=1
y=0 +

∫ 1

0
h1(T −Θ)T dy. (25)

A comparison with Equation (24) shows that the equality holds for the first term. For the
second term, we require

∫ 1

0
Θh1(T −Θ)dy

!
≤
∫ 1

0
Th1(T −Θ)dy. (26)

Since
Θh1(T −Θ)− Th1(T −Θ) = −h1(T −Θ)2 ≤ 0 (27)

holds, this is satisfied. We therefore have the distributed output ed = h1(T(1, y, t)−Θ(y, t))
and the distributed input fd = T(1, y, t).

For the boundary input, we set u(t) = WB(
f∂
e∂
), and for the output w(t) = WC(

f∂
e∂
).

Then, according to [8,23], we have a port-Hamiltonian system if WBΣW>B is positive semi-
definite and (WB

WC
) has full rank. If we want to use the inlet temperature as the input and the

outlet temperature as output, this setting results in

WB =
1√
2

(
1

vρccc
1
)

, (28)

WC =
1√
2

(
− 1

vρccc
1
)

, (29)

which satisfies the above criteria.

3.3. Coupling

To recover a port-Hamiltonian formulation of the model system discussed in Section 2
by coupling the port-Hamiltonian systems discussed in Sections 3.1 and 3.2, we need the
following equality:

− λ
∂T
∂x

(1, y, t) = h1
(
T(1, y, t)−Θ(y, t)

)
. (30)

Considering the relevant inputs and outputs of the two systems, we find that the ‘gyrative’
interconnection (cf. [24]), i.e., the Dirac structure

Di =

{((
f1
f2

)
,
(

e1
e2

))
∈ R2 ×R2

∣∣∣∣
(

f1
f2

)
=

(
0 −1
1 0

)(
e1
e2

)}
(31)

is power conserving, and with the choices

e1 = T(1, y, t), f1 = −ΦQn = λ
∂T
∂x

(1, y, t), (32)

e2 = h1
(
T(1, y, t)−Θ(y, t)

)
, f2 = T(1, y, t). (33)
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obviously satisfies (30). Therefore, the combined system is again a port-Hamiltonian system.

4. Finite Difference Discretization

In this section, we present a finite difference discretization in space of the port-
Hamiltonian systems from the previous section. The resulting system of ODEs or DAEs
can then be discretized in time, which is omitted here. A finite difference discretization
is certainly not the only possible space discretization. Other methods, such as the Parti-
tioned Finite Element Method (PFEM) presented in [25–27] and applied to the heat equation
in [28,29] and [30] (Section 3.4), might provide better results from a numerical point of view.
However, the numerical performance of different discretizations is deliberately left outside
of the scope of this work, as the reason for this section’s existence is different: In a previous
model, we have found curious effects of space-discretization on the system’s behavior [12].
As we wanted to investigate whether similar effects also appear in this model, we decided
to forego numerical performance and focus on a discretization scheme that could be easily
analyzed and where we could be as explicit as possible. For an alternative approach to the
heat equation based on the finite difference, we refer the reader to [31]. Here, the variables
considered on the spatial grid are indicated by an underscore, e.g., x.

4.1. Heat Equation

We assume that ρ and cm are constant. We consider a uniform grid in x-direction with
N + 1 equidistant discretization points x0 = 0, x1 = ∆x,. . . ,xN = 1 and similarly for y with
M + 1 points, leading to the grid variable y and a space step ∆y. We define T ∈ RN·M,

such that T is defined on an offset grid, i.e. Ti+jN ≈ T(xi +
∆x
2 , y

j
+ ∆y

2 ), i = 0, . . . , N − 1,

j = 0, . . . , M− 1.
We discretize the Hamiltonian (6) with regards to the space using the midpoint rule

H =
1
2

ρcm∆x∆y T>T, (34)

with the time derivative
dH
dt

= ρcm∆x∆y T>
∂T
∂t

, (35)

giving us the internal energy change as flow variable and the temperature as effort variable:

f (T) = ρcm∆x∆y
∂T
∂t

, e(T) = T. (36)

Using central differences (with half step sizes) to discretize Equation (9), we obtain the
following approximation for the heat fluxes in the interior

Φx(xi, y
j
+ ∆y

2 ) = −λ
1

∆x
(
Ti+Nj − Ti−1+Nj

)
+O(∆x2),

Φy(xi +
∆x
2 , y

j
) = −λ

1
∆y
(
Ti+Nj − Ti+N(j−1)

)
+O(∆y2).

On the boundary, we use one-sided difference quotients to approximate the heat fluxes,
since this accuracy is sufficient according to Gustafsson [32]. Together with the boundary
conditions, we then have for the left boundary

Φx(x0, y
j
+ ∆y

2 ) = h
(
Text(x0, y

j
+ ∆y

2 )− T(x0, y
j
+ ∆y

2 )
)

Φx(x0, y
j
+ ∆y

2 ) = −λ
2

∆x
(
T(x0 +

∆x
2

, y
j
+ ∆y

2 )− T(x0, y
j
+ ∆y

2 )
)
+O(∆x)
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Solving both for T(x0, y
j
+ ∆y

2 ) and combining them, we find

Φx(x0, y
j
+ ∆y

2 ) ≈ 2hλ

2λ + h∆x
(
Text(x0, y

j
+ ∆y

2 )− T0+Nj
)
.

Similarly, for the right, lower and upper boundary, we find

Φx(xN , y
j
+ ∆y

2 ) ≈ 2hλ

2λ + h∆x
(
TN−1+Nj −Θ(y

j
+ ∆y

2 )
)

Φy(xi +
∆x
2

, y
0
) ≈ 2hλ

2λ + h∆y
(
Text(xi +

∆x
2 , y

0
)− Ti

)

Φy(xi +
∆x
2

, y
M
) ≈ 2hλ

2λ + h∆y
(
Ti+(M−1)N − Text(xi +

∆x
2 , y

M
)
)

Let Φx ∈ R(N+1)M and Φy ∈ RN(M+1) with

Φxi+(N)j ≈ Φx(xi, y
j
+ ∆y

2 ) for i = 0, . . . , N and j = 0, . . . , M− 1

Φyi+Nj
≈ Φy(xi +

∆x
2 , y

j
) for i = 0, . . . , N − 1 and j = 0, . . . , M.

Using central differences again to discretize (8), we obtain

ρcm∆x∆y
∂Ti+Nj

∂t
= ∆y

(
Φxi+(N+1)j −Φxi+1+(N+1)j

)
+ ∆x

(
Φyi+Nj

−Φyi+N(j+1)

)

Let Jx,1 ∈ RN×(N+1), Jx ∈ R(N∗M)×((N+1)∗M), Jy ∈ R(N∗M)×(N∗(M+1)) and IN×N the
N × N unit matrix, with

Jx,1 =




1 −1
. . . −1

1 −1


, Jx = ∆y




Jx,1
. . .

Jx,1


, (37)

Jy = ∆x




IN×N −IN×N
. . . . . .

IN×N −IN×N


. (38)

Also, let Rx ∈ R(N+1)M×(N+1)M, Rx,1 ∈ R(N+1)×(N+1) and Ry ∈ RN(M+1)×N(M+1) with

Rx,1 = ∆y




2λ+h∆x
2hλ

∆x
λ

. . .
∆x
λ

2λ+h∆x
2hλ




, Rx =




Rx,1
. . .

Rx,1


, (39)

Ry = ∆x




2λ+h∆y
2hλ IN×N

∆y
λ IN×N

. . .
∆y
λ IN×N

2λ+h∆y
2hλ IN×N




. (40)

Finally let

bx,0 =
(
1 0 . . . 0

)> ∈ RN+1, bx,N =
(
0 . . . 0 1

)> ∈ RN+1,
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Bx,0 = ∆y




bx,0
. . .

bx,0


 ∈ R(N+1)M×M, By,0 = ∆x

(
IN×N

0
)
∈ RN∗(M+1)×N ,

Bx,N = −∆y




bx,N
. . .

bx,N


 ∈ R(N+1)M×M, By,M = −∆x

( 0
IN×N

)
∈ RN∗(M+1)×N .

We can now recover the discretized version of (11) in the form of a port-Hamiltonian
descriptor system (pHDAE) [6]:




f (T)

0
0


 = (J − R)




e(T)

Φx
Φy


+ B




Text(x0, y + ∆y
2 )

Text(x + ∆x
2 , y

0
)

Text(x + ∆x
2 , y

M
)

Θ(y + ∆y
2 )




, (41)

w = B>




e
Φx
Φy


 ≈




∆y Φx(x0, y + ∆y
2 )

∆x Φy(x + ∆x
2 , y0)

−∆x Φy(x + ∆x
2 , yM)

−∆y Φx(xN , y + ∆y
2 )


, (42)

with

J =




0 Jx Jy
−J>x 0 0
−J>y 0 0


, R =




0 0 0
0 Rx 0
0 0 Ry


, B =




0 0 0 0
Bx,0 0 0 Bx,N

0 By,0 By,M 0


. (43)

4.2. Transport Equation

We choose the M + 1 equidistant discretization points y
0
= 0, y

1
= ∆y,. . . ,y

M
= 1

with ∆y = 1
M . Then, we set Θ = (Θ(y

0
+ ∆y

2 ), . . . , Θ(y
M−1

+ ∆y
2 ))> ∈ RM, matching

the discretization scheme of the heat equation above. Discretizing Equation (18) with the
midpoint rule results in the semi-discrete Hamiltonian

H =
1
2

∆y
M−1

∑
i=0

ρcccΘ2
i , (44)

with the time derivative

dH
dt

= ∆y
M−1

∑
i=0

ρcccΘi
∂Θi
∂t

, (45)

allowing us to set the flow and effort variables

f
i
= ∆y ρccc

∂Θi
∂t

, ei = Θi, ∀i = 0, . . . , M− 1. (46)

Using an upwind discretization for the spatial derivative, i.e.,

∂Θ
∂y

(y
i
) =

Θi −Θi−1
∆y

+O(∆y), (47)

we obtain the following discretized version of Equations (20)–(23)

f = (J − R)e + (B− P)u, w = (B + P)>e + (S− N)u, (48)
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with

J =
1
2

vρcc




0 1

−1
. . . . . .
. . . . . . 1
−1 0




, R =
1
2

vρcc




2 1

−1
. . . . . .
. . . . . . 1
−1 2




(49)

B =




1 1
. . . 0

. . .
...

1 0




, P = 0, S = 0, N = 0, (50)

as well as the input u and output w

u =

(
∆y Φx(xN , y + ∆y

2 )

vρccΘin

)
, w =

(
Θ
Θ0

)
. (51)

Note that we could also use Θin as input by moving the preceding factors into B, which
would make those factors also appear in the output. If an output at the end of the cooling
channel is desired, this requires an artificial feed-through between the input and output, as
in [12]. With matrices chosen as above, we easily find that

W =

(
R P

P> S

)
(52)

is positive semi-definite according to the Gershgorin circle theorem.

4.3. Coupling the Discretized Systems

We consider two finite-dimensional port-Hamiltonian (descriptor) systems of the form

E f = (J − R)e + (B− P)u, w = (B + P)>e + (S− F)u, (53)

and Hamiltonian H. According to [15], the system resulting from an interconnection of
these two systems is again a PHDAE, if there are matrices M and N, so that

Mu + Nw = 0, (54)

with u = (u1
u2
) the combined inputs of both systems and w = (w1

w2
) their combined outputs. If

Mu + Nw = 0 defines a Dirac structure for (w, u), the system can usually be made smaller
through index reduction and row operations. The coupled system takes the form




E f
0
0
0


 =




J − R B− P 0 0
−(B + P)> S− F I −M>

0 −I 0 −N>

0 M N 0







e
û
ŵ
0


+




0
0
I
0


u, (55)

w = ŵ, (56)

with I being the identity, and E = diag(E1, E2), J = diag(J1, J2) and R, B, P, S, F similar.
The form given here is equivalent to the one given in [15], but without requiring the
(unspecified) permutation matrices present in their formulation.

Setting the heat equation to be the first system and the transport equation to be the
second system, we can choose

M =

(
0 0 0 IM×M 0 0
0 0 0 0 IM×M 0

)
, N =

(
0 0 0 0 −IM×M 0
0 0 0 IM×M 0 0

)
, (57)
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which defines a Dirac structure for those parts of the input and output, that are involved in
the interconnection. It should therefore be possible to shrink the system. Writing down the
vectors and matrices for the coupled system,

J =




0 Jx Jy 0
−J>x 0 0 0
−J>y 0 0 0

0 0 0 JΘ


, R =




0 0 0 0
0 Rx 0 0
0 0 Ry 0
0 0 0 RΘ


, (58)

B =




0 0 0 0 0
Bx,0 0 0 Bx,N 0

0 By,0 By,M 0 0
0 0 0 0 BΘ


, (59)

u = û =




Text(x0, y + ∆y
2 )

Text(x + ∆x
2 , y

0
)

Text(x + ∆x
2 , y

M
)

Θ
∆y Φx(xN , y + ∆y

2 )

vρccΘin




, w = ŵ =




∆y Φx(x0, y + ∆y
2 )

∆x Φy(x + ∆x
2 , y0)

−∆x Φy(x + ∆x
2 , yM)

−∆y Φx(xN , y + ∆y
2 )

Θ
Θ0




, (60)

we immediately observe that Θ and ∆y Φx(xN , y+ ∆y
2 ) appear in both the input and output,

and from the previous sections, we also know that they occur in e as well. We can therefore
eliminate them from the input and output and move the relevant terms into J, resulting in
the—significantly more compact—condensed system




f (T)

0
0

f (Θ)


 =




0 Jx Jy 0
−J>x −Rx 0 Bx,N
−J>y 0 −Ry 0

0 −B>x,N 0 JΘ − RΘ







e(T)

Φx
Φy

e(Θ)


 (61)

+




0 0 0 0
Bx,0 0 0 0

0 By,0 By,M 0
0 0 0 BΘ




︸ ︷︷ ︸
B̃




Text(x0, y + ∆y
2 )

Text(x + ∆x
2 , y

0
)

Text(x + ∆x
2 , y

M
)

vρccΘin


, (62)

w = B̃>




e(T)

Φx
Φy

e(Θ)


, with BΘ =

(
1 0 · · · 0

)>. (63)

4.4. Discretizing the Coupled System

Coupling the two systems from Sections 3.1 and 3.2 results in a system with
the Hamiltonian

H =
1
2

∫

Ω
ρ(z)cm(z) T(t, z)2 dz +

1
2

∫ 1

0
ρccc Θ2(y, t)dy. (64)

Discretizing T and Θ each with an appropriate midpoint rule as in Sections 4.1 and 4.2,
results in

H =
1
2

ρcm∆x∆y T>T +
1
2

∆y
M−1

∑
i=0

ρcccΘ2
i . (65)
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Proceeding as in the previous sections, we then obtain the following system:




f (T)

0
0

f (Θ)


 =




0 Jx Jy 0
−J>x −Rx 0 Bx,N
−J>y 0 −Ry 0

0 −B>x,N 0 JΘ − RΘ







e(T)

Φx
Φy

e(Θ)


+ B




Text(x0, y + ∆y
2 )

Text(x + ∆x
2 , y

0
)

Text(x + ∆x
2 , y

M
)

vρccΘin


,

w̃ = B>




e(T)

Φx
Φy

e(Θ)


,

with

B =




0 0 0 0
Bx,0 0 0 0

0 By,0 By,M 0
0 0 0 BΘ


, BΘ =




1
0
...
0


 ∈ RM×1,

all other matrices and vectors containing Θ as in Section 4.2 and the remaining quantities
as in Section 4.1. As we can observe, this is the same system we obtain by eliminating
superfluous variables from the system in Section 4.3.

5. Conclusions and Outlook

In this work, we proposed a model consisting of two subsystems for a simplified
conjugate heat transfer in a turbine blade. We were then able to demonstrate that each of
these subsystems is a port-Hamiltonian system and their interconnection defines a Dirac
structure. Therefore, the entire model is also a port-Hamiltonian system. While the one-
dimensional model previously proposed in [13] had constraints on the physical parameters,
this two-dimensional model no longer has constraints beyond those that are physically
meaningful. However, the question of the existence and uniqueness of the solution is
still open. Results regarding the existence and uniqueness of solutions exist for the wave
equation in two-dimensions, see [20]. However, it is non-trivial to generalize these to
systems with a closure relation. While we are confident this is possible, it will certainly
exceed the scope of this work. We therefore plan to revisit this interesting question in a
future publication dedicated to this topic.

In Section 4, it was then demonstrated that the application of an appropriate but
very simple spatial discretization leads to a finite-dimensional port-Hamiltonian system.
The finite-dimensional port-Hamiltonian system resulting from the discretization of the
subsystems and the coupling of the resulting finite-dimensional subsystems is equivalent to
the system resulting from the coupling of the subsystems and the subsequent discretization
of the complete coupled system (using the same discretization scheme). It might be
worthwhile to investigate whether this is a peculiarity of the system and discretization
method under consideration, or whether it is a general result that holds for all port-
Hamiltonian systems.

While the intuitive choices for quadrature of the Hamiltonian and the spatial dis-
cretization worked quite well for this system, it remains an open question whether the same
holds for the general case. It would also be interesting to investigate whether a particular
choice of quadrature for the Hamiltonian uniquely determines the spatial discretization of
the differential equations and vice versa.
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