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Abstract: The single-layer perceptron, introduced by Rosenblatt in 1958, is one of the earliest and
simplest neural network models. However, it is incapable of classifying linearly inseparable patterns.
A new era of neural network research started in 1986, when the backpropagation (BP) algorithm
was rediscovered for training the multilayer perceptron (MLP) model. An MLP with a large number
of hidden nodes can function as a universal approximator. To date, the MLP model is the most
fundamental and important neural network model. It is also the most investigated neural network
model. Even in this AI or deep learning era, the MLP is still among the few most investigated and
used neural network models. Numerous new results have been obtained in the past three decades.
This survey paper gives a comprehensive and state-of-the-art introduction to the perceptron model,
with emphasis on learning, generalization, model selection and fault tolerance. The role of the
perceptron model in the deep learning era is also described. This paper provides a concluding survey
of perceptron learning, and it covers all the major achievements in the past seven decades. It also
serves a tutorial for perceptron learning.

Keywords: multilayer perceptron; perceptron; backpropagation; stochastic gradient descent; second-
order learning; model selection; robust learning; deep learning
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1. Introduction

Perceptron is the most important neural network model and has been extensively
studied in the past six decades. Its history dates to the early 1940s, when McCulloch and
Pitts discovered that a neuron could be modeled as a threshold device that could perform
logic functions [1]. Later in the 1950s, Rosenblatt [2,3] proposed the perceptron model and
its learning algorithm.

In the 1960s, Widrow and Hoff [4] proposed a similar model called Adaline. This
model could be trained with the least mean squares (LMS) approach. Interest in neural
networks diminished in the 1970s when Minsky and Papert [5] proved that the simple
perceptron model [2] was unable to perform complex logic function and could not solve
linearly inseparable problems. The revival of interest in the perceptron model took place
in 1986, when Rumelhart, Hinton, and Williams [6] trained the multilayer perceptron
(MLP) model using the backpropagation (BP) algorithm. Later BP was found to have been
described in 1974 by Werbos [7].

For perceptron models, supervised learning is employed. Supervised learning com-
pares the network output and the desired output. It is a closed-loop system, with the error
as the feedback signal. In supervised learning, an objective function is first defined. To
make the objective cost go toward zero, a gradient-descent procedure, such as LMS [4] and
BP algorithms [6], is usually applied.
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The MLP model is desirable in regression and classification. When trained with the
same input and output patterns, an MLP functions as an autoassociative memory, and
the bottleneck layer can serve as a feature extractor [8,9]. LeCun’s six-layer MLP model
for handwritten digit recognition is the pioneering work in deep neural network and
deep learning.

Since 1986, numerous new results on perceptron learning have been proposed. The
research accomplishments on MLPs laid the foundation of the neural networks discipline.
The MLP has been the most widely used neural network model in the literature. There is a
feature extraction process in the MLP. For example, in [10], the MLP model was used for
DDoS attack detection and in [11] it was used for the fault prediction in the energy industry.
However, to the best of our knowledge, we have not found a systematic survey of the
perceptron model in the literature. We understand that the perceptron model is the classical
neural network model, and people may think that the topic is not sufficiently new. However,
this model by itself is the most widely investigated, and there are a massive number of
publications on the model. Even today, people are still actively conducting research on
some aspects of this model such as the basic theory of its learning algorithms and their
applications in deep learning. While most people do not have an overall knowledge of the
model, it is our motivation to conduct a comprehensive and also state-of-the-art survey
of the perceptron model and its learning. After reading this paper, readers will be able to
have a big picture of the foundation of the most fundamental model in the neural networks
discipline, learn how to use this model, and where to start if they wish to conduct research
on the perceptron model.

In this AI or deep learning era, numerous new applications of neural networks have
been reported, such as sensor networks [12], production optimization [13], the control of a
delay teleoperation system [14], and user behavior analysis [15].

This paper is motivated to give a comprehensive, yet state-of-the-art review and also
a tutorial on the perceptron model and its learning. This paper is organized as follows.
In Section 2, some basic background on machine learning associated with perceptron
models are presented. In Section 3, the single-layer perceptron (SLP) and its learning
are dealt with. Section 4 introduces the architecture, properties of the MLP, and the BP
algorithm. Section 5 presents some representative results on improving the generalization
ability of MLP models. Section 6 deals with the optimization of the MLP architecture. In
Section 7, various strategies for speeding up the first-order BP algorithm are introduced.
Section 8 discusses several second-order learning methods for MLP. Some other learning
algorithms, including expectation–maximization (EM) [16] and natural gradient [17], are
briefly described in Section 9. Section 10 describes fault-tolerant learning for MLP. Section 11
features the relation between MLP and deep learning. Section 12 presents an illustrative
example, then gives some advice on how to select an MLP learning algorithm for a specific
application setting, and finally concludes the entire paper.

2. Background
2.1. Neurons

A McCulloch–Pitts neuron [1] collects all signals from other nodes and generates an
output, as shown in Figure 1. Its input–output mapping is given by

o = φ(net) , (1)

where
net = ~wT~x + θ (2)
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where ~x =
(

x1, . . . , xJ1

)T is the J1-dimensional input, ~w =
(
w1, . . . , wJ1

)T is the weight
vector, and θ is a threshold or bias. φ(·) is a continuous or discontinuous activation function
that maps a real number into (−1, 1) or (0, 1). Popular activation functions are given by

φ(a) =
{

1, a ≥ 0
−1 or 0, a < 0

, Hard limiter (threshold), (3)

φ(a) =
1

1 + e−βa , Logistic, (4)

φ(a) = tanh(βa), Hyperbolic tangent, (5)

φ(a) = a, Linear, (6)

where β is a gain parameter for the steepness control.
The logistic function and the hyperbolic tangent function are sigmoidal functions,

which are monotonically increasing and satisfy lima→+∞ φ(a) = 1, limx→−∞ φ(a) = 0, or
−1. The McCulloch–Pitts neuron is used in the MLP, the Hopfield network, and many
other models that may utilize other activation functions.

o2x

x

2

J 1

w

w
J 1

Σ

1x

w
1

1

φ ( )

θ

Figure 1. The McCulloch–Pitts neuron model.

2.2. Classification: Linear Separability and Nonlinear Separability

In classification, we have a training data set Dtrain = {(~x1, y1), · · · , (~xN , yN)}, where
~xp’s are the training input, and yp’s are the training outputs that can be ±1 (or 1 or 0),
denoting whether example p belongs to a specific class.

A two-class classification problem is said to be linearly separable, if there exists a
linear separating surface that separates all the input samples of class C1 from class C2. A
McCulloch–Pitts neuron with a hard limiter activation, or say a linear threshold gate (LTG),
can realize dichotomy, characterized by a hyperplane

~wT~x + θ = 0 . (7)

An input pattern belongs to C1 if ~wT~x + θ ≥ 0, and belongs to C2 if ~wT~x + θ < 0.
A linearly inseparable dichotomy may be nonlinearly separable. A dichotomy of set

X , denoted {C1, C2}, is ϕ-separable if there exists a mapping ϕ : RJ1 → RJ2 [18]

~wT ϕ(~x) = 0 (8)

such that ~wT ϕ(~x) ≥ 0 when ~x ∈ C1 and ~wT ϕ(~x) < 0 when ~x ∈ C2, where ~w ∈ RJ2 . The
mapping ϕ is referred to as the concept of functional link network [19], which can map a
linearly inseparable dichotomy so that it becomes separable. In particular, when replacing
the linear term in an LTG by a high-order polynomial, a polynomial threshold neuron can
be used to solve the nonlinearly separable problem. A detailed analysis on the second-
order threshold neuron was provided in [20]. However, in the functional link approach,
the way to choose the mapping was not addressed [19]. The support vector machine (SVM)
algorithm [21] was developed around the same time and could automatically construct the
mapping ϕ and the weight vector {~w, θ}.
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2.3. Boolean Function Approximation

In Boolean function approximation, we would like to use a neural network to model a
logic or Boolean function. The input and output values of the neural network are Boolean
variables. There exist 2J1 combinations for J1 independent Boolean variables, yielding 22J1

different Boolean functions. Some Boolean functions can be realized using LTGs.
For a set of m points in Rn, if every subset of m or fewer points is linearly independent,

it is known to be in general position. The function-counting theorem [18] estimates the
separating capability of an LTG. It counts the number of linearly separable dichotomies of
m points that are in general position in Rn.

The probability of linear dichotomy is denoted P(m, n), for an n-input LTG to separate
m points in general position. According to the function-counting theorem [22], P(m, n) = 1
when m

n+1 ≤ 1, P(m, n) → 1 when 1 < m
n+1 < 2 and n → ∞, and P(m, n) = 1

2 when
m

n+1 = 2. When characterizing the statistical capability of a single LTG, m
n+1 = 2 is

typically adopted.

2.4. Function Approximation

In function approximation, there is a training dataset,Dtrain = {(~x1, y1), . . . , (~xN , yN)},
where ~xp and yp are the input and output of the pth sample, respectively. The input and
output can be modeled by

yp = f (~xp) + εp, (9)

where f (·) is a mapping, and εp is a Gaussian noise with zero mean and variance σ2
ε . Our

goal is to construct a model f̂ (·) to minimize the mean squared error (MSE):

JMSE =
1
N

N

∑
p=1

(yp − f̂ (~xp))
2 . (10)

3. Perceptron
3.1. Simple Perceptron

A simple perceptron is a one-neuron perceptron which is actually the McCulloch–Pitts
neuron model [1], as shown in Figure 1. It uses the hard limiter as the activation function.
Let Dtrain = {(~x1, y1), . . . , (~xN , yN)} be the training set, where the ~xp’s are the training
inputs, and the yp’s are the training outputs that can be ±1 (or 1 or 0). In this notation,
yp = 1 means that ~xp ∈ C1, and yp = −1 means that ~xp ∈ C2. Our goal is to estimate a
weight vector ~w and a threshold θ such that a hyperplane

~wT~x + θ = 0 (11)

separates the two classes: {
~wT~x + θ ≥ 0, when ~x ∈ C1
~wT~x + θ < 0, when ~x ∈ C2

. (12)

When more neurons are used, a single-layer perceptron (SLP) is obtained, see Figure 2.
An SLP can classify a vector ~x into more classes. The system state of a J1–J2 SLP is
updated by

~net = WT~x +~θ, (13)

~o = ~φ( ~net), (14)

where ~net =
(
net1, . . . , netJ2

)T is the net input vector, ~o =
(
o1, . . . , oJ2

)T is the output
vector, ~φ( ~net) =

(
φ1(net1), . . . , φJ2

(
netJ2

))T , and φi is the activation function of the ith
output neuron.
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Figure 2. Architecture of the single-layer perceptron.

3.2. Perceptron Learning Algorithm

In the perceptron learning algorithm [3,5], the training patterns are sequentially and
repeatedly presented. Given a training pattern ~xt at time t, we have the updating rule

nett,j =
J1

∑
i=1

xt,iwij(t) + θj = ~wT
j ~xt + θj, (15)

ot,j =

{
1, when nett,j > 0
0, otherwise

, (16)

et,j = yt,j − ot,j, (17)

{
wij(t + 1) = wij(t) + ηxt,iet,j
θj(t + 1) = θj(t) + ηet,j

, (18)

where nett,j stands for the net input of neuron j for example t, wij the weight from neurons i

to j, ~wj =
(
w1j, w2j, . . . , wJ1 j

)T , θj the threshold of neuron j, xt,i input i of example t, ot,j and
yt,j, respectively, the output and the desired output of neuron j for example t, et,j the error
at neuron j for example t, and η the learning rate. wijs are initialized at random, and η is
usually set to 0.5. Learning terminates when the errors et,j’s are equal to zeros in a learning
cycle. The perceptron convergence theorem [3,5] asserts that when the training dataset for
input patterns are linearly separable, the perceptron learning algorithm can always find
decision hyperplanes to correctly separate classes in finite time.

The perceptron learning algorithm is valid only for the classification of linearly separa-
ble patterns. When trained with linearly inseparable patterns, it cannot stop the iteration [5].
Failure to converge for linearly inseparable problems is due to the fact that the perceptron
learning algorithm is not able to detect the minimum of the error function [23]. Some
variants of the perceptron learning, such as the pocket algorithm [24] and the thermal
perceptron learning [25], are used for handling linearly inseparable patterns. The pocket
algorithm adds a checking amendment to terminate the perceptron learning algorithm,
achieving the minimization of the erroneous classification rate [24]. The weight vector
having the longest unchanged run is treated as the best solution so far and is put into the
pocket. The pocket convergence theorem asserts the convergence of the pocket algorithm,
when the inputs are integers or rational [24,26]. The thermal perceptron learning [25]
introduces a temperature annealing factor into the second term of (18).
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3.3. Least Mean Squares Algorithm

The LMS algorithm [4] can reliably separate the patterns of different classes by mini-
mizing the MSE by using the gradient-descent method. The linear activation function is
used at the training stage, and thus, unlike (17), the error is given by

et,j = yt,j − nett,j, (19)

where nett,j is the same as (15). The weight update is given by (18). At the operation stage,
thresholding is performed on the linear output to generate a binary output. The node
containing a linear combiner and thresholding is referred to as Adaline.

The LMS algorithm can also be used for estimating the parameters in linear net-
works [27–29] for linear regression. In linear regression, we have a training set
Dtrain = {(~x1,~y1), . . . , (~xN ,~yN)), where ~xj ∈ RJ1 is the input and ~yj ∈ RJ2 is the output.
Our goal is to find the parameters such that the MSE

J (W,~θ) =
1
N

N

∑
p=1
‖~yp −WT~xp −~θ‖2 (20)

is minimized.
The LMS rule comprising (15), (18) and (19) is known as the µ-LMS rule. The learning

parameter usually takes 0 < η < 2
maxt ρxt

to ensure its convergence, where ρxt =
∥∥[~xT

t 1]
∥∥2.

The Widrow–Hoff delta rule, known as the α-LMS, is obtained by normalizing the
input vector [30]: {

wij(t + 1) = wij(t) + η
xt,iet,j

ρxt

θj(t + 1) = θj(t) + η
et,j
ρxt

, (21)

where 0 < η < 2 ensures convergence, and η is practically selected as 0.1 < η < 1.0 [30].
In the above, the convergence results [4,30,31] are based on the stochastic setting,

where the training samples are independently drawn over time. Under the condition that
the training samples are cyclically and sequentially presented, some convergence results
were developed in [32,33]. In [32], the result showed that the LMS rules converged to a
limit cycle. The limit cycle reduced to an LMS solution when η → 0. That meant there
existed a tradeoff on η between the final error and convergence speed. In [33], the LMS
algorithm, with decreasing η, generated an ε-optimal weight matrix, which was at most ε
away from the LMS solution, after O( 1

ε ) training cycles. For a fixed η, it needed Ω( 1
ε log 1

ε )
training cycles to obtain an ε-optimal weight matrix. The Widrow–Hoff delta rule laid the
foundation of modern adaptive signal processing. There is also a complex LMS [34].

3.4. Other Learning Algorithms

Examples of other learning rules for the SLP are Mays’ rule [22,30,35], Ho–Kashyap
rule [36,37], adaptive Ho–Kashyap rules [22,38], voted perceptron algorithm [39,40], per-
ceptron algorithm for the perceptron using margins [39,41] or margitron [42], one-shot
Hebbian learning [43], and nonlinear Hebbian learning [44].

Other examples for SLP learning algorithms are linear programming (LP) [37,45],
convex analysis and nonsmooth optimization [23], constrained steepest-descent algorithm
based on quadratic programming (QP) [46], fuzzy perceptron [47,48], fuzzy pocket [48], the
conjugate-gradient (CG) method [49,50], control-inspired parameter selection for iterative
steepest descent and CG algorithms [51], and shifting perceptron algorithm [52].

3.5. Approximation Ability of Perceptron Variants

The nonlinearity of the activation function introduces local minima in the MSE functions.
The number of local minima grows exponentially as the input dimension increases [53].
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The classification capability of a sign-constrained perceptron was analyzed in [54].
The authors derived a necessary and sufficient criterion for a sign-constrained perceptron
to learn all 2m dichotomies over a given set of m patterns. For a perceptron with n inputs,
the VC-dimension is n + 1, whereas for a sign-constrained perceptron, it is n [54].

When training a perceptron with a set of nonlinearly separable input patterns, the
obtained weights may have a limit cycle behavior [55]. The least number of updates for
the weights to reach the limit cycle is dependent on the initial weights. The authors of [55]
also derived a necessary and sufficient condition for the weights exhibiting a limit cycle
behavior, and estimated the number of updates for the weights to reach the limit cycle. An
invariant set of the weights that were trained by the perceptron learning algorithm was
characterized in [56].

When its majority vote is treated as a binary output, the SLP can compute any Boolean
function [57]. When applying a squashing function to the percentage of votes with value 1,
the SLP is a universal approximator for any continuous functions in [0, 1] [57].

The parallel perceptron implements a soft-winner-take-all gate on the binary outputs
of gates on the hidden layer. It is a committee machine. The parallel perceptron is a uni-
versal approximator [57]. The parallel delta (p-delta) rule [57] implements a maximization
of the margin of individual perceptrons. When trained with the p-delta rule, parallel
perceptrons have performance comparable to that of an MLP and an SVM [57]. Direct
parallel perceptrons [58] calculate the weights of parallel perceptrons by using an analytical
closed-form expression, and they have a linear complexity in terms of both the number of
patterns and the input dimension.

4. Multilayer Perceptrons
4.1. Structure

To overcome the linearly inseparable limitation, one can extend the SLP to a multi-
layered structure, such as an MLP. Madaline models are available by stacking multiple
layers of Adalines [30]. Madaline is unable to solve the linearly inseparable problem, as
Adaline is a linear network whose consecutive layers can be aggregated into a single layer
by multiplying their respective weight matrices.

Madaline I [59,60] and Madaline II [61] are multilayered feedforward networks based
on hard limiter neurons or other fixed-logic devices, such as AND, OR, majority-voting
elements. Since the hard limiter function is not differentiable, the Madaline I and Mada-
line II learning rules are based on the LMS rule. The modification of weights is based on
the minimal disturbance principle. This disturbance-based updating algorithm is quite
slow. They can solve the linearly inseparable problem.

The neuron with the smallest net output in the first hidden layer is selected first and
its output is inverted. If the inversion can improve the performance, the input weights of
the selected neuron are updated according to the LMS algorithm, then applied to other
neurons in the first hidden layer. After all first hidden layer neurons have been considered,
the updating is moved to upper layer neurons. The learning speed of Madaline II’s rule
is slow because we need to feed the training dataset to the network for each inversion
of neurons.

A feedforward neural network (FNN) [6] usually has one or more hidden layers
between the input and output layers. Such layered FNN is called an MLP. The architecture
of the MLP is shown in Figure 3. There are M layers, and layer m has Jm nodes. All the
input nodes are collectively treated as the first layer. We denote the weights from layer
(m− 1) to layer m by W(m−1), and the bias, output and activation function of neuron i in
layer m by θ

(m)
i , o(m)

i and φ
(m)
i (·), respectively. Subscript p and superscript (m) correspond

to sample p and layer m, respectively. In other words, the input of sample p is

~xp ≡~o(1)p , (22)
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the network output of sample p is
~op ≡~o(M)

p , (23)

and the desired output of sample p is denoted as ~yp. For m = 2, . . . , M,

~net(m)
p =

[
W(m−1)

]T
~o(m−1)

p +~θ(m), (24)

~o(m)
t = ~φ(m)

(
~net(m)

p

)
, (25)

where ~net(m)
p =

(
net(m)

p,1 , . . ., net(m)
p,Jm

)T , W(m−1) ∈ RJm−1×Jm ,~o(m−1)
p =

(
o(m−1)

p,1 , . . . , o(m−1)
p,Jm−1

)T ,

~θ(m) =
(
θ
(m)
1 , . . . , θ

(m)
Jm

)T , and ~φ(m)(·) applies φ
(m)
i (·) to the ith entry of the vector within.

For classification, all hidden and output neurons are with a sigmoidal function or hard
limiter. For function approximation, all hidden neurons are with a sigmoidal function, but
the output neurons in layer M use a linear activation function.

When all hidden neurons and output neurons are with a hard limiter activation, an
MLP can be considered as a Madaline II [61].

W
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Figure 3. Architecture of the MLP. The MLP has M layers. The mth layer has Jm nodes.

4.2. Approximation Ability

The MLP model has a universal approximation ability when the number of hid-
den nodes is sufficiently large. The universal approximation capability of a four-layer
MLP can be easily obtained from Kolmogorov’s theorem [62] and has also been proved
in [63–65]. More importantly, the three-layer MLP model with continuous sigmoidal activa-
tion functions has been proved to be capable of approximating any continuous multivariate
function to an arbitrary accuracy [66–70].

For approximating a target function by the MLP, the necessary number of neurons
relies on the geometry of the target function, as well as the minimal number of line seg-
ments/hyperplanes [69] or the number of extrema [71] that can construct the basic geomet-
rical shape of the target function.

4.3. Backpropagation Learning Algorithm

The BP algorithm has long been the most popular and fundamental learning algorithm
for MLPs [6,7,72,73]. The BP algorithm is a gradient-search technique that minimizes a cost
function. The cost function is defined by the MSE:

E =
1
N

N

∑
p=1
Ep =

1
2N

N

∑
p=1

∥∥~yp −~op
∥∥2, (26)
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where N is the size of the training set,~op and~yp are, respectively, the actual network output
and the desired output for training pattern p,

Ep =
1
2

∥∥~yp −~op
∥∥2

=
1
2
~eT

p~ep (27)

is the error of training pattern p, and

~ep = ~yp −~op , (28)

the element i of~ep being ep,i = yp,i − op,i.
When minimizing Ep, we have the change of the weight or bias:

∆pw(m−1)
ij = −η

∂Ep

∂w(m−1)
ij

and ∆pθ
(m)
i = −η

∂Ep

∂θ
(m)
i

, (29)

where the learning rate η is a small positive number. For the output layer, the changes of
the parameters are given by

∆pw(M−1)
ij = η ep,i

∂op,i

∂w(M−1)
ij

= η ep,i

(
dφ

(M)
i (a)
da

)
a=net(M)

p,i

o(M−1)
p,j

∆pθ
(M)
i = η ep,i

∂op,i

∂θ
(M−1)
i

= η ep,i

(
dφ

(M)
i (a)
da

)
a=net(M)

p,i

1

. (30)

If we can consider the term ep,i

(
dφ

(M)
i (a)
da

)
a=net(M)

p,i

≡ δ
(M)
p,i as a generalized error term,

the updating rule in BP can be considered as a generalized delta rule [4]. To calculate the
changes of parameters in the hidden and input layers, we can apply the chain rule and
then get

∆pw(m−1)
uv = η δ

(m)
p,u o(m−1)

p,v and ∆pθ
(m)
u = η δ

(m)
p,u 1 . (31)

The generalized error terms δ
(m)
p,u ’s can be solved by applying the chain rule. The

changes of the parameters in the output layer are first calculated. Then, the generalized
error terms are backpropagated by means of the chain rule and are used for calculating
the generalized error terms in the hidden layers. The BP algorithm requires a continuous
differentiable activation function.

4.4. Batch Mode and Online Mode

There are two versions of the BP algorithm, batch and online modes. In the batch
mode, the parameters are updated only after a complete presentation of training patterns.
In the online mode, the parameters are updated at once after a training pattern is presented.
In the online mode, the usual practice is that all the examples are presented cyclically
by epoch and in a random order during each epoch, until the convergence criteria are
reached. In either batch or online mode BP, the concept follows that of the gradient-descent
technique. In the literature, batch mode BP is commonly known as gradient descent, while
online mode BP is known as stochastic gradient descent. In BP, too small an η increases
the possibility of getting stuck at a local minimum, while too large an η may result in
oscillatory traps.

Since the batch mode BP follows the standard gradient-descent technique, the conver-
gence (to a local minimum) is guaranteed when a sufficiently small η is used. There are
several works on the convergence for the online mode BP [74–79]. Based on the stochastic
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gradient theorem [74–76], if the training examples are randomly drawn from an infinitely
large dataset, the convergence of the online mode BP is guaranteed when a decreasing
learning rate ηt is used, ∑∞

t=1 ηt = ∞, and ∑∞
t=1 η2

t < ∞, where t is the time index for
training. For a dataset with finite size, some convergence results are given in [77–80], where
the assumptions are that the learning rate is fixed to a constant within a learning cycle, and
that it deceases to zero as learning cycles increase.

Online BP can be implemented when a complete training set is unavailable. This
is usually implemented for very large training sets. Online BP has a quasi-simulated
annealing property arising from the randomness introduced by the small constant learning
rate, and this property helps the algorithm escape local minima [81]. However, online BP is
not suitable for parallelization. It is usually orders of magnitude faster than batch BP, but
with at least the same accuracy, especially for large training sets [82]. Batch BP is usually
too slow for large training sets due to the required small learning rate. Online BP can train
more quickly and safely by using a larger learning rate. In [82], a recommendation on the
learning rates between online BP and batch BP is given by ηonline =

√
Nηbatch. When η is

small enough, the number of epochs required for learning has a linear relationship with η.
With respect to the absolute value of the expected difference and the expected squared

difference, and with any analytic sigmoidal function, the convergence for online BP and
batch BP are derived and compared for different η in [83]. For batch BP, η ≥ 2 is required
for convergence, while for online BP, η increases up to N. In [84], for online BP training of
three-layer feedforward networks subject to the minimum error, a dynamic learning rate
ensures the error sequence converges to the global minimum error. In [85], the maximal
learning rates are derived as a function of batch size for both gradient descent and adaptive
algorithms, such as Adam, by using random matrix theory.

4.5. Momentum Term

By adding a momentum term to the BP algorithm, the BP with momentum (BPM)
algorithm is obtained as [6]

∆pw(m−1)
ij (t + 1) = −η

∂Ep

∂w(m−1)
ij

+ α∆pw(m−1)
ij (t)

∆pθ
(m)
i (t + 1) = −η

∂Ep

∂θ
(m)
i

+ α∆pθ
(m−1)
ij (t)

, (32)

where α is the momentum factor; usually 0 < α ≤ 1 and typically α = 0.9. The momentum
term can effectively improve the convergence when the estimated weights are in almost-flat
steady downhill regions of the error surface and has a stabilizing effect when the estimated
weights are in regions with high fluctuations. The momentum term introduces second-
order information, and thus BPM resembles the CG method [49,50]. BPM is analyzed in [86]
and the conditions for convergence are derived.

The convergence rate and MSE performance of BPM was investigated in [87]. BPM
can be viewed as standard stochastic gradient method having a rescaled but larger step size.
A decaying momentum factor can retain adaptation but avoid performance degradation.
A stability analysis of two BPM algorithms for quadratic functions derives the optimal
learning rates and the optimal momentum factors simultaneously, leading to the fastest
convergence [88].

4.6. Variance Reduction

For stochastic gradient descent, the variance of the randomly drawn gradients will
never go to zero. A sublinear convergence rate is obtained only under decreasing step-size
sequences. The variance-reduced technique reduces the variance to zero.

The stochastic average gradient (SAG) method [89] uses the sum of the latest individual
gradients as an estimator of the descent direction. SAG has a linear convergence rate using a
step size η = O(1/Lmax), Lmax being a Lipschitz constant. SAG requires O(nd) storage and
uses a biased gradient estimator, for n training examples in Rd. SAG only computes a single
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stochastic gradient at each iteration. Stochastic variance reduced gradient (SVRG) [90]
uses an unbiased gradient estimator. SAGA [91] improves SAG by using an unbiased
update of SVRG. SAGA has the same linear convergence and storage as SAG, but with
a much simpler proof. SVRG [90] has performance similar to SAG and SAGA, but only
requires O(d) memory. SVRG needs to tune the number of inner iterations, two gradients
are computed per iteration, and the full gradient needs to be computed every time the
reference point is changed. However, their step size depends on Lmax, which may not
be difficult to decide for some problems. The convergence rate of the variance-reduced
methods depends on the number of training examples n, while that of classic SGD is not
dependent on n. This means that variance-reduced methods can perform worse than SGD
in the early iterations when n is very large.

The stochastic dual coordinate ascent (SDCA) method [92] extends coordinate descent
methods to the finite-sum problem. Stochastic coordinate descent implements a coordinate-
wise gradient descent with respect to a randomly chosen variable and updates this variable
while keeping the other variables unchanged.

Recent developments to accelerate the convergence of stochastic optimization by
exploiting second-order information are discussed in [93]. This is achieved by stochastic
variants of quasi-Newton methods that approximate the curvature of the objective function
using stochastic gradient information.

5. Generalization
5.1. Generalization Error

A neural network trained by minimizing the MSE on a training set is not guaranteed to
perform well on an unseen test set. Therefore, we are more interested in the generalization
ability, which is the performance of a trained network on unseen samples. When a network
is over-trained with too many parameters and training epochs, or too few training examples,
good results may be produced for the training examples, but the network generalizes poorly.
This is known as the overfitting phenomenon. In statistics, when a model has an excessive
number of parameters and fits the noise in the data, overfitting occurs. A network’s
generalization capability is decided by three factors, namely, the training set size, problem
complexity, and network architecture [94,95].

The generalization error consists of a bias and a variance term [96]. The bias term arises
from the finite number of parameters of the model, known as the approximation ability of
the network. The variance term arises from the finite number of training data. For an MLP
with J1 inputs and one output, the total generalization error is bounded as a function of the
order of the number of hypothesis parameters, P, and the number of examples, N [97,98].
A larger P leads to a smaller approximation error due to a larger model, but also leads
to a larger estimation error due to overfitting. When P ∝ N

1
3 , the best tradeoff between

the approximation and estimation errors is achieved, and the generalization error for the
MLP is maintained at O

(
1
P

)
[97]. This result is in agreement with that of an MLP with a

sigmoidal activation [99].
Cross-validation is a traditional way to measure the generalization ability of a trained

network. In the simple cross-validation scheme, the dataset is partitioned into a training
set and a test set. The training set is used for training the network, while the test set is used
for evaluating the generalization ability of the trained network.

5.2. Generalization by Stopping Criterion

Overtraining can be avoided by stopping the training process before the global mini-
mum is reached. Neural networks trained with iterative gradient descent gradually learn
a mapping by increasing components of frequency. When stopping the training at a due
point, the network will not learn the high-frequency noise. The training error always
decreases with time, but the generalization error decreases to a minimum and then rises as
the network is overtrained.
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Cross-validation is performed to decide when to stop. Three early stopping criteria
are empirically compared in [100]. A slower stopping criterion on average yields a small
improvement in generalization, but requires a much longer training time [100]. A statistical
analysis of overtraining on the three-layer MLP is given in [101].

5.3. Generalization by Regularization

Regularization [95,102–105] is a popular approach to improving generalization. Let
~w be the collection of all weights and bias terms. The training error E is a function of ~w.
A positive penalization term Ec(~w) is added to the training objective to penalizes poor
generalization. Then, the overall objective function is given by

ET(~w) = E(~w) + λcEc(~w) , (33)

where λc is the regularization parameter. The regularization method is valid for the
iterative gradient-based techniques as well as the one-step optimization such as a singular
value decomposition (SVD). Regularization decreases the representation capability of the
network, i.e., it increases the bias term but improves the variance term (bias–variance
dilemma [96]).

Two most common regularizers employed to improve the generalization ability are,
respectively, the weight-decay method [106,107] and the input perturbation method [102].
In the simple weight-decay, the constraint term is given by

Ec(~w) =
P

∑
i=1

w2
i . (34)

The inclusion of a weight-decay constraint term results in a small magnitude for the trained
weights, yielding a smooth network output function and an improved generalization abil-
ity [106]. The input perturbation method [102] requires a robustness in the approximation
ability to input perturbations. Let oj,p be the jth element of the network output with respect
to the pth training sample, and xi,p be the ith element of the pth training input vector. In
the input perturbation method [102], the constraint term is given by

Ec(~w) =
N

∑
p=1

J1

∑
i=1

JM

∑
j=1

(
∂oj,p

∂xi,p

)2

. (35)

Network pruning techniques help to improve generalization as well [108,109]. At the
end of the training of the weight-decay procedure, those connections with small weights
can be removed from the network. One can improve generalization by training a network,
when a small amount of noise (jitter) is added to the weights and inputs but no noise is
added to the output [104,108–110]. In sum, the effect of adding noise in weights is similar
to that of the weight-decay regularizer. On the other hand, the effect of adding noise in the
input is similar to that of the input perturbation method [104,109].

Early stopping behaves like a simple weight-decay technique [104] in terms of the
evolution of the effective number of weights. Weight sharing is used to reduce the number
of network parameters, thus improving generalization [6,111].

The step size can be viewed as a regularization parameter [112]. The stochastic gradient
method is analyzed in [113]. Regularization is controlled by the step size, the number of
passes, and the minibatch size.

5.4. Selection of Regularization Parameter

The variance term can be controlled when the regularization parameter is appropri-
ately chosen. However, too large a regularization parameter will yield an excessive bias
term. Therefore, it is crucial to select a regularization parameter.
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An appropriate regularization parameter can be selected by cross-validation [100,114,115].
The dataset is randomly divided into a training set and a validation (test) set, with the major
portion of the dataset included in the training set and the remaining in the validation set. If
only one sample is left for validation, the method is known as leave-one-out cross-validation.
A number of networks are trained with different regularization parameters, and then the
best trained network is selected based on cross-validation. However, cross-validation may
be limited by the dataset size and it is a time-consuming process.

The regularization parameter can also be selected by generalization error estimation
methods [94,95,116–122]. The methods are based on information criteria, such as the Akaike
information criterion (AIC) [123], Schwartz’s Bayesian information criterion (BIC) [124],
and Rissanen’s minimum description length (MDL) principle [125,126]. Most of these
criteria can be expressed as a sum of two components, measuring the training error and
penalizing the complexity, respectively [125,127]. For example, a good generalization
can be realized when encoding the weights with short bit-lengths based on the MDL
principle [110]. In these approaches, we have a generalization error estimation formula
which is a function of the training error and trained weights. A number of networks are
trained with different regularization parameters, and then the best trained network is
chosen based on the estimated generalization errors.

The third approach is to estimate the regularization parameter during training based
on a Bayesian framework [103,107,128,129]. In those works, the regularization term comes
from the assumption that a prior probability is assigned to the weights. Then, the regu-
larization parameter is related to the variance of the weights. In [103,128,129], the results
focused on radial basis function (RBF) networks. The experiments in [128,129] success-
fully demonstrated the advantage of using this approach to select RBF centers and to
automatically select the regularization parameter. In [107], the results can be applied to
general MLPs.

6. Optimization on Network Size

Given a problem, an appropriate network size is very important. Too small a net-
work will lead to underfitting, i.e., too large a bias term, corresponding to an inaccurate
approximation. In contrast, too large a network will lead to overfitting, i.e., too large a
variance term, corresponding to a poor generalization ability. This section introduces some
approaches for finding an optimal network size.

6.1. Destructive Approach: Network Pruning

Network pruning starts with a network with a large size, then removes the redundant
nodes or weights during or after training. Pruning methods can be either sensitivity-based
or regularization-based methods [130,131]. In sensitivity-based methods, the sensitivity of
the objective function E with respect to the removal of a weight or node is first estimated,
and the least important weight or node is then removed. The regularization-based meth-
ods adds a regularization term to the training objective to punish a network of complex
architecture. Some network pruning algorithms are surveyed in [130].

6.1.1. Sensitivity-Based Network Pruning

In the sensitivity-based pruning, the sensitivity measure is utilized to characterize
the contribution of individual weights or nodes when solving a problem, and the less
important weights or nodes are then removed. Let ET be the training objective and w be a
weight of the output of a hidden node. The normalized sensitivity is defined by

SET
w = lim

∆w→0

∆ET
ET
∆w
w

=
w
ET

∂ET
∂w

. (36)

In the skeletonization technique [132], the sensitivity measure is defined as
SET

w = −w ∂ET
∂w , which utilizes the first-order approximation. This sensitivity measure
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was applied in Karnin’s pruning method, where no retraining procedure was applied [133].
This method was improved to avoid removing an input node or a particular hidden layer
and to incorporate a fast retraining algorithm in [134], or to introduce the local relative
sensitivity index in [135]. In [136], a loss-based sensitivity regularization is implemented
by shrinking and then pruning parameters with low loss sensitivity. A node-sensitivity
regularized node pruning scheme is proposed in [137].

Sensitivity-based methods that use linear models for hidden nodes are developed
in [131,138], where redundant hidden nodes are well-modeled as linear models of their net
inputs or linear combinations of the outputs of the other nodes. In [139], network pruning
is implemented based on orthogonal transforms, e.g., SVD and QR decomposition. In [140],
SVD is used to evaluate the significance of the number of hidden layer neurons of a trained
network, based on which a pruning/growing technique is implemented. Pruning exploiting
PCA of the node activations of successive layers is implemented in [141]. In [142], mutual
information is used to prune both the input and hidden nodes. Other sensitivity-based
methods utilizing retraining are described in [143,144].

6.1.2. Second-Order Expansion Pruning

Based on the second-order Taylor expansion of the objective function, the optimal brain
damage (OBD) [145] and optimal brain surgeon (OBS) [146] procedures were developed
around the early 1990’s. Let ~w be the collection of all weights and biases. At the time of
convergence, the gradient approaches zero and thus a change in ~w leads to an increase in E :

∆E ' 1
2

∆~wTH∆~w, (37)

where H =
[

∂2E
∂wi∂wj

]
is the Hessian matrix. A weight wi can be removed by setting ∆wi = wi

and all ∆wj = 0, j 6= i, and this introduces a change in E .
OBS is derived from the saliency (37), while OBD is an OBS having diagonal H. A

weight with the smallest saliency is deleted. Optimal cell damage (OCD) [147] is obtained
by first implementing OBD and further removing irrelevant input and hidden nodes.
Unit-OBS [148] modifies OBS by removing a whole node at each step. Based on a block-
diagonal approximation of the Hessian, principal components pruning [141] lies between
OBD and OBS. Early brain damage (EBD) [149] extends OBD and OBS by implementing
early stopping, and it allows the revival of the already pruned weights. Variance nullity
pruning [150] is derived from an output sensitivity analysis. In case of a diagonal H, OBD
and the output sensitivity analysis are equivalent, if a gradient search and the MSE function
are used.

The above approaches rely on the efficient computation of the Hessian matrix. In [151],
an efficient procedure for calculating the Hessian matrix was described. Instead of an exact
calculation of the Hessian matrix, nowadays, the approximation [152]

H ≈
[

N

∑
p=1

JM

∑
k=1

∂op,k

∂wi

∂op,k

∂wj

]
(38)

is usually used.
RLS-based pruning exploits the error covariance matrix obtained during RLS train-

ing [152]. RLS-based pruning and OBD have a similar number of pruned weights and
similar generalization ability, but with a considerable computational saving and suitable
for online situation. In a similar way, extended Kalman filtering (EKF) based pruning
techniques for MLPs and recurrent neural networks are given in [153,154].

6.1.3. Regularization-Based Methods

The complexity of a trained network can be measured by its effective number of param-
eters [95]. The penalty approach aims at reducing the effective number of parameters [95]
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by adding a regularization term into the objective function. Basically, there are two kinds
of regularization approaches.

The first approach drives trained weights to have small magnitudes. The trained
weights have a relatively flat distribution around zero. In this case, most trained weights
have a contribution to the approximation ability of the trained network. In this approach,
the regularization term is given by ~wTR~w, where R is a positive-definite matrix. The stan-
dard weight-decay [155,156] is a representative method of this approach. Its regularization
term is the sum of the squares of all the weights. This leads to the assumption that the
a priori distribution [107] of weights is zero-mean Gaussian. During training, the decay
effect of a weight is proportional to its magnitude. Hence, many trained weights are small
but not very close to zero. The effective number of parameters of the trained network is
small and the complexity of the trained network is small. The conventional RLS algorithm
is actually a weight-decay algorithm [152], since they both use the same objective function,
i.e., the sum of the squares of all the weights. The error covariance matrix from the RLS
training has similar properties as H. The initial value of the error covariance matrix can be
used to control the generalization ability.

The second approach drives unnecessary weights to zero and removes them during
training. In [157,158], the regularization term is the sum of the absolute values of the
weights. This leads to the assumption that the a priori distribution of weights is zero-mean
Laplacian. During training, the decay effect of a weight is a constant. Hence, many trained
weights are very close to zero and a skeleton network is obtained.

Weight-smoothing regularization incorporates the Jacobian profile smoothness as a
constraint [159]. Several other regularization techniques that use neural Jacobians are the
double BP [160], the input perturbation [109], generalized regular network [161], and the
approximate smoother [162].

When using the L1-/L2-norm of weight vectors at a group level, the method has a
better generalization and pruning efficiency than weight decay, weight elimination, and
approximate smoother [163]. In [164], a nonconvex integrated transformed L1 regularizer
applied to the weight matrix space is introduced to remove redundant connections and
unnecessary neurons simultaneously. It is shown in [165] that compressing the weights of
a layer has the same effect as compressing the input of the layer.

6.2. Constructive Approach: Network Growing

In the constructive approach, a small network is first selected and then hidden nodes
are added until a specified performance is reached. The constructive approach has the
ability to escape a local minimum by adding a new hidden node [166], since the process of
adding neuron changes the shape of the error function. The weights of the newly added
nodes can be randomly initialized.

Cascade-correlation learning [167] is a well-known constructive learning approach.
The constructed network has direct connections between the input and output nodes. In
the beginning, there is no hidden node. If the network cannot solve a problem after some
training cycles, the one with the maximum covariance among a set of randomly initialized
candidate nodes is added to the network. A newly added node is connected to the input
nodes and all existing nodes. With previously trained nodes frozen, the network is trained
by using the Quickprop algorithm [168]. The error signals are not backpropagated for
training.

Many constructive algorithms are inspired from the cascade-correlation learning [169,170].
In [170], constructive BP allows the addition of multiple new nodes at a time, and contin-
uous automatic structure adaptation, including both addition and deletion of nodes, can
be performed. Cascade-correlation learning is not suitable for VLSI implementation due
to the irregularity in the network architecture. By controlling the connectivity, cascaded-
correlation learning generates a strictly layered architecture with a restricted fan-in and a
small depth [171].



Mathematics 2022, 10, 4730 16 of 46

A quasi-Newton method for constructing the three-layer MLP was reported in [172].
The dependence identification (DI) algorithm [173] is a batch learning process. The MLP
training problem is transformed into a set of quadratic optimization problems. In [174],
a constructive training algorithm for the three-layer MLP is proposed for classification
problems, where the Ho–Kashyap algorithm [37] is used to train the network and a prun-
ing procedure is also incorporated. In [175], the proposed online constructive learning
algorithm for the MLP integrates the weight scaling technique [176,177] for escaping lo-
cal minima, and the quadratic programming (QP) and linear programming (LP)-based
procedure for initializing the weights of a newly added neuron. In [178], the proposed con-
structive approach for MLP learning finds excellent solutions by exploiting the flat regions.

There are also some constructive methods for training MLPs with LTG neurons for
classification, such as the tower algorithm [24], tiling algorithm [179], and upstart algo-
rithm [180]. All three algorithms exploit the pocket algorithm [24].

7. Acceleration on BP

Due to the gradient-descent nature, the BP algorithm is slow in convergence. This
section describes numerous measures for accelerating the convergence of the BP algorithm.

7.1. Eliminating Premature Saturation

Slow convergence is primarily due to the premature saturation of the output of the sig-
moidal functions. When net has a large absolute value, the derivative of φ(net) is small and
then the weight update is negligible. This leads to an excessively long learning time. This
phenomenon is the well-known flat-spot problem. Premature saturation can be resolved by
modifying the slope of the sigmoidal function, or by modifying the objective function.

An analysis of static premature saturation of output nodes is performed in [181].
This premature saturation arises from random initial weights at the beginning of training.
In [182], a dynamic mechanism analysis for premature saturation identifies the momentum
term as the leading cause of premature saturation. One can prevent premature saturation
by temporarily modifying the momentum factor α.

In [183], the BP update rule is revised by adding a term relating to the degree of
saturation to the objective function. The additional term is a parabolic function of the
outputs of the output nodes, given by ∑JM

i=1 λ(oi − 0.5)n, where λ is a scale factor, n is an
exponent, and oi is the actual output of the ith node in the output layer. Similarly, in [184],
the partial derivatives of the logistic activation function are generalized so that the error
signals are significantly enlarged when the outputs of the neurons (hidden or output)
approach saturation. Other authors also modify the objective functions to avoid premature
saturation [76,185]. However, the main drawback of those approaches is that there is no
selection guide for the tunable parameters. For example, in [183], the selection rules for λ
and n were not adjusted.

7.2. Adapting Learning Parameters

The performances of BP and BPM rely on the values of the learning rate η and the
momentum parameter α. There are some heuristics for accelerating the learning by adap-
tively adjusting η and α. According to [6], the process of starting with a large η and then
gradually decreasing it resembles simulated annealing [186]. For gradient-based methods,
the learning parameters are usually updated once every epoch.

7.2.1. Globally Adapted Learning Parameters

All the weights are updated by using the global learning parameters, namely, the
learning rate η and momentum parameter α. In [187], η has its optimal value as the
reciprocal of the largest eigenvalue of the Hessian H of the objective function. The largest
eigenvalue is estimated by an online algorithm, without the calculation of the Hessian.

Instead of using complicated algorithms to update the learning parameters, a simple
and popular search-then-converge schedule is developed in [188]. At the beginning, the
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schedule selects a large η, then decreases it gradually during the learning process. In the
bold-driver technique [189,190], the learning rate η and momentum parameter α are varied
by four rules according to whether or not an update when training an epoch improves the
training objective. The approach is able to escape from local minimum.

The BP rule, or the gradient-descent step, is formulated as

~w(t + 1) = ~w(t)− ηt~g(t), (39)

where the gradient ~g(t) = ∂E
∂~w

∣∣∣
~w=~w(t)

. In [191], fast convergence is achieved by adapting

η for the batch BP according to the instantaneous values of E(t) and its gradient. The
method, however, leads to a jumpy behavior of the weights, since η is very large in the
neighborhood of a local or global minimum. In [192], both ηt and α are updated adaptively
by a correlation-based heuristic. This algorithm achieves an exponential change of η, and
outperforms the locally adapted learning-rate-based method proposed in [193].

In [194], η is derived from the local approximation of the Lipschitz constant. The
algorithm is robust against the jumpy behavior [191] and ensures that the objective function
decreases for every weight update. It outperforms BP, delta-bar-delta [195], and the bold-
driver technique [189].

The learning parameters are also adapted by the fuzzy inference system (FIS) [196].
The method incorporates Jacobs’ heuristics [195] on the unknown learning parameters by
using fuzzy IF–THEN rules. The heuristics are driven by the behavior of E(t). η and α
are, respectively, adjusted by an FIS. Fuzzy BP converges much faster than BP, with much
smaller MSE [196].

7.2.2. Locally Adapted Learning Parameters

In the locally adapted learning approach, each weight or bias term wi can have its own
learning rate ηt,i so that

∆wi(t) = −ηt,i gi(t) . (40)

Locally adaptive learning algorithms may use weight-specific learning rates, such as the
methods proposed in [193,197], SuperSAB [198], delta-bar-delta [195], Quickprop [168],
incremental equalized error BP (EEBP) [199], and the globally convergent strategy [200].

In [197], the authors set the learning rate corresponding to each input weight to a
neuron to be inversely proportional to the neuron’s fan-in. This balances the learning
speeds of nodes with different fan-ins. The method increases the convergence speed, and
its justification is verified from the eigenvalue distribution of H [201].

In [193] and in SuperSAB [198], ηt,i is heuristically adapted by

ηt+1,i =

{
η+

0 ηt,i, if gi(t) · gi(t− 1) > 0
η−0 ηt,i, if gi(t) · gi(t− 1) < 0

, (41)

where η+
0 > 1, 0 < η−0 < 1, and in SuperSAB, η+

0 '
1

η−0
. Since ηt,i changes exponentially,

multiple successive acceleration steps will yield too large or too small ηt,i. For this reason,
SuperSAB includes a momentum term. Delta-bar-delta [195] has a similar update for ηt,i,
but implements linear acceleration and exponential deceleration. When the momentum
term is included, delta-bar-delta diverges sometimes, and an adaptive momentum can be
introduced to improve delta-bar-delta [202]. However, the selection of the parameters is
more difficult for delta-bar-delta.

In [203,204], ηt,i and αt,i are derived using the second-order-based, first-order-based,
and CG-based approaches, utilizing the first- and second-order derivatives of E with respect
to ηt,i and αt,i. The computational and storage complexities are at most three times that
of standard BP, but with a tenfold speed. In [200], based on Wolfe’s conditions for linear
search and the Lipschitz condition, the authors provide a general theoretical result for
developing batch BP with local learning rates. Conditions for global convergence are given.
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Quickprop [167,168,205] heuristically adapts αt,i. The method uses error gradient at
two consecutive time steps, which is essentially a discrete approximation to second-order
derivatives. Thus, Quickprop is a quasi-Newton method. Fahlman improved the flat-spot
problem by adding 0.1 to the derivative of the sigmoidal function [168].

7.3. Initializing Weights

The initial weights should be selected as close as possible to a global minimum before
training. Improper weight initialization may lead to slow convergence, and the network
may get stuck at a local minimum. All the weights are typically initialized with small
random positive values, or with small zero-mean random numbers [6]. Randomness in
weights helps to break the symmetry and thus reduce redundancy in the network. Experi-
ments have demonstrated the extreme sensitivity of BP to the initial weight configuration,
which has a complex fractal-like structure [206].

In [207], the authors give the maximum amplitude for the initial weights from a
statistical analysis. It is theoretically verified in [181] that when the maximal value of the
weights increases, the probability of a neuron becoming prematurely saturated increases.

7.3.1. Heuristics for Weight Initialization

An empirical optimal initialization of the weights is to set the weights terminating at
a node to be uniformly distributed in

[
−3/
√

n, 3/
√

n
]
, where n is the number of weights

terminating at the node [208,209]. A similar idea is implemented in [210]. A number of
heuristics for weight initialization are also discussed and compared by comprehensive
simulations in [208]. In [208], the authors recommend a weight range of [−0.77, 0.77]
according to their empirical result.

In [211], for the three-layer MLP, the maximum magnitude of the weights between
the hidden and output layers is inversely proportional to the hidden-layer fan-in, based
on a multidimensional geometry analysis. The mini-max initialization technique [71]
approximates continuous functions by using the number of extrema to characterize the
complexity of a function.

7.3.2. Weight Initialization Using Parametric Estimation

In [212], a three-layer MLP with prototypes is initialized by clustering the normalized
augmented pattern vectors of unit length. In [213], hidden-layer weights are initialized by
using clustering and nearest neighbors, and the output-layer weights are initialized by an
SVD. In [214], the weights are forward-layerwise-initialized using eigenvectors of the cross-
moment matrix based on Stein’s identity, and the weights for the output layer are initialized
by generalized linear modeling. In [215,216], the initial hidden-layer weights are calculated
in such a way that each hidden node approximates a range of the desired function and
the sigmoidal function is replaced by the piecewise-linear approximation. In [217,218],
the outputs of the hidden and output neurons are assigned in the nonsaturation region,
and the initial weights are estimated using the least squares and linear algebraic methods.
In [219], the weight initialization is implemented by using the orthogonal least squares
(OLS) method. In [220], two weight initialization techniques that combine random weight
initialization with pseudoinverse are given.

An ICA-based weight initialization for the three-layer MLP was derived in [221]. The
hidden-layer weights were initialized by extracting the salient feature components from
the input data. A weight initialization based on discriminant learning is proposed in [222].
In [223], the maximum covariance initialization method implements a weight initialization
procedure similar to the cascade-correlation algorithm [167].

A weight initialization technique based on Taylor series expansion is mathematically
well-founded [224]. Based on a Taylor series development of a nonlinear mapping between
the input and output of the examples and the sigmoidal function, two weight initialization
techniques for the three-layer MLP have been derived from the first- and second-order
identifications of the mapping [224].
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7.4. Adapting Activation Function

When a node has a large net input, net, it is close to a saturation state. In this case,
the first-order derivative of the sigmoidal function is very small, leading to very slow
weight update. This can be easily solved by adding a bias, say 0.1, to φ̇(net) [168]. It is also
suggested that the designed error function should go to infinity when φ̇(net) → 0 [225]
such that a finite nonzero error update is achieved. The flat-spot problem can be effectively
solved by defining such an activation function, φµ(net) = µnet + (1 − µ)φ(net), with
µ ∈ [0, 1] [226]. When starting with µ = 1, every node has a linear activation function,
thus the objective function E(~w) is a polynomial of the weight vector ~w and has few local
minima. BP is used to find a local minimum in E , then µ is gradually decreased and BP is
applied at the same time until µ = 0. This is an annealing process, which helps to reach a
global or suboptimal minimum.

For the logistic and hyperbolic tangent functions in (4) and (5), the gain β is the slope of
the activation function. In BP, typically, β = 1. Modified BP with adaptive β has improved
performance in terms of learning speed and generalization [227–229]. According to a
theorem given in [230], increasing β has the same effect as increasing η.

A sigmoidal activation function with a wide linear part, called the log-exp function,
was derived in [231]. The MLP with such an activation function can learn quickly since
the wide nonsaturation region helps to prevent premature saturation. The extended linear
part is particularly suitable for implementation. In order to improve BP, a fuzzy system for
adapting the gain β is given in [230].

7.5. Other Acceleration Techniques

Gradient reuse is a simple strategy for improving the convergence speed [232]. Gra-
dients computed are reused several times until the weight updates do not decrease the
objective function. Batch mode is used to generate a more accurate estimate of the true
gradient. However, this method is valid only for simple problems [233]. The weight ex-
trapolation technique can accelerate BP by extrapolating each individual weight [234]. This
procedure is easy to implement and is activated only a few times during BP iterations.

Inspired by the common PID control algorithm in feedback control, a three-term
BP algorithm [235,236] introduces a proportional term to the BP update rule. It can be
implemented in both batch and online modes. Compared to BP, it is easy to select learning
parameters in three-term BP, and it has a much higher convergence speed and can escape
local minima easily.

Successive approximation BP [237] can effectively avoid local minima. Training is
performed in Nph successive BP learning phases, each terminated at a predefined accuracy

δi, i = 1, . . . , Nph. The overall training error is given by E < 2Nph ∏
Nph
i=1 δi. The method

significantly outperforms BP in terms of convergence speed and generalization.
For gradient descent with delayed updates, the effects of the delay become negligible

after a few iterations and the algorithm converges at the same optimal rate as standard gra-
dient descent [238]. This is particularly important for distributed parallel implementations.

Resilient propagation (RProp) [239] is one of the best performing first-order methods,
although it is derived from a heuristic. It is a batch-learning algorithm. Each weight is
updated according to the sequence of signs of the partial derivatives in each weight wi.
RProp is not sensitive to the initial parameters. It converges much faster and has much
lower computational complexity than BP, Quickprop [168], and SuperSAB [198]. RProp is
comparable to the CG method in terms of performance [240]. It is suitable for hardware
implementation and is not susceptible to numerical problems. There are a number of
variants of RProp [241].

8. Second-Order Acceleration

The first-order BP learning converges slowly if the error surface is flat in a dimension.
Second-order optimization methods theoretically provide significantly faster convergence.
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The Hessian H is utilized in second-order methods. The calculation of H can be imple-
mented based on information from the BP algorithm [151].

Second-order methods can be categorized into matrix-type and vector-type. Matrix-
type methods need to store the Hessian and its inverse. However, for MLPs, H is ill-
conditioned [242]. Newton’s methods and the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method [243] are matrix-type methods, and they converge faster than BP typically by two
orders of magnitude. The computational complexity is not less than O

(
P2). Vector-type

methods need to store a few vectors. Some representative algorithms are limited-memory
BFGS [244], one-step secant (OSS) [78,245], CG algorithms [246,247], and scaled CG [248].
They converge faster than BP by typically one order of magnitude. In these algorithms,
the Hessian is calculated iteratively, or its structure is implicitly exploited. Line search or
trust-region search is implemented.

Second-order methods are implemented in batch mode to maintain the numerical
sensitivity of the calculated second-order gradients. Learning parameters are automatically
adapted. However, second-order methods become trapped in a local minimum more
frequently than the BP algorithm [249].

8.1. Newton’s Methods

To implement Newton’s methods, one has to explicitly compute and store the Hes-
sian [78,250]. As variants of the classical Newton’s method, Newton’s methods are matrix-
type algorithms. Some examples are the classical Newton, Gauss–Newton, and Levenberg–
Marquardt (LM) methods. They are quadratically convergent.

Classical Newton’s method is obtained by approximating E(~w) at time t + 1 into its
Taylor’s expansion at time t, and ignoring the third- and higher-order terms. With the
approximation, the updating on the weight vector is given by

~w(t + 1) = ~w(t) + ~d(t) , (42)

where
~d(t) = −H−1(t)~g(t) (43)

and the gradient vector is given by ~g(t) = ∂E
∂~w

∣∣∣
~w=~w(t)

. For the MLP, the Hessian is nearly

singular [251], and thus directly using (43) to find ~d(t) is not practical. Instead, we can solve
the following set of linear equations for ~d(t) by using an SVD or QR decomposition [252]

~g(t) = −H(t)~d(t) . (44)

In the classic Newton method, the computation of H(t) needs global information and
O
(

P3) floating-point operations are required for computing the search direction.

8.1.1. Gauss–Newton Method

The Gauss–Newton method is obtained by reformulating E(~w). The updating equa-
tions have the same form as (42) and (43), but ~g(t) and H(t) are, respectively, defined by

~g(t) = JT(t) ~ε(t), (45)

H(t) = HGN(t) = JT(t) J(t), (46)

where~ε(t) = ~ε(~w(t)) = (ε1, ε2, · · · , εN)
T , εp =

∥∥~ep
∥∥with~ep =~op−~yp, the Jacobian matrix

J(t) = J(~w(t)) = ∂~ε(~w)
∂~w =

[
Jij
]
, and Jij =

∂εi
∂wj

. The Hessian H(t) is approximated using
first-order derivatives only. It is possible that J is ill-conditioned and H is noninvertible. In
such a case, we can use the iterative Gauss–Newton method [243] based on the generalized
secant method.
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8.1.2. Levenberg–Marquardt Method

The LM method [253] adds a small identity matrix to H to eliminate the possible
singularity. The quadratic approximation error to E(~w) is minimized at step t under the
constraint that the step length ‖~d(t)‖ is within a trust region, by using the Karush–Kuhn–
Tucker (KKT) theorem [243]. That means, we use a modified Hessian, given by

HLM(t) = H(t) + σ(t)I , (47)

where σ(t) > 0 is a small positive number, which determines the size of the trust region.
The LM method, as a modification of the Gauss–Newton method, is obtained by replacing
HGN by HLM [78,254]. Thus, HLM is always invertible.

For large σ, the LM method becomes the BP with η = 1
σ ; on the other hand, for small

σ, it degenerates to the Gauss–Newton method. Thus, one has to balance between the
guaranteed convergence of the gradient descent and the rapid convergence of the classical
Newton method. In [254], an adaptive rule on σ was developed, given by

σ(t) =

{
σ(t− 1)γ, when E(t) ≥ E(t− 1)
σ(t−1)

γ , when E(t) < E(t− 1)
, (48)

where a constant factor was applied, γ > 1. A typical selection is 0.01 for σ(0) and 10
for γ [254]. The Jacobian J can be calculated by a modification to BP [254]. σ(t) can also
be adapted according to the hook step [253], Powell’s dogleg method [243], and other
heuristics [243].

The LM method is an efficient algorithm for medium-sized neural networks [254]. It
requires a large space to store the Jacobian, the approximated Hessian, and the inverse of
a P× P matrix at each iteration. Some LM variants, such as the trust-region-based error
aggregated training (TREAT) algorithm [255] and a modified LM method given in [256],
aim at reducing the storage and computational complexity. The recursive LM given in [257]
is used for online training of neural networks. In [258], the LM method is tailored for an
arbitrary network architecture.

In [259], the quasi-Hessian matrix and gradient vector are computed directly, and the
Jacobian is not used. The computation of the quasi-Hessian matrix and gradient vector
reduces the memory requirements by a factor of NJM, where JM is the number of output
nodes. In [260], a forward-only LM method utilizes the forward-only computation, while
in traditional methods, the Jacobian is calculated by a forward and backward computation.
In [261], backpropagation is used for the matrix–matrix multiplication, reducing the com-
putation time of the LM method by a factor of O(JM). In a modified ML algorithm [262], a
singularity point in the learning rate is eliminated and there is only one learning rate. The
error stability and weights boundedness are assured by the Lyapunov technique.

8.1.3. Other Methods

When implementing Newton’s methods for MLP learning, H is difficult to calculate
iteratively, and thus the cost for calculating H−1 is also high. For Newton’s methods, the
diagonal terms of H also have the ill-representability problem, and a good initial estimate
of the weights is also required. In block Hessian-based Newton’s method [251], a block
Hessian Hb is defined to approximate H.

In the LM case, the calculation of the inverse of Hb + λI can be broken into the calcula-
tion of the inverse of each diagonal block H(m)

b + λI; thus, the problem is decomposed into
M− 1 subproblems, each corresponding to a layer. The inverse in each of the subproblems
can be recursively calculated by the matrix inversion lemma.

LM with adaptive momentum (LMAM) and optimized LMAM [263] have the merits
of both LM and CG methods, and thus they can help LM escape local minima. LMAM
is globally convergent. Both LMAM and optimized LMAM outperform LM, BFGS, and
Polak–Ribiere CG with restarts [246].
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The attractor-based trust-region method [264] alternates its two phases for MLP learn-
ing. The first phase implements a trust-region-based local search for rapid training and
global convergence [243], whereas the second phase implements an attractor-based global
search to escape from local minima by using a quotient gradient system [265]. Alternating
the two phases results in a fast convergence to global optimum. This algorithm outperforms
BPM, BP with tunneling [266], and LM algorithms in terms of number of epochs, training
time, and MSE [264].

Stochastic second-order methods are attractive due to their low computational cost in
each iteration. However, the performance is highly dependent on the approximation of
the Hessian. In [267], an accelerated regularized subsampled Newton method is proposed
based on Nesterov’s acceleration.

8.2. Quasi-Newton Methods

In quasi-Newton methods, the Hessian or its inverse is approximated iteratively. The
Hessian of an MLP is symmetric and usually positive definite. Quasi-Newton methods
having positive-definite Hessian are referred to as variable-metric methods. As a class
of variable-metric methods, secant methods approximate the Hessian using differences.
Quasi-Newton methods have the same storage requirement as Newton’s methods.

Two globally convergent strategies, namely, line search and trust-region search, are
employed in quasi-Newton methods. These strategies retain the rapid convergence prop-
erty of the classical Newton’s method and are generally applicable [243]. In the line-search
strategy, given the direction ~d(t) from (43) or (44) based on the approximated Hessian, the
updating is given by

λ(t) = arg min
λ≥0
E
(
~w(t) + λ~d(t)

)
, (49)

~w(t + 1) = ~w(t) + λ(t)~d(t) . (50)

The line-search strategy guarantees that the objective function decays at each iteration.
The optimal λ(t) can be derived as a representation using the Hessian. Inexact line-search
and line-search-free methods are also implemented in quasi-Newton methods for MLP
learning [268].

Secant methods can be of rank one or rank two. The Broyden family includes many
rank-two and rank-one methods [243]. The Davidon–Fletcher–Powell (DFP) and BFGS
methods are dual rank-two secant methods in the Broyden family. BFGS has become
the most popular variable-metric method [269]. Many properties of DFP and BFGS are
common to the Broyden family.

8.2.1. BFGS Method

In BFGS [243,244,269], the Hessian or its inverse is updated iteratively. The inverse of
the Hessian is updated by

H−1(t + 1) = H−1(t) +
(

1 +
~zT(t)H−1(t)~z(t)

~sT(t)~z(t)

)
~s(t)~sT(t)
~sT(t)~z(t)

−
(
~s(t)~zT(t)H−1(t) + H−1(t)~z(t)~sT(t)

~sT(t)~z(t)

)
, (51)

where

~z(t) = ~g(t + 1)−~g(t) , (52)

~s(t) = ~w(t + 1)− ~w(t) . (53)

The initial values ~w(0), ~g(0), and H−1(0) need to specified. Typically, H−1(0) is set as
the identity matrix. BFGS has a computational complexity of O

(
P2), and it needs to store

matrix H−1 as well.
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The BFGS as well as all the secant methods satisfies the quasi-Newton condition or
secant relation [243,269], given by

H−1(t + 1)~z(t) =~s(t). (54)

When using an inexact line search in BFGS, the number of error function evaluations will
decrease substantially.

8.2.2. One-Step Secant Method

OSS method [78,245] is a memoryless BFGS.
It is derived by inserting H−1(t) = I, I being the identity matrix, into the BFGS update

equation given by (51), and then multiplying both sides by −~g(t + 1) to get the search
direction. As such, the Hessian is not stored, and the calculation of a matrix inverse is
not needed when calculating a new search direction. OSS has a superb computational
complexity of O(P). The price paid is a considerable loss of second-order information,
leading to a slow convergence compared to the BFGS.

When implementing an exact line search, OSS generates conjugate directions. Parallel
implementations of BFGS and OSS are treated in [270]. In [271], a parallel implementation
of a secant method using inexact search is developed for MLP learning.

8.2.3. Other Secant Methods

In limited-memory BFGS methods, second-order information from the most recent
iterations are exploited to implement part of the Hessian approximation [244]. Limited-
memory BFGS algorithms typically have a memory complexity of O(P) and do not need
accurate line searches [272]. Other examples of quasi-Newton variants are variable-memory
BFGS [273], memory-optimal BFGS methods [274], and the trust-region implementation of
the BFGS method [275].

In [276], the proposed limited-memory quasi-Newton methods exploit an iterative
scheme of a generalized BFGS type method, and approximate the Hessian by using a rank-
two formula arising from a fast unitary transform. They have a computational complexity
of O(P log(P)) and a memory complexity of O(P). BFGS and CG have a close relationship,
which helps to formulate algorithms with variable or limited memory [269]. One can treat
memoryless or limited-memory quasi-Newton methods as a tradeoff between the CG and
quasi-Newton methods.

8.3. Conjugate-Gradient Methods

The CG method [78,248,277,278] is a popular alternative to BP. CG implements a series
of line searches along noninterfering directions that are built to utilize the Hessian structure
but not store it. The method constructs a sequence of P successive search directions that
satisfy the so-called H-conjugate property. The memory requirement is O(P), which is
nearly four times that of BP [234]. The computational complexity per weight update cycle
is much higher than that of BP. This is because line search with an appropriate step size
requires multiple evaluations of E or its derivative, which require the presentation of the
entire training set.

In the CG method for MLPs, the update is given by

~w(t + 1) = ~w(t) + λ(t)~d(t), (55)
~d(t + 1) = −~g(t + 1) + β(t)~d(t), (56)

where λ(t) is the exact step size to the minimum of E along ~d(t) and it is obtained by a
linear search according to (49), and β(t) is a step size for determining the direction ~d(t + 1).

The speed of CG is critically dependent upon the efficiency of the line search. Fast
CG algorithms with inexact line searches [272,279] have been used for MLP learning [280].
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Scaled CG [248] avoids the line search by using a scalar to keep the Hessian H positive
definite, as implemented in the LM method.

There are many choices of β(t), such as the Hestenes–Stiefel [277], Fletcher–Reeves [281],
Polak–Ribiere [282], Dai–Yuan [283], and conjugate descent [243] methods. The popular
Polak–Ribiere method is given by [282]

β(t) =
~gT(t + 1)~z(t)
~gT(t)~g(t)

, (57)

where~z(t) is given by (52). Usually, ~w(0) is selected as a random vector, and ~d(0) = −~g(0).
The process is terminated when ‖~g(t)‖ is small enough. The computational complexity of
the CG method is O(P).

The CG method can be treated as an extended version of BPM by an automatic selection
of the learning parameters η(t) and α(t) in each epoch [203,247,278,284]. Compared to BP,
the CG method gets more easily stuck at a bad local minimum, since it deterministically
moves toward the bottom of any valley it reaches, due to the line-search procedure [234,285].
The CG method is usually executed multiple times with different random ~w(0), and finally
the ~w yielding the minimum error is taken as the solution [234].

There are some examples of the CG method in MLP learning. In [286], the MLP is
decomposed into a set of Adalines. Each Adaline has a local MSE function. The desired
output of each Adaline is calculated by error backpropagation. Each Adaline is learned
by using a modified line-search-free CG. The localized method is typically one order of
magnitude faster than the CG-based global method. In [287], based on the spectral scaling
parameter, a self-scaled CG for MLP learning is derived from the principles of several
CG methods.

8.4. Extended Kalman Filtering Methods

The Kalman filtering method is an optimum online estimation method for linear
systems. The EKF method is obtained from the linearization of a nonlinear system. EKF
is a general-purpose incremental training method, and can be used for training any MLP.
Recursive least squares (RLS) can be regarded as a reduced form of EKF, and is more
popular in adaptation.

8.4.1. Extended Kalman Filtering

In the EKF approach, learning is treated as the parametric identification problem of
a nonlinear system. The weight vector ~w is regarded as a state vector, and the MLP is
regarded as an unknown mapping ~f (·) from the state vector and the input ~x(t) onto the
output. The behavior of the MLP is described by the following state equations, given by

~w(t + 1) = ~w(t) +~υ(t), (58)

~y(t) = ~f (~w(t),~x(t)) +~ε(t), (59)

where ~x(t) is the input, ~y(t) the observed or desired output, ~υ the observation noise, and~ε
the measurement noise. ~υ = N (0, Q(t)) and~ε = N (0, R(t)) are assumed to be Gaussian
with zero mean and covariance matrices Q(t) and R(t), respectively.

EKF estimates the weight vector ~w such that the sum of the squared prediction errors of
all past observations is minimized. It is a minimum variance estimator derived from the Tay-
lor series expansion of ~f (·) in the vicinity of the previous estimate. EKF [153,154,288–290]
is given by

~w(t + 1) = ~w(t) + K(t + 1)
[
~y(t + 1)− ~f (~w(t),~x(t + 1))

]
, (60)

K(t + 1) = P(t)FT(t + 1)
[
F(t + 1)P(t)FT(t + 1) + R(t + 1)

]−1, (61)

P(t + 1) = P(t)−K(t + 1)F(t + 1)P(t) + Q(t) , (62)
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where K ∈ RP×Ny is the Kalman gain, Ny the dimension of ~y, P ∈ RP×P the conditional

error covariance matrix, ~f (~w(t),~x(t + 1)) the estimated output, and F(t+ 1) = ∂~f
∂~w

∣∣∣∣
~w=~w(t)

∈

RNy×P. Usually, P(0) = 1
ε I, ~w(0) = N (0, P(0)), and a small number ε > 0.

The above method is the global EKF method for MLP learning [289,291]. BP is a degen-
erate form of EKF [288]. Some fast algorithms for MLP learning are fading-memory EKF
(FMEKF) and U-D factorization-based FMEKF (UD-FMEKF) [292], and the EKF variant
reported in [293]. By partitioning the learning task into many small-scaled, separate, local-
ized identification subproblems, localized EKF methods effectively reduce the complexity
of the EKF method. There are some localized EKF methods, such as the multiple extended
Kalman algorithm (MEKA) [294] and the decoupled EKF algorithm (DEKF) [295]. For
localized algorithms, those off-diagonal terms in P in the corresponding global EKF method
are set to zero to remove coupling.

The Kalman filtering method is based on the assumption of a Gaussian noise. The ex-
tended H∞ filtering (EHF) method [296] extends the EKF method to enhance the robustness
to non-Gaussian noise.

8.4.2. Recursive Least Squares

When R(t) reduces to the identity matrix I and Q(t) to the zero matrix O, the EKF
method reduces to the RLS method. The RLS method has been applied to MLP learning
in [152,291,297,298]. It is typically an order of magnitude faster than the first-order online
BP. For the same accuracy, RLS requires tenfold less epochs than BP [298].

In [152], RLS is derived from the minimization of the sum of the squared prediction
errors of all prior observations plus an additional constraint on weights. For the same
initialization condition as that of EKF, RLS is inherently a weight-decay technique, and the
weight-decay effect is controlled by P(0), typically P(0) = 1

ε I. Usually, for smaller ε, the
training accuracy is better, whereas for larger ε, a better generalization is achieved [152].
Two modified RLS algorithms, namely true weight-decay RLS and input perturbation
RLS, were developed to improve the generation ability in [299]. Generalized RLS [300]
has a general decay term in the energy function. It has the same computational complex-
ity as RLS. Neural networks trained by generalized RLS have a substantially improved
generalization ability.

Like localized EKF, a complex problem can be divided into multiple localized sub-
problems, each of which is solved by RLS. There exist some localized RLS algorithms, such
as the local linearized LS (LLLS) method [301] and the block RLS (BRLS) algorithm [302].

9. Other Learning Algorithms

The expectation–maximization (EM) method [16] is the most popular method for
providing the maximum-likelihood (ML) solution for the parameters in case of incomplete
data. The EM method has been used for MLP learning [303,304]. The EM approach is an
iterative statistical technique. In the E-step, the conditional expectation of hidden nodes
is calculated based on the observation and current weight vector. In the M-step, a better
weight vector is updated based on the conditional expectation of hidden nodes. The BP
algorithm is a special case of the generalized EM algorithm for an iterative ML estimation.
Injecting carefully chosen noise can speed the average convergence of the EM method
as it climbs a hill of probability or log-likelihood [305]. Noise injection is also applied to
bidirectional BP, which trains a neural network with backpropagation in both the backward
and forward directions using the same synaptic weights [306].

Amari also used the information geometry to explain the learning in MLPs [304]. In
their formulation, the learning was regarded as an alternative projection in the manifold of
an exponential family.

In a non-Euclidean parametric space with a Riemannian metric structure, the ordinary
gradient is not along the steepest direction of the cost function. In such a case, the natural
gradient gives the steepest direction [17]. Natural gradient descent can be viewed as a
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type of second-order optimization method, with the Fisher information matrix acting as a
substitute for the Hessian [307]. In many cases, the Fisher information matrix is equivalent
to the generalized Gauss–Newton matrix, which approximates the Hessian [307]. Natural
gradient descent has a linear convergence in a Riemannian weight space. Online natural
gradient learning yields the Fisher efficient estimator; thus, it converges to the optimal
batch mode asymptotically. The flat-spot problem, which occurs in BP, will not occur, when
using natural gradient [17]. A natural conjugate gradient method for MLP learning is
discussed in [308].

MLPs can be trained by iterative layerwise learning methods [309–313]. A weight
update is implemented layerwise, and at each layer the weight is updated by solving a set
of linear equations. These algorithms typically converge one to two orders of magnitude
faster than BP. The layerwise approach can be jointly used with BP [309,313] or Kalman
filtering method [310]. In [314], for a three-layer MLP, the hidden-layer weights are updated
by BP, while the output-layer weights are updated by solving a set of linear equations.
In [315], the hidden-layer weights are updated by a batch-mode Kalman filtering method,
while the output-layer weights are updated by solving a set of linear equations. Compared
to LM, this method uses an order of magnitude less time at the same accuracy [316].

The parameter-wise algorithm [317] extends the layerwise approach. At each iteration,
the weights can be optimized one by one while the other variables are fixed. Compared
with the BPM and layerwise algorithms, the parameter-wise algorithm achieves a faster
convergence by a factor of more than an order of magnitude.

Lyapunov’s stability theory has been applied for weight update [318–320]. A gen-
eralization of BP is developed for training MLPs in [318]. Two adaptive versions of BP
proposed in [319] converge much faster than BP and EKF. A gradient-descent method
without error backpropagation is proposed for MLP learning in [321], and the method
has a great potential for concurrency. A linear programming (LP) method is also used for
training MLPs [322]. Fuzzy BP (FBP) algorithm [323] outperforms BP considerably in terms
of convergence speed and can escape local minima easily, and QuickFBP [324] is a fast
version of FBP. Inspired by the chaotic learning process in the brain, chaotic BP integrates
the intrinsic chaos of real neurons into BP, leading to a global search ability [325].

The MLP with hard-limiting activation, known as the binary MLP, is typically used
for classification. It has the merits of having extremely simple operations, simple internal
representations, an easy hardware implementation, and an easy rule extraction. The binary
MLP can be trained based on fuzzy logic and error backpropagation [326,327]. In the fuzzy
logic implementation, one needs to design a set of fuzzy rules for updating all the weights.
For classification, a critical problem in training the binary MLP is to find big linearly
separable subsets [328]. Multicore learning (MCL) has been proposed for constructing
binary MLPs, based on some lemmas about linear separability [328]. It simplifies the
equations of the weights and biases, producing a smaller hidden layer.

10. Fault-Tolerant Learning

In the early 1980s, people believed that MLPs had a built-in ability against node or
weight failures. That is, node or weight failures did not affect the performance of a trained
MLP much. However, many results [329–334] have shown that if special measures are not
considered at the training stage, the network faults could result in a rapid performance
degradation. Thus, it is important to have a fault-tolerant MLP. Network faults can be in
different forms, e.g., weight noise [329] and open-node fault [335,336].

10.1. Open-Node Fault

In the open-node fault model, some of the hidden nodes are disconnected from the
output layer [331]. Put another way, the outputs of those damaged hidden nodes get stuck
at zero. Some methods to deal with this fault model have been developed.

Injecting a random node fault [333,337] is a typical heuristic. In this approach, dur-
ing training, a random node fault is artificially included in the output of hidden nodes.
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Zhou et al. [336] proposed the T3 algorithm to train a network. In T3, the break point is
first identified from the fault curve, and then the network is trained by injecting a random
node fault. The objective of T3 is to maximize the number of faulty nodes that an MLP can
afford. However, when there are a large number of hidden nodes, we have to search over a
huge space of potential faulty networks, leading to excessive training time.

It is well known that the output of a network node is very sensitive to large weights.
Another approach is to limit the weight magnitude. One can add the classical weight-decay
regularizer into the objective function to limit the weight magnitude [333], or one can
hard-bound the weight magnitude to a small value during training [338,339]. Limiting
weight magnitude, however, makes the theoretical analysis of the method very difficult. For
example, in [333], the selection guide for the regularization parameter is unavailable even
though the fault statistics are available. To optimize the performance of MLPs in a faulty
setting, a number of trained networks need to be trained by using different weight-decay
parameters. Then, for each of the trained network, a huge number of faulty networks are
generated to study the performance in the faulty setting by feeding the testing or training
set to those faulty networks. Clearly, this approach is computationally intensive.

Instead of modified the training algorithm, the replication technique aims at modifying
the trained network by replicating hidden nodes from a trained network [335,340]. This
approach, however, needs to use additional source.

Another idea to protect MLPs is to modify the objective functions. Neti et al. [341]
defined the training of a fault-tolerant MLP as a mini-max problem, which minimizes
the maximum of the training errors over all potential faulty networks with a single node
fault. An objective function was defined in [341]. A mini-max problem is, however,
very difficult to solve. Some authors [342,343] also proposed to modify the objective
function. In their approach, the objective function consisted of two terms: an MSE of a
fault-free MLP and the sum of MSEs of the faulty networks. In [344], a similar objective
function was defined and the corresponding learning algorithm was proposed. The method
could improve generalization and fault tolerance [344]. The above techniques, which
modify the objective function, are just effective for handling a single node fault. For
multinode open-fault situation, the computational cost for handling the second term of the
objective function is very high. For example, for an MLP with J2 hidden nodes, for a single
node fault, the number of potential faulty networks is equal to J2. For a multinode fault,
the number of potential faulty networks becomes ∑J2

i=1 (
M
i ). Moreover, in [342–344], the

theoretical guideline to set the weighting factor for MSE terms of the faulty networks was
not addressed. In [345], a fault-tolerant regularizer was proposed. The performance of this
tolerant regularizer was better than that of Zhou et al.’s approach. However, the result was
suitable for RBF networks only [345].

10.2. Multiplicative Weight Noise

Multiplicative weight noise [346–350] refers to a zero-mean symmetrical noise with
variance proportional to the weight magnitude. This noise comes from the finite-precision
representation of the trained weights in an implementation [329].

There are several studies on the behavior of multiplicative weight noise [196,351–353].
The effect of multiplicative weight noise on Adaline and Madaline has been comprehen-
sively analyzed in [351,352]. Choi et al. [196] applied a statistical approach to derive various
output sensitivity measures for MLPs. For a binary or bipolar input, the sensitivity to weight
perturbation can be accurately computed by using the algorithm proposed in [353].

The output sensitivity is closely related to the performance of a faulty network with
multiplicative weight noise. Based on the MSE sensitivity, a fault-tolerance model was
proposed for RBF networks in [354], where multiplicative noise was injected in all the
parameters. By extending Choi’s results [196], error sensitivity measures were developed
for MLPs in [349]. In [355], sensitivity measures were proposed for split-complex-valued
MLPs with noise in inputs and weights.
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Various fault-tolerant training methods have been developed for multiplicative weight
noise on MLPs. The effect of a multiplicative weight noise is amplified by the magnitude of
the associated weight. To reduce its effect, the magnitude of the weights can be kept small.
In [339], the magnitude of the most harmful weight, defined by a relevance measure, is
shrunk at each step of training. In [338], the magnitude of a weight is upper-limited in a
modified BP learning algorithm. In [356], a feasible weight range is determined from the
average and variance of the weights’ magnitude.

Based on statistics, the effect of multiplicative weight noise can be canceled out when
the magnitudes of the input weights of a node are similar. Simon [357] suggested a
distributed fault-tolerant training algorithm, in which the training error was minimized
subject to an equality constraint on weight magnitudes. Based on the result on MSE
sensitivity [354], a fault-tolerant RBF network can be obtained by using a weight-decay
regularizer [358]. An explicit regularization method can be used to train a network, such
as an MLP [347,349] and an RBF network [350], so that it is able to tolerate multiplicative
weight noise. In the explicit regularization method, the objective function is given by

J = JMSTE + λJMSES, (63)

where JMSTE stands for the mean squared training error, JMSES for the MSE sensitivity, and
λ is the regularization parameter. However, the selection rule on λ in the regularization
term has not been addressed theoretically.

In [359], the authors presented an objective function, which was similar to (63), for
training RBF networks to tolerate multiplicative weight noise. The relationship between λ
and the variance of multiplicative weight noise was proposed. A fault-tolerant training
algorithm was derived, and the generalization ability of the trained network was also given.

11. Perceptron in the Deep Learning Era

Hinton proposed the deep belief network in 2006, starting the deep learning era [360].
However, the first deep learning model is known as the convolutional neural network
model proposed by LeCun in 1989 [361]. Deep learning and reinforcement learning are
indispensable factors to achieve human-level or better AI systems. They both have strong
connections with the brain functions.

In this deep learning era, the foundations of all the deep learning methods are laid on
the ideas from MLP research. Stochastic gradient descent is the cornerstone of machine
learning. Deep neural networks have usually millions of connections and are difficult to
scale. For deep learning, the traditional second-order learning methods are not viable due
to its superlinear complexity. The error backpropagation is commonly used for the training
of deep neural networks.

11.1. Solving the Difficulties

Deep convolutional neural networks [361] are the most popular and important deep
learning models due to their excellent performance on many well-known image bench-
marks such as ImageNet. Deep MLPs were successfully applied to speech recognition [362].
Deep neural networks are obtained by expanding the traditional neural network models
into multiple layers.

Deep neural networks are generally trained in two phases [363]: in the first phase,
pretraining one layer at a time by unsupervised learning; in the second phase, fine-tuning
the entire network by the ultimate criterion. Layerwise pretraining finds the optimal
solution for a layer at a time, by fixing all the weights of the subsequent layers. This
is a greedy procedure. A deep network with such unsupervised layerwise pretraining
almost always outperforms the cases when there is no pretraining phase [364]. This is
explained by the fact that the pretraining phase acts as a regularizer [365] for the supervised
optimization problem.

A deep convolutional network [366] utilizes many hierarchical layers of tiled con-
volutional filters to model receptive fields. The LeNet-5 model [361] is a six-layer MLP
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model trained with an incremental BP method. It consists of convolutional, pooling, and
fully connected layers. Weight sharing and averaging/subsampling are applied, and OBD
is employed for the architecture optimization. Other convolutional models are AlexNet,
ZFNet, VGGNet, GoogleNet, and ResNet, which have deeper architecture and millions of
connections [241].

A deep network can well approximate a target function with high nonlinearity and
realize the desired feature representations. However, the high network complexity makes
it very difficult to train and easy to overfit. BP or stochastic gradient descent has three
difficulties in training a deep network, i.e., overfitting, vanishing gradient, and extreme
computational load. Deep convolutional networks have solved all these difficulties. Hinton
credited the success to dropout training, ReLU function, the use of GPUs, and techniques for
generating more training examples from the existing ones in a talk at NIPS 2012. Dropout
is an effective solution to overfitting. It trains some randomly selected nodes at a certain
percentage, while the outputs of other nodes are set to be zero to deactivate the nodes.
Dynamic regularization of the learning model can also resolve overfitting [367].

A representative solution to the vanishing gradient problem of BP or stochastic gradi-
ent descent is the use of the ReLU activation function [368]

σ(x) = max(0, x). (64)

The ReLU function is a piecewise linear function, which outputs zero for negative input
and retains the positive input. The max operation allows the ReLU function to compute
much faster than a sigmoidal function. The ReLU function better transmits the error than
a sigmoidal function. It also induces a sparsity in the hidden nodes. The ReLU function
has a derivative of one for all active nodes, and has a zero gradient whenever a node
is inactive. Some alternatives to the ReLU function are LeakyReLU and the parametric
deformable exponential linear unit (PDELU) [369]. PDELU pushes the mean value of
activation responses closer to zero, which ensures the steepest descent when training a
deep neural network.

11.2. Why Deep Learning Always Achieves Good Results

Standard learning theory suggests that such highly expressive networks should heavily
overfit [66] and therefore not generalize at all. Occam’s razor states that simple hypotheses
generalize well. Overfitting is a challenge for deep neural networks when the training data
are insufficient.

Surprisingly, deep neural networks typically perform the best, with many more pa-
rameters than data points. A solid theoretical foundation is still missing. Some attempts
have been made to explain this.

In fact, the popular use of the ReLU activation function φ(x) = max(x, 0) is used
for alleviating the gradient vanishing problem by eliminating the saturation zone, and
thus the error propagation over the network is possible. The use of a ReLU activation
also substantially reduces the number of functioning nodes, since as long as the weighted
sum is negative, its output will be zero. This substantially decreases the total number of
parameters and is an inherent regularization process.

To explain the nonoverfitting problem in the overparameterized case, in [370], instead
of using the minimal expected value of the square loss, the generalization error is measured
by the maximum loss. The exact number of parameters that ensure both zero training
error as well as a good generalization error is estimated. A solution of a regularization
problem is guaranteed to yield a good training error as well as a good generalization error
and estimate the error on test data. In [371], it is proved that gradient descent can find the
global minima of the cross-entropy loss for an overparameterized deep fully connected
ReLU network for binary classification, trained with a proper random weight initialization,
under certain assumptions on the training data.

In [372], random matrix theory is applied to analyze the weight matrices of deep
neural networks. The training process implicitly implements self-regularization, even in
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the absence of explicit regularization, such as dropout or weight norm constraints. For
backpropagation-trained deep fully connected networks, noise accumulation is generally
bound, and adding additional layers does not worsen the signal-to-noise ratio beyond a
limit [373]. Noise accumulation can be suppressed entirely when the slope of the activation
function is smaller than unity.

The existence of suboptimal local minima and saddle points in the highly nonconvex
loss landscape is important for the performance of trained deep neural networks. This is
proved in [374] for deep ReLU networks with a squared loss or cross-entropy loss under
reasonable assumptions. In [375], experiments validate that sufficiently deep and wide
neural networks are not negatively impacted by suboptimal local minima. Suboptimal
local minima, even though degenerated to saddle points, exist for fully connected sigmoid
networks. The local minima can be escaped from via a nonincreasing path on the loss curve.
This provides a partial explanation for the successful application of deep neural networks.

Deep neural networks generalize remarkably well, indicating a strong inductive bias
toward functions with a low generalization error. In [376], PSGD( f |S), the probability that
an overparameterized deep network trained with stochastic gradient descent converges
on a function f consistent with a training set S , is empirically calculated. PSGD( f |S)
correlates remarkably well with the Bayesian posterior PB( f |S), and PB( f |S) is strongly
biased towards low-error and low-complexity functions. Thus, a strong inductive bias in
the parameter-function map, which determines PB( f |S), is the primary explanation for
why deep networks generalize so well. PB( f |S) is the first-order determinant of PSGD( f |S).

11.3. Deep versus Shallow

Although most of the recent works advocate a deep architecture, some researchers
support a shallow architecture. We here review a few representative papers on their
approximation ability as well as performance comparison.

Compared to the three-layer MLP, the four-layer MLP can usually approximate a
target with fewer connections, but may introduce more local minima [64,69,377]. Based on a
geometrical interpretation of the MLP, a small four-layer MLP can generate better results for
a target function with a flat surface located in its domain [69]. The approximation of smooth
multivariable functions with an MLP is treated in [378]. For a specified approximation
order, explicit results for the necessary number of hidden nodes and its distributions to the
hidden layers are given. It turns out that more than two hidden layers are not necessary
when minimizing the number of necessary hidden nodes.

A ReLU network is also proved to be universal approximator [379,380]. Explicit
estimates on the size of a ReLU neural network are derived for approximating Lipschitz
functions to any given accuracy in the L∞-norm [380]. In [381], a deep ReLU neural network
is constructed that approximates a function with a specified accuracy, and tight dimension-
dependent bounds on the computational complexity are given in terms of the size and
depth of this network. For deep neural networks with certain smooth functions including
sigmoidal functions and ReLU, the approximation error is proved to decay exponentially in
the number of nonzero weights [382]. When approximating sufficiently smooth functions,
finite-width deep networks require a strictly smaller connectivity than finite-depth wide
networks [382]. Deep convolutional neural networks with general convolution, activation,
and pooling operators is analyzed in [383]. The translation-invariance of the features in
the resulting feature extractor is proved to become progressively more prominent as the
network depth increases.

The capacity of layered, fully connected architectures of linear threshold neurons
is investigated in [384]. In general, under the same other conditions, shallow networks
compute more functions than deep networks, and the functions computed by deep net-
works are more regular. According to an abstract theorem in function approximation [385],
without the requirement of robust parameter selection, deep networks using a nonsmooth
activation function such as ReLU, do not provide any significant advantage over shallow
networks in terms of the degree of approximation alone.
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Bounds on the approximation error with respect to the size of the tanh neural net-
work are derived in [386]. Tanh neural networks with only two hidden layers suffice
to approximate functions at comparable or better rates than much deeper ReLU neural
networks [386].

Training deep neural networks with error backpropagation is implausible from a
biological perspective. In [387], classification is implemented in a three-layer network with
a single readout layer by using biologically plausible, local learning rules. The hidden
layer weights are either fixed or trained with unsupervised, local learning rules, and the
readout layer is trained with a supervised, local learning rule. Networks with localized
receptive fields perform significantly better than fully connected networks and can reach
the backpropagation performance on MNIST. A three-layer spiking model with leaky
integrate-and-fire neurons and spike-timing-dependent plasticity for training the readout
layer achieves >98.2% test accuracy on MNIST, which is close to the performance of three-
layer rate networks trained with backpropagation. The performance of the shallow spiking
network models is comparable to most biologically plausible models of deep learning.

12. Discussion and Conclusions

Before we conclude this paper, we give an example to demonstrate the performance of
some popular methods described in this paper.

12.1. An Example—Iris Classification

The iris database from the UCI Repository of machine learning databases was used as a
benchmark for evaluating MLP learning algorithms. The iris database contains 150 patterns,
which belongs to three classes. Each pattern has four numeric properties. We divided the
dataset into a training set (80%) and a testing set (20%). The performance goal was set as
0.001, and the maximum number of epochs was 1000. Eight popular learning algorithms
(RProp, BFGS, one-step secant, LM, scaled CG, CG with Powell–Beale restarts, Fletcher–
Powell CG, and Polak–Ribiere CG algorithms) were implemented and compared.

A three-layer (4-4-3) MLP network was selected. When training the network, if an
example belonged to class i, the ith output node outputted 1, while all the other output
nodes outputted −1. The logistic sigmoidal function was used in the hidden layer, and the
linear function was used in the output layer. When evaluating the network, the output node
with the largest output was set to 1, while the outputs at all the other nodes were set −1.
Table 1 lists the training results for 50 independent runs. Figure 4 shows the learning curves
for a random run. In this example, BFGS and LM generated the best MSE performance: they
used less time for convergence, but as second-order algorithms, they used more memory.
All of the algorithms generated good MSE and classification performances. The simulations
were performed on a PC with Intel Core i7 CPU 10700 @2.90 GHz and 16 GB RAM based
on the MATLAB Neural Networks Toolbox.

Table 1. A 4-4-3 MLP trained with eight algorithms: performance obtained by averaging 50 random
runs. RP—Rprop, SCG—scaled CG, CGB—CG with Powell–Beale restarts, CGF—Fletcher–Powell
CG, and CGP—Polak–Ribiere CG.

Algorithm Mean Training Classifier Std Mean Training Std (s)Epochs MSE Accuracy (%) Time (s)

RP 990.94 0.025 96.00 0.034 0.7372 0.2262

LM 238.54 0.007 100.00 0.000 0.3186 0.3494

BFGS 154.72 0.015 93.33 0.000 0.2619 0.1778

OSS 999.94 0.027 96.53 0.034 1.1087 0.0555

SCG 903.16 0.016 95.40 0.037 0.7462 0.1720

CGB 439.48 0.028 95.27 0.064 0.5456 0.3567

CGF 562.64 0.021 95.87 0.038 0.6820 0.3278

CGP 573.38 0.021 96.27 0.033 0.6962 0.3565
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Figure 4. A 4-4-3 MLP trained with eight methods: the evolution curves of the training error for a
random run.

12.2. Discussion on the Popular Learning Algorithms

The above iris classification example compared the performance of eight popular
MLP learning algorithms. The first-order algorithms, namely, BP and BP with momentum,
whether in batch or in online mode, were not compared here, since they are usually slow in
convergence, get easily trapped at bad local minima, and it is difficult to select the learning
rate and/or the momentum factor. RProp, as the best performing first-order algorithm, was
used here for comparison.

Among the eight methods, RProp is a first-order method, LM is a Newton method,
BFGS and OSS are quasi-Newton methods, and the other four are CG methods. It is seen
that all the algorithms generated good performance. The second-order methods LM and
BGFS gave the best performance in terms of convergence speed and total time, but at a cost
of higher computational and memory complexities at each epoch. OSS is a memoryless
BFGS, and it trades accuracy for lower complexity. The CG algorithms had a performance
below that of LM and BFGS but were better than OSS. RProp had a performance comparable
to that of several CG algorithms, and this was in agreement with the conclusion given
in [240]. The computational complexity of LM is O(N3

w) and its memory complexity is
O(NJM + N2

w). The computational and memory complexities for BFGS are, respectively,
O(N2

w) and 1
2 + O(Nw). The computational complexity for OSS is O(Nw) and it does not

need to store the Hessian. The CG methods are closely related to the quasi-Newton method
but conduct a series of line searches along noninterfering directions. They have a memory
complexity of O(Nw), which is about four times that of BP. It is well known that BP has
linear time and memory complexities. Compared to BP, the computational complexity
of CG is significantly increased for each weight update cycle due to the line searches for
an appropriate step size. Like BP, CG is also easily trapped at a bad local minimum. CG
converges as fast as RLS, but has a lower complexity.

From the complexity and convergence analysis, we suggest that LM be used for
medium sized networks, when the number of weights is less than one thousand. BFGS
can be used in networks of up to 5000 weights. The CG algorithms can be applied to
even larger networks. OSS and RProp are effective heuristic-based methods, and they
are not recommended for large networks, since their performance is not theoretically
justified. However, for deep learning, with hundreds of thousands or even millions of
parameters to adapt, the first-order gradient descent method is the only choice, due to its
low computational and memory complexities as well as its proved convergence.
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12.3. Summary

The perceptron model was invented by Rosenblatt in 1958, but it is dated to 1943
when McCulloch and Pitts proposed the neuron model. The perceptron model is the
most fundamental and also most used neural network model. There have been numerous
research publications during the past seven decades. The number of publications on the
fundamental theory of the perceptron model and its learning is several thousands, while
that on the applications of the perceptron model to various fields is hundreds of thousands.
The perceptron model as well as the entire neural network discipline has become a branch
of applied mathematics.

Although the perceptron model is so important for the neural network discipline, there
are very few comprehensive survey papers in the literature. This paper was motivated
to fill the gap. In this paper, we provided a comprehensive, yet state-of-the-art review
on the perceptron model, with importance attached to the MLP model and its learning.
More specifically, we treated some of the most important topics that are associated with
the perceptron model, namely, SLP and its learning, various learning techniques for MLP,
including the first-order BP and accelerating techniques for BP, second-order methods, the
optimization of network architectures, and fault-tolerant learning. The role of MLP in the
deep learning era was also dwelled on, and some important topics on deep learning were
also described.

This paper was also meant to serve as a tutorial on the perceptron model. Therefore,
we provided details of the equations for the important algorithms that the readers can
easily master. We provided an illustrative iris classification example that compared eight
most popular MLP learning algorithms, on the basis of which we compared the algorithms
and gave our advice on how to select an MLP learning algorithm for a specific application.

Although the perceptron model has become a fundamental method in this deep
learning era, it is still a live model. Most popular deep learning models are based on the
perceptron model or have a perceptron model as their component layers. We introduced
how the difficulties of deep learning were addressed by the research accomplishments of
the perceptron model. In recent years, for big data science, many research efforts on first-
order learning such as stochastic gradient descent and stochastic coordinate descent, and
even on stochastic second-order algorithms, have been conducted on the perceptron model,
see Section 4.6. These algorithms are particularly useful for training deep neural networks.

Many deep learning models have been proposed so far. These models are mostly pre-
trained by using numerous datasets especially ImageNet, and many other image datasets.
Most of the models are also based on convolutional neural network models, which use
convolution as the major feature extraction operation. Convolution is an effective operation
for physical signals and images. The trained models are then used in numerous specific ap-
plications by transfer learning. However, transfer learning is based on analogical reasoning.
It is only reasonable for applications with different but related tasks. Thus, transferring
the learned deep neural network models to non-image-based classification is theoretically
unfounded. Theoretical investigations for transfer learning across different domains are
needed for the future of deep learning.

While convolutional-neural-network-based deep learning models may be very effec-
tive for classification of images, image-based classification is only an important portion
of pattern recognition. In most situations where classification and nonlinear regression
problems are under consideration [10,11], the inputs are not physical signals and cannot be
organized in a rectangular form, and the use of convolutional-neural-network-based deep
learning models for handling those problems is not theoretically justified. For example, in
DDoS attack detection problems, the commonly used input features are source IP address,
prefix of source IP, flow duration, flow number per time interval, packet size, packet num-
ber per flow, unique IP address per time interval, etc. These features are not spatial data
and are not in an array form. For a major portion of classification problems, the MLP model
or MLP-based deep learning models are preferred to deep convolutional neural networks.
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Due to the limitation on the length, many topics that are closely associated with
perceptron could not be treated in this paper. For example, various application fields of the
perceptron model were not discussed in this paper.

Some other topics related to perceptron are mentioned below. A Sigma-Pi network [6]
is a generalization of an MLP by using product nodes and summation nodes to build
higher-order terms. It is also a universal approximator [67], and provides inherently higher
mapping capabilities than first-order models such as MLPs. It can be trained by the BP
learning rule. However, for sigma-Pi network, the numbers of product terms and weights
have a combinatorial increase.

The perceptron model has been extended to the complex domain. The complex
perceptron learning algorithm [388], whose weights take complex values, has a better
separating power than the perceptron learning. The convergence of split complex BP [389]
for training complex-valued neural networks has been proved. Complex-valued gradient
descent algorithm with an adaptive complex-valued step size has been proposed for the
training of complex-valued neural networks [390].

In addition to the analysis-based methods described so far, there are numerous MLP
learning methods based on metaheuristics [391]. Those methods were not described here.
Hardware and parallel algorithm implementations were also not described in this paper.

Neural network models are traditionally treated as black-box models for modeling
unknown systems. The knowledge for human experts cannot be easily integrated into the
learning process and human cannot easily understand the function of a trained network.
There are some attempts to extract rules from trained three-layer MLPs [231]. One can refer
to [241] for a recent progress in perceptron and machine learning.
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