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Abstract: This paper focuses on a high-dimensional semi-parametric regression model in which
a partially linear model is used for the parametric part and the B-spline basis function approach
is used to estimate the unknown function for the non-parametric part. Within the framework of
this model, the constrained least squares estimation is investigated, and the alternating-direction
multiplier method (ADMM) is used to solve the model. The convergence is proved under certain
conditions. Finally, numerical simulations are performed and applied to workers’ wage data from
CPS85. The results show that the ADMM algorithm is very effective in solving high-dimensional
partially linear models.
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1. Introduction

With the rapid development of modern technology, many fields have generated high-
dimensional data, such as in biological information, biomedicine, meteorology, geography,
econometrics, machine learning, etc. The term “high-dimensional” refers to the fact that
the number of variables in data is much larger than the number of samples. In practical
situations, the actual structure of a model is often unknown. If only parametric or non-
parametric regression models are used for statistical inference, the results will produce
large biases and erroneous conclusions. Therefore, semi-parametric regression models came
into being in the 1980s, and Engle first proposed semi-parametric regression models, which
contain both parametric and non-parametric components. These are more widely used than
parametric or non-parametric models. A semi-parametric regression model is a statistical
model in which:

Y = g(X, β) + m(U) + ε, (1)

where Y is a real-valued response variable, β ∈ Rp is a p-dimensional unknown parameter
vector, X is a d-dimensional covariate, and g(·, ·) is a known and measurable function.
U ∈ [0, 1] is a random variable, m(·) is a smooth unknown function defined on [0, 1], and ε
is a random error.

This paper focuses on high-dimensional semi-parametric regression models in which a
partially linear model is used for the parametric part. A partially linear model was proposed
by Engle [1] in 1986 when he studied weather and electricity problems. The response
variables of the model had linear relationships with some covariates and nonparametric
relationships with other covariates, so the partially linear model combined the advantages
of the interpretability of linear models with the flexibility of non-parametric models. Partial
linear models have been studied by many scholars, such as Heckman (1986) [2], Xu (2019) [3],
Chen (2020) [4], Auerbach (2022) [5], etc., and they have achieved many results. Among
them, Heckman (1986) [2] proposed a partially linear model with a smooth spline and

Mathematics 2022, 10, 4767. https://doi.org/10.3390/math10244767 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10244767
https://doi.org/10.3390/math10244767
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10244767
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10244767?type=check_update&version=2


Mathematics 2022, 10, 4767 2 of 13

obtained the consistency and asymptotic normality of the parameter estimation based on
Bayesian estimation. Härdle (2000) [6] reviewed a series of studies on partially linear models.
In the non-parametric part, the B-spline basis function method was used to estimate the
unknown function. The B-spline basis function method is a global smoothing method, and
its calculation accuracy and efficiency are relatively high. Numerous scholars have studied
and achieved many results for high-dimensional data, such as those of Lasso [7–9], SCAD
(smoothly clipped absolute deviation) [10–12], and MCP (minimax concave penalty) [13,14],
and many scholars have also performed much research on high-dimensional partially linear
models. Xie (2009) [10] studied SCAD-penalized regression in high-dimensional partially
linear models by using polynomial regression splines to estimate the non-parametric part;
Ni (2009) [15] proposed a double-penalty partially linear variable selection method that used
smooth splines to estimate the non-parametric part. In the case of parameter dispersion,
Chen (2012) [16] studied the variable selection problem for the contour-adaptive Elastic-Net
for a partially linear model with high-dimensional covariates; Wang (2017) [17] studied
constrained-contour least squares estimation based on contour Lagrange multiplier test
statistics with linear constraints and gave the convergence speed and asymptotic normality
of the least squares estimation.

Wang considered the following partially linear regression model (PLM):

Y = XTβ + BTγ + ε, (2)

where Y is a univariate response variable, X = (X1, . . . , Xp)T ∈ Rp, and Z ∈ R are explana-
tory variables. We denote Y = (Y1, . . . , Yn)T; X = (X1, . . . , Xn)T ; β = (β1, . . . , βp)T is an
unknown p-dimensional parameter vector; ε = (ε1, . . . , εn)T. B = B(Z) = (B1(Z), . . . , Bmn(Z))T

is a set of B-spline basis functions of order r, and γ = (γ1, . . . , γmn)
T is a spline coeffi-

cient vector.
Let (Y1; XT

1 ; Z1) . . . (Yn; XT
n ; Zn) be an independent identically distributed sample of

the size of the model. We denote Xi = (Xi1, . . . , Xip)
T; model (2) can be approximated by:

Yi = Xi
Tβ + B(Zi)

Tγ + εi. (3)

From Equation (3), we can obtain ε = Y−Xβ− Bγ. By using the least squares method
to estimate the parameters β and γ, minimizing the error is equivalent to:

min
β,γ

1
2
‖Y− Xβ− Bγ‖2. (4)

In practice, the parameter estimates can also be improved by adding prior information
about the regression parameters. The constraint condition is the profile Lagrange multiplier
test statistic proposed by Wei and Wu (2008) [18]:

Rβ = d, (5)

where R is a given k× p matrix whose rank is k, and d is a known k-dimensional vector.
The study in this paper is equivalent to the solution of the following optimization

problem:
min
β,γ

1
2‖Y− Xβ− Bγ‖2,

s.t.Rβ = d.
(6)

Wang (2017) [17] studied restricted profile least squares estimation, and a Lagrangian
function was constructed based on linear constraints. The parameter estimation was per-
formed by using the Lagrange multiplier method. The results showed that the algorithm
was efficient when parameter information was available.

Our study considers the optimization problem in (6) by constructing an augmented
Lagrangian function with linear constraints and using the alternating-direction method
of multipliers (ADMM) to solve the model. The Lagrange multiplier update is a kind of
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ascending iteration, and its convergence can only be moderately accelerated. Therefore, the
Lagrange multiplier method is more time-consuming. The augmented Lagrange multiplier
method is a method that combines the Lagrange multiplier method and a penalty function
method in one piece, so it is a simple and effective method. Hestenes [19] and Powell [20]
first proposed the augmented Lagrangian function and multiplier method for constrained
optimization in the late 1960s. The ADMM [21] is a classical algorithm for solving nonlinear
problems that was proposed by Glowinski and Marroco in the 1970s. The ADMM is very
suitable for convex optimization [22]. This algorithm has a large number of applications
in different fields, such as regularized estimation [23], image processing [24], machine
learning [25], optimal control [26], and resource allocation for wireless networks [27]. When
the scale of a problem is relatively large, a distributed algorithm is faster. Considering the
characteristics of the optimization problem in (6), it can be solved in blocks. This is suitable
for the algorithmic framework of the ADMM, so this paper will use the ADMM to solve
the high-dimensional partially linear model.

2. Introduction to the ADMM Algorithm

In this part, we summarize some useful content for the following discussion.
Firstly, we briefly review the basic knowledge of the ADMM. Our motivation is to

apply the ADMM to solve the model in this paper. Let us start from a general convex
minimization problem with a separable objective function and linear constraints:

min f (x) + g(z),
s.t.Ax + Bz = c,

(7)

where x ∈ Rm, z ∈ Rn, A ∈ Rp×m, B ∈ Rp×n, c ∈ Rp, f : Rm ∈ R, and g : Rn ∈ R. x
and z are independent variables. The augmented Lagrangian function of the minimization
problem is:

Lp(x, y, z) = f (x) + g(z) + yT(Ax + Bz− c) +
p
2
‖Ax + Bz− c‖2

2, (8)

where y is the Lagrange multiplier and p > 0 is a penalty parameter. The minimization
problem can be solved with the augmented Lagrange multiplier method. With a given y0,
the iterative scheme of the augmented Lagrangian function for the minimization problem is:{

(xk+1, zk+1) := arg min{Lp(x, y, zk)},
yk+1 := yk − p(Axk+1 + Bzk+1 − c).

(9)

The iterative scheme is an application of the augmented Lagrangian function method
for solving the above iterations, which require the simultaneous polarization of the variables
x and z in each iteration. In addition, the ADMM algorithm decomposes the above iteration
into two parts [28] and continuously minimizes the variables; it is expressed as follows:

xk+1 := arg min{Lp(x, yk, zk)},
zk+1 := arg min{Lp(xk+1, y, zk)},

yk+1 := yk − p(Axk+1 + Bzk+1 − c).
(10)

The ADMM is widely used, and it is of interest that the subproblem generated by the
ADMM must exist in the form of an analytical solution in each iteration.

3. Model and Algorithm

In this section, we will apply the ADMM algorithm to solve the minimization model
in this paper and to derive the analytical solution form of each subproblem.
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3.1. The High-Dimensional Partially Linear Model

For the optimization problem in (6), by using the augmented Lagrange multiplier
method, the constrained programming problem is transformed into an unconstrained
optimization problem, and the augmented Lagrangian function is:

min Lρ(β, γ, λ) =
1
2
‖Y− Xβ− Bγ‖2 + 〈λ, Rβ− d〉+ ρ

2
‖Rβ− d‖2. (11)

Using the alternating-direction method of multipliers (ADMM), its n-step iteration
starts from a given (βn, λn) with:

γn+1 = arg min
γ

Lρ(βn, γ, λn),

βn+1 = arg min
β

Lρ(β, γn+1, λn),

λn+1 = λn + ρ(Rβn+1 − d).

(12)

We get the new iteration point at (γn+1, βn+1, λn+1).

3.2. Solution of the ADMM for High-Dimensional Partially Linear Models

After a simple calculation, the γ-subproblem in Equation (11) can be written as the
following equation:

γn+1 = arg min
γ
{1

2
‖Y− Xβn − Bγ‖2}. (13)

According to the above method, one can find the partial derivative of γ for any given β:

∂Lρ(β, γ, λ)

∂γ
= −B(Y− Xβn − Bγ) = 0. (14)

The analytical solution of γ can be obtained in the form of:

γn+1 = (BTB)−1BT(Y− Xβn). (15)

For the analytical solution of β, the objective function can be solved by substituting γ
into Equation (11):

βn+1 = arg min
β
{1

2

∥∥∥Y− Xβ− Bγn+1
∥∥∥2

+ 〈λn, Rβ− d〉+ ρ

2
‖Rβ− d‖2}, (16)

with the following partial derivatives for β:

∂Lρ(β, γn+1, λn)

∂β
= (XXT + ρRRT)−1(XT(Y− Bγn+1) + RT(ρd− λn)) = 0. (17)

The solutions γn+1, βn+1, and λn+1 are solved by calculating:
γn+1 = (BTB)−1BT(Y− Xβn),

βn+1 = (XXT + ρRRT)
−1

(XT(Y− Bγn+1) + RT(ρd− λn)),
λn+1 = λn + ρ(Rβn+1 − d).

(18)

3.3. Algorithmic Design of ADMM for Solving High-Dimensional Partially Linear Models

In summary, the iterative algorithm for solving high-dimensional partially linear
models by using the ADMM can be described as follows.

Step 1. Input the variables X, Y, and B, and given the initial variables (β0, γ0, λ0), select
the penalty parameter where ρ > 0;

Step 2. Input the iteration step n = 1, 2, . . . , N;
Step 3. Update the parameters γn+1, βn+1, and λn+1 with Equation (18);



Mathematics 2022, 10, 4767 5 of 13

Step 4. Iterate through the loop, returning to step 3 until the termination conditions
are met, and the algorithm is terminated;

Step 5. Output (βN , γN , λN) as the approximate solution (β∗, γ∗, λ∗) of (6).

4. Convergence

In this section, we will use a variational inequality to prove the convergence of the
algorithm. The Lagrange function of the model is given by:

L(β, γ, λ) =
1
2
‖Y− Xβ− Bγ‖2 + 〈λ, Rβ− d〉, (19)

where λ is the Lagrange multiplier.
The solution of Equation (11) is equivalent to finding (γ∗, β∗, λ∗) ∈ S such that:

BTXβ∗ + BTBγ∗ − BTY = 0,
(XXT + ρRRT)

−1
(XT(Y− Bγ∗) + RT(ρd− λ∗)) = 0,

RTβ∗ − d = 0.
(20)

Let S∗ satisfy Equation (19); then, we define ω∗ = (γ∗, β∗, λ∗) ∈ S∗. Equation (19)
is equivalent to a variational problem. We find (γ∗, β∗, λ∗) ∈ S∗ such that the following
variational inequality holds:

VI(S, F) : (ω−ω∗)F(ω∗) ≥ 0, ∀ω ∈ S. (21)

Here,

ω =

 γ
β
λ

, F(ω) =

 BTXβ + BTBγ− BTY
(XXT + ρRRT)

−1
(XT(Y− Bγ) + RT(ρd− λ))
RTβ− d.

 (22)

We need to use the positive definite matrix G:

G =

 µIp − X̂TX̂ 0 0
0 ρIp 0
0 0 1

ρ Ip

, (23)

where X̂ = (XT,
√

ρR)T. For the positive definite matrix G, the following conditions are
satisfied: µ > τ(XTX + ρRTR) and µ(·) is the spectral radius of the matrix.

In order to establish the convergence of the algorithm, the n + 1th iteration value
of the algorithm is taken as a variational inequality problem. The following lemma can
be obtained.

Lemma 1. Let {ωn} denote the sequence generated by the algorithm; then, for any ω′ ∈ S,

(ω′ −ωn+1)(F(ωn+1) + M(βn − βn+1)− G(ωn −ωn+1)) ≥ 0,

where,

M =

 −ρRT

ρIp
0p

.

Lemma 2. Let {ωn} denote the sequence generated by the algorithm; then, for any ω∗ ∈ S∗,

(ωn −ω∗)TG(ωn −ωn+1) ≥ (ωn −ωn+1)TG(ωn −ωn+1)− (λn − λn+1)T(βn − βn+1).
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Lemma 3. Let {ωn} denote the sequence generated by the algorithm; then, for any ω∗ ∈ S∗,

||ωn+1 −ω∗||2G ≤ ||ωn −ω∗||2G − ||ωn −ωn+1||2G

From Lemmas 1 and 2, it can be proved that the sequence {ωn} generated by this
algorithm shrinks to the solution set S∗. Lemma 3 shows that the sequence {ωn} generated
by the algorithm shrinks to the solution set S, and the following corollary can be obtained
from Lemma 3.

Corollary 1. Let the sequence be generated by the algorithm; then, we get:

1. lim
k→∞

∥∥ωn −ωn+1
∥∥

G = 0;

2. The sequence {ωn} is bounded;
3. For arbitrary ω∗ ∈ S∗, the sequence {‖ωn −ω∗‖G} is non-increasing.

Theorem 1. Given any starting point (γ0, β0, λ0) ∈ S, for any ρ ≥ 0, µ > τ(XTX + ρRTR), the
sequence {ωn = (γn, βn, λn)} is generated by the algorithm and converges to {ω∞ = (γ∞, β∞, λ∞)},
where (γ∞, β∞, λ∞) is the solution of the model.

Proof. From Property 1 of Corollary 3, we can get:
lim
k→∞
||γn − γn+1|| = 0,

lim
k→∞
||βn − βn+1|| = 0,

lim
k→∞
||λn − λn+1|| = 0.

(24)

By Property 2 of Corollary 3, let ω∞ = (γ∞, β∞, λ∞) be one of the clusters, and let the
sequence {ωnj} converge to the sequence {ω∞}, so we can obtain:

γnj → γ∞,
βnj → β∞,
λnj → λ∞,

(25)

and 
lim
k→∞
||γnj − γnj+1|| = 0,

lim
k→∞
||βnj − βnj+1|| = 0,

lim
k→∞
||λnj − λnj+1|| = 0.

(26)

It is proved below that the cluster ω∞ satisfies the optimality condition (19). From
Equations (18) and (29), for any ω′ ∈ S, we can obtain:

lim
j→∞

(ω′ −ωnj)F(ωnj) ≥ 0. (27)

Then, from Equation (28), for any ω′ ∈ S, the above inequality is transformed into:

(ω′ −ω∞)F(ω∞) ≥ 0. (28)

Therefore, the cluster ω∞ satisfies the optimality condition (19), i.e., ω∞ ∈ S∗. For any
n ≥ 0, by Property 3 of Corollary 3, we can obtain:

||ωn+1 −ω∞||2G ≤ ||ωn −ω∞||2G. (29)
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Through the above proof, we can find that the sequence {ωn} has a unique clustering
point ω∞. That is, the sequence {ωn} converges to ω∞ and has (γ∞, β∞, λ∞) as the solution
of the model. The proof is complete.

5. Simulation and Application
5.1. Parameter Settings

The estimation of a high-dimensional partially linear model is performed through a nu-
merical simulation based on a dataset with a sample size of n generated by the model. The
random error terms are ε ∼ N(0, σ2), and X obeys the p-dimensional multivariate normal
distribution, i.e., X ∼ N(0, Σ), where Σ = 0.5|j−k|; j and k are the jth and kth components of
the covariance, respectively. The variable Z obeys the uniform distribution of the interval
[0, 1] , i.e., Z ∼ U(0, 1) and g(z) = 3 cos(2πz). The parameter β = (1, 2, 0.5,−1, 0, . . . , 0)T

satisfies the constraint β5 = . . . = βp. The estimation of the smooth function is performed
by using cubic spline interpolation and three B-spline basis functions for the numerical
simulation. The results are good.

5.2. Simulation Results

According to the above parameter settings, the algorithm proposed in this paper is
used, and the specific results are shown in Table 1.

Table 1. Comparison of the mean square errors under different conditions.

n p σ MSEC MSEW σ MSEC MSEW σ MSEC MSEW

100

9

0.5

0.0026 0.2853

1

0.0026 0.3057

2

0.0026 0.3975

29 0.0025 0.7691 0.0026 1.0220 0.0031 1.5839

49 0.002 1.1281 0.0026 1.5182 0.0033 2.6788

69 0.0035 2.4141 0.0042 3.2338 0.0057 5.2201

89 0.0057 34.9406 0.0068 56.5306 0.0111 99.8811

109 2.5194× 10−13 160.7625 3.9866× 10−13 126.0699 4.7814× 10−13 57.2586

209 5.2491× 10−15 215.5829 5.6079× 10−15 247.2301 6.2244× 10−15 313.6789

509 1.7694× 10−15 867.2514 1.7710× 10−15 789.7276 1.9649× 10−15 636.5492

1009 1.2117× 10−15 446.7470 1.3816× 10−15 434.2037 1.4950× 10−15 429.8142

200

9 0.0025 0.1356 0.0025 0.1773 0.0025 0.2733

49 0.0025 0.0025 0.0026 0.8108 0.0030 1.5062

89 0.0025 0.9857 0.0028 1.4725 0.0032 2.6198

129 0.0029 1.6449 0.0032 2.1437 0.0042 3.4911

169 0.0039 3.1227 0.0052 4.6591 0.0084 8.3544

209 1.0400e-12 6.8265 7.7886× 10−13 16.3884 8.6313× 10−13 40.1867

409 4.2441× 10−15 221.4869 4.3281× 10−15 228.5344 5.2164× 10−15 243.1755

509 2.2511× 10−15 266.5785 2.3479× 10−15 284.4385 2.6637× 10−15 324.3384

1009 1.8520× 10−15 369.4391 1.7060× 10−15 526.3515 1.7332× 10−15 843.3223

The simulation’s effect is expressed by the mean square error (MSE) of the parameter
estimation, MSE =

∥∥β̂− β
∥∥2

, where the sample sizes are n = 100, 200 and the dimensions are
p = 9, 29, 49, 69, 89, 109, 129, 169, 209, 509, 1009. The dimensions are taken from small to large
by determining the value of the sample size. This was done, on the one hand, to compare
with the results of Wang’s [17] study and, on the other hand, to study the simulation’s effect
in the case of high dimensions (p � n). The effect of Wang’s study is expressed by the
MSEW, and the effect of this paper is expressed by the MSEC.

According to the results in Table 1, the mean square error for this paper is slightly
better than that of Wang’s study in the low-dimensional case, and the mean square error
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for this paper is slightly lower than that of Wang’s. The results are better in the high-
dimensional case because the fitting effect of the augmented Lagrange multiplier method
is better than that of the Lagrange multiplier method for high-dimensional data. For fixed
values of p, the mean square error becomes larger with increasing σ, and the stability of the
parameter estimation also becomes worse with the increase in σ. For fixed values of σ, the
mean square error decreases with the increase in the dimensions p of the parameter. The
method studied in this paper works better for parameter estimation in high-dimensional
cases, and the higher the dimensionality, the better the stability of the parameter estimation.

A line plot of the mean square error for different variances was constructed with a
sample size of 100 in order to specifically express the effects of this study (Figures 1–3) and
to provide a comparison with Wang’s results (Figures 4–6).

9 29 49 69 89 109 209 509 1009

0

1

2

3

4

5

6
10

-3

MSEC

Figure 1. Folding line plot of the mean square error for a variance of 0.5.

9 29 49 69 89 109 209 509 1009

0

1

2

3

4

5

6

7
10

-3

MSEC

Figure 2. Folding line plot of the mean square error for a variance of 1.

9 29 49 69 89 109 209 509 1009

0

0.002

0.004

0.006

0.008

0.01

0.012

MSEC

Figure 3. Folding line plot of the mean square error for a variance of 2.
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Figure 4. Folding line plot of the compared mean square error for a variance of 0.5.
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Figure 5. Folding line plot of the compared mean square error for a variance of 1.

9 29 49 69 89 109 209 509 1009
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Figure 6. Folding line plot of the compared mean square error for a variance of 2.

Line plots of the mean square errors for different variances were constructed with a
sample size of 200 to specifically express the effects of this study (Figures 7–9) and for a
comparison with Wang’s results (Figures 10–12).

9 49 89 129 169 209 409 509 1009

0
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-3
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Figure 7. Folding line plot of the mean square error for a variance of 0.5.
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Figure 8. Folding line plot of the mean square error for a variance of 1.
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Figure 9. Folding line plot of the mean square error for a variance of 2.
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Figure 10. Folding line plot of the compared mean square error for a variance of 0.5.
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Figure 11. Folding line plot of the compared mean square error for a variance of 1.
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Figure 12. Folding line plot of the compared mean square error for a variance of 2.
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In these figures, it can be seen that the mean square error (MSEC) of the method studied
in this paper is very small and is very close to zero in high dimensions. Moreover, the mean
square error of this method is smaller than that of Wang’s method. Therefore, the method
studied in this paper is more applicable in the case of high dimensions.

5.3. Application: Workers’ Wage Data Analysis

In order to test the algorithm proposed in this paper, we applied the algorithm to the
practical problem of the analysis of workers’ wage data. The workers’ wage data were given
by the 1985 Current Population Survey (CPS85) [29]. These data came from reality and are
real. Moreover, the indicators of these data contained both quantitative data and classified
data, so they were representative. In addition, the data were studied by other authors in the
literature to facilitate comparison [30]. The data consisted of 534 samples of CPS85 personnel
with 11 variables, which included wages and other characteristics of workers, such as gender,
years of education, race, sex, marital status, years of work experience, occupational status,
area of residence, and union membership. The wage level did not necessarily have a linear
relationship with the years of work experience, so the importance of other variables for
wages was mainly considered. The model was built as follows:

Yi =
10

∑
j=1

Xijβ j + m(Ui) + εi, (30)

where Yi is the wage of the ith worker, Ui is the number of years of experience of the ith
worker, Xij is the jth variable of the ith worker, and εi ∼ N(0, σ2).

We describe the use of the method proposed in this paper to study the important
factors that affect wages in this section. In order to reduce the absolute differences between
wages, avoid the influence of individual extreme values, and satisfy the assumptions of
the linear model as much as possible, a logarithmic transformation was required for the
variable of wages.

During the experiment, it was necessary to select training samples and test samples.
If the proportion of training samples was large, the model may have been closer to a
model trained with all samples. However, if the proportion of test samples was small, the
evaluation results would not be accurate enough. If the proportion of test samples was large,
that could lead to a large difference between the evaluation model and the previous one,
thus reducing the authenticity of the evaluation. In all samples, the division ratio for the
training samples and test samples was typically 7:3 to 8:2. For large amounts of data, ratios
of 9:1 or even 99:1 can be used. Based on the sample size of CPS85, 75 percent of the samples
were selected as training samples, and the method in this paper was used for parameter
estimation training. The remaining 25 percent of the samples were used as test samples
to predict the wages of workers, and the predicted values were expressed in ŷi. The test
samples were used to evaluate the prediction ability of the model, and the prediction effect
was evaluated with the median absolute error (MAE) and the standard error (SE).

The MAE attenuates the effects of outliers. The loss is calculated by taking the median
of all absolute differences between the real and the predicted value.

MAE = medain{|y1 − ŷ1|, |y2 − ŷ2|, · · · , |yn − ŷn|}. (31)

The SE is a measure of the precision of data and reflects the degree of dispersion of a
whole sample from the sample’s mean.

SE =

√
∑ (yi − ŷi)

2

n
. (32)

The smaller the SE is, the greater the reliability of the prediction will be; otherwise, the
reliability of the prediction is small.

The results are shown in Table 2.
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Table 2. The MAE and SE of predictions of workers’ wages.

Variables Variable Description MAE SE

edu Number of years of education 1.9777 0.0429

race NW=1, W=0 0.7491 0.0861

sex F=1, M=0 0.7526 0.0860

hispanic Hisp=1, NH=0 0.7491 0.0861

south S=1, NS=0 0.7491 0.0861

married Married=1, Single=0 0.7521 0.0858

union Union=1, Not=0 0.7491 0.0860

age Age 1.9885 0.0517

sector Clerical=1, Const=1, Manag=1, Manuf=1
Prof=1, Sales=1, Service=1, Other=0

0.7569 0.0857

As can be seen from the results in Table 2, the value of the MAE was small, indicating
that the loss between the predicted and actual values of workers’ wages was lower. The
values of the SE were all below 0.09, indicating that the prediction was reliable. In short,
the MAE was low and the SE was small, so the parameter estimation method in this paper
is relatively efficient.

6. Conclusions

The research in this paper considered a partially linear model with a restricted profile
and used the least squares method to estimate the parameters with the purpose of minimiz-
ing the error. By constructing an augmented Lagrangian function under linear constraint
conditions, the constrained optimization problem was transformed into an unconstrained
optimization problem. The model was solved with the ADMM. The ADMM algorithm has
the advantage that some large global problems can be solved by decomposing them into
several smaller, more easily solvable local subproblems and then coordinating the solutions
of the resulting subproblems to obtain the solution of the large global problem. The conver-
gence of the algorithm was obtained by using the method of variational inequality. Through
numerical simulations, the results showed that the method of this paper is suitable for
parameter estimation in high-dimensional cases. Finally, this paper applied the algorithm to
workers’ wage data from CPS85 and analyzed the important factors that affected wages.

In this paper, we used the ADMM algorithm to solve a high-dimensional partially
linear model, and the effect was very good. The model in this paper is mainly for convex
optimization problems. It can be used to solve other optimization problems, such as non-
concave penalty optimization SCAD or MCP. This is a subject that will be studied further.

Author Contributions: Conceptualization, A.F. and X.C.; Methodology, A.F. and X.C.; Software, X.C.;
Validation, Y.S. and J.F.; Formal analysis, X.C.; Resources, A.F.; Data curation, J.F.; Writing—original
draft, X.C.; Writing—review & editing, A.F. and Y.S.; Visualization, X.C.; Supervision, Y.S.; Project
administration, A.F. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the National Natural Science Foundation of China (Nos.
12071112, 11971149, 12101195).

Data Availability Statement: Not applicable.

Acknowledgments: We sincerely thank the three anonymous reviewers for their insightful com-
ments, which greatly improved the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Engle, R.F.; Granger, C.W.J.; Rice, J.; Weiss, A. Semiparametric estimates of the relation between weather and electricity sales. J.

Am. Stat. Assoc. 1986, 81, 310–320. [CrossRef]

http://doi.org/10.1080/01621459.1986.10478274


Mathematics 2022, 10, 4767 13 of 13

2. Heckman, N.E. Spline smoothing in a partly linear model. J. R. Stat. Soc. Ser. (Methodol.) 1986, 48, 244–248. [CrossRef]
3. Xu, H.X.; Chen, Z.L.; Wang, J.F.; Fan, G.L. Quantile regression and variable selection for partially linear model with randomly

truncated data. Stat. Pap. 2019, 60, 1137–1160. [CrossRef]
4. Chen, W. Polynomial-based smoothing estimation for a semiparametric accelerated failure time partial linear model. Open Access

Libr. J. 2020, 7, 1. [CrossRef]
5. Auerbach, E. Identification and estimation of a partially linear regression model using network data. Econometrica 2022, 90, 347–365.

[CrossRef]
6. Härdle, W.; Liang, H.; Gao, J. Partially Linear Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000.
7. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. (Methodol.) 1996, 58, 267–288. [CrossRef]
8. Ranstam, J.; Cook, J.A. LASSO regression. J. Br. Surg. 2018, 105, 1348. [CrossRef]
9. Chetverikov, D.; Liao, Z.; Chernozhukov, V. On cross-validated lasso in high dimensions. Ann. Stat. 2021, 49, 1300–1317.

[CrossRef]
10. Xie, H.; Huang, J. SCAD-penalized regression in high-dimensional partially linear models. Ann. Stat. 2009, 37, 673–696. [CrossRef]
11. Zeng, L.; Xie, J. Group variable selection via SCAD-L 2. Statistics 2014, 48, 49–66. [CrossRef]
12. Gao, L.; Li, X.; Bi, D.; Xie, Y. Robust Compressed Sensing based on Correntropy and Smoothly Clipped Absolute Deviation Penalty. In

Proceedings of the 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP), Shanghai,
China, 12–15 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 269–273.

13. Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [CrossRef]
[PubMed]

14. Breheny, P.; Huang, J. Penalized methods for bi-level variable selection. Stat. Its Interface 2009, 2, 369. [CrossRef] [PubMed]
15. Ni, X.; Zhang, H.H.; Zhang, D. Automatic model selection for partially linear models. J. Multivar. Anal. 2009, 100, 2100–2111.

[CrossRef] [PubMed]
16. Chen, B.; Yu, Y.; Zou, H.; Liang, H. Profiled adaptive Elastic-Net procedure for partially linear models with high-dimensional

covariates. J. Stat. Plan. Inference 2012, 142, 1733–1745. [CrossRef]
17. Wang, X.; Zhao, S.; Wang, M. Restricted profile estimation for partially linear models with large-dimensional covariates. Stat.

Probab. Lett. 2017, 128, 71–76. [CrossRef]
18. Wei, C.H.; Wu, X.Z. Profile Lagrange multiplier test for partially linear varying-coefficient regression models. J. Syst. Sci. Math.

Sci. 2008, 28, 416.
19. Hestenes, M.R. Multiplier and gradient methods. J. Optim. Theory Appl. 1969, 4, 303–320. [CrossRef]
20. Powell, M.J.D. A method for nonlinear constraints in minimization problems. Optimization 1969, 1, 283–298.
21. Glowinski, R.; Marroco, A. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une

classe de problèmes de Dirichlet non linéaires. Revue française d’automatique, informatique, recherche opérationnelle. Anal.
Numer. 1975, 9, 41–76.

22. Boyd, S.; Parikh, N.; Chu, E.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of
multipliers. Found. Trends® Mach. Learn. 2011, 3, 1–122.

23. Wahlberg, B.; Boyd, S.; Annergren, M.; Wang, Y. An ADMM algorithm for a class of total variation regularized estimation
problems. IFAC Proc. Vol. 2012, 45, 83–88. [CrossRef]

24. Yang, Y.; Sun, J.; Li, H.; Xu, Z. ADMM-CSNet: A deep learning approach for image compressive sensing. IEEE Trans. Pattern Anal.
Mach. Intell. 2018, 42, 521–538. [CrossRef] [PubMed]

25. Forero, P.A.; Cano, A.; Giannakis, G.B. Consensus-Based Distributed Support Vector Machines. J. Mach. Learn. Res. 2010, 11, 1663–707.
26. Glowinski, R.; Song, Y.; Yuan, X.; Yue, H. Application of the Alternating Direction Method of Multipliers to Control Constrained

Parabolic Optimal Control Problems and Beyond. Ann. Appl. Math. 2022, 38, 115–158. [CrossRef]
27. Joshi, S.; Codreanu, M.; Latva-aho, M. Distributed SINR balancing for MISO downlink systems via the alternating direction

method of multipliers. In Proceedings of the 2013 11th International Symposium and Workshops on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), Tsukuba, Japan, 13–17 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 318–325.

28. Gabay, D.; Mercier, B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput.
Math. Appl.1976, 2, 17–40. [CrossRef]

29. Berndt, E.R. The Practice of Econometrics: Classic and Contemporary; Addison-Wesley Publishing Company: Reading, MA, USA,
1991.

30. Wang, X.; Wang, M. Adaptive group bridge estimation for high-dimensional partially linear models. J. Inequalities Appl. 2017,
2017, 1–18.

http://dx.doi.org/10.1111/j.2517-6161.1986.tb01407.x
http://dx.doi.org/10.1007/s00362-016-0867-3
http://dx.doi.org/10.4236/oalib.1106824
http://dx.doi.org/10.3982/ECTA19794
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1002/bjs.10895
http://dx.doi.org/10.1214/20-AOS2000
http://dx.doi.org/10.1214/07-AOS580
http://dx.doi.org/10.1080/02331888.2012.719513
http://dx.doi.org/10.1214/09-AOS729
http://www.ncbi.nlm.nih.gov/pubmed/17244211
http://dx.doi.org/10.4310/SII.2009.v2.n3.a10
http://www.ncbi.nlm.nih.gov/pubmed/20640242
http://dx.doi.org/10.1016/j.jmva.2009.06.009
http://www.ncbi.nlm.nih.gov/pubmed/20160947
http://dx.doi.org/10.1016/j.jspi.2012.02.035
http://dx.doi.org/10.1016/j.spl.2017.04.013
http://dx.doi.org/10.1007/BF00927673
http://dx.doi.org/10.3182/20120711-3-BE-2027.00310
http://dx.doi.org/10.1109/TPAMI.2018.2883941
http://www.ncbi.nlm.nih.gov/pubmed/30507495
http://dx.doi.org/10.4208/aam.OA-2022-0004
http://dx.doi.org/10.1016/0898-1221(76)90003-1

	Introduction
	Introduction to the ADMM Algorithm
	Model and Algorithm
	The High-Dimensional Partially Linear Model
	Solution of the ADMM for High-Dimensional Partially Linear Models
	Algorithmic Design of ADMM for Solving High-Dimensional Partially Linear Models

	Convergence
	Simulation and Application
	Parameter Settings
	Simulation Results
	 Application: Workers' Wage Data Analysis

	Conclusions
	References

