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Abstract: We aim to introduce the quadratic-additive functional equation (shortly, QA-functional
equation) and find its general solution. Then, we study the stability of the kind of Hyers-Ulam result
with a view of the aforementioned functional equation by utilizing the technique based on a fixed
point in the framework of β-Banach modules. We here discuss our results for odd and even mappings
as well as discuss the stability of mixed cases.
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1. Introduction

In 1940, Ulam [1] inquired about the stability of groups of homomorphisms: “What
is an additive mapping in close range to an additive mapping of a group and a metric
group?” In the next year, Hyers [2] responded affirmatively to the above query for more
groups, assuming that Banach spaces are the groups. Rassias [3] extended Hyers’ theorem
by accounting for the unbounded Cauchy difference. Gavruta [4] has demonstrated the
stability of Hyers-Ulam-Rassias with its enhanced control function. This stability finding
is the stability of Hyers-Ulam-Rassias functional equations. Baker [5] utilized the Banach
fixed point theorem to provide a Hyers-Ulam stability result.

Cădariu and Radu used the fixed point approach to prove the stability of the Cauchy
functional equation in 2002. They planned to use the fixed-point alternative theorem [6]
in β-normed spaces to achieve an accurate solution and error estimate. In 2003, this novel
method was used in two consecutive publications [7,8], to get general stability in Hyers-
Ulam in the functional equation of Jensen. The paper [9] also made the ECIT 2002 lecture
possible. Many subsequent works employed the fixed point alternative to get generalized
findings in many functional equations in various domains of Hyers-Ulam stability. The
reader is given the following books and research articles that describe the progress made
in the problem of Ulam over the last 70 years (see, for example [10–16]). The functional
equations

φ(a + b) = φ(a) + φ(b) (1)

and
φ(a + b) + φ(a− b) = 2φ(a) + 2φ(b) (2)
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are known as additive functional equation and quadratic functional equation, respectively.
Each additive and quadratic solution of a functional equation, in particular, must be an
additive mapping and a quadratic mapping. Singh et al. [17] discussed the asymptotic
stability of fractional order differential equations in the framework of Banach spaces.

In [18], Czerwik showed the stability of the quadratic functional Equation (2). Skof
has been shown for the function φ : N1 → N2, where N1 is normed space and N2 is Banach
space (see [19]), a stability issue in the Hyers-Ulam approach for Equation (2). Skof’s
theorem is still true if an Abelian group replaces the domain N1, according to Cholewa [20].

Grabiec has generalized the above results in [21]. The quadratic functional equation is
useful for distinguishing inner product spaces(for example, see [22–24]). The further gener-
alization of Th.M. Rassias’ theorem was provided by Găvruţa [4]. Several papers and mono-
graphs on different generalizations and applications of stability of the Hyers–Ulam–Rassias
have also been published over the last three decades for several functional equations and
mappings (see [25–35]).

In this work, we introduce a new kind of generalized quadratic-additive functional
equation is

∑
1≤i<j≤n

ϕ

(
−vi − vj +

n

∑
k=1;i 6=j 6=k

vk

)

=

(
n2 − 9n + 16

2

)
∑

1≤i<j≤n
ϕ(vi + vj)

−
(

n3 − 11n2 + 26n− 16
2

) n

∑
i=1

ϕ(vi) + ϕ(−vi)

2

−
(

n3 − 11n2 + 30n− 20
2

) n

∑
i=1

ϕ(vi)− ϕ(−vi)

2
(3)

where n ≥ 4, and obtain its general solutions. The main objective of this work is to examine
the stability of a similar type of Hyers–Ulam theorem for the quadratic-additive functional
equation in β-Banach modules on a Banach algebra by utilizing fixed point theory.

Throughout, in this work, we consider K refers either R or C and a real number β with
0 < β ≤ 1. We can directly utilize the definition of β-normed space in [36] to proceed our
main results.

Theorem 1 ([6]). If a complete generalized metric space is (Υ, d) and F : Υ → Υ is a strictly
contractive function with the Lipschitz constant 0 < L < 1,

i.e., d(Fv1, Fv2) ≤ Ld(v1, v2), for all v1, v2 ∈ Υ.

Then for each given v ∈ Υ, either

d(Fmv, Fm+1v) = ∞, for all m ≥ 0,

or there is a positive integer m0 satisfies

(1) d(Fmv, Fm+1v) < ∞, for all m ≥ m0;
(2) the sequence {Fmv} converges to a fixed point w∗ of F;
(3) w∗ is the only one fixed point of F in Υ∗ = {w ∈ Υ |d(Fm0 v, w) < ∞};
(4) d(w, w∗) ≤ 1

1−L d(w, Fw), for all w ∈ Υ∗.

2. Solution of the Quadratic-Additive functional equation

Here, we derive the general solution of (3). Let us assume that V and W are real
vector spaces.
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Theorem 2. If an odd mapping ϕ : V →W satisfies the functional Equation (3) for all v1, v2, · · · ,
vn ∈ V, then the function ϕ is additive.

Proof. Suppose that the mapping ϕ : V →W is odd. Since the oddness of ϕ, which satisfies
the property ϕ(−v) = −ϕ(v), for all v ∈ V. Using oddness property in Equation (3),
we simply obtain

∑
1≤i<j≤n

ϕ

(
−vi − vj +

n

∑
k=1;i 6=j 6=k

vk

)
=

(
n2 − 9n + 16

2

)
∑

1≤i<j≤n
ϕ(vi + vj)

−
(

n3 − 11n2 + 30n− 20
2

) n

∑
i=1

ϕ(vi) (4)

for all v1, v2, · · · , vn ∈ V. Setting v1 = v2 = · · · = vn = 0 in (4), we have ϕ(0) = 0.
Replacing v1 = v2 = v and the remaining v3 = v4 = · · · = vn = 0 in Equation (4), we get

ϕ(2v) = 2ϕ(v) (5)

for all v ∈ V. Interchanging 2v instead v in (5), we obtain

ϕ(22v) = 22 ϕ(v) (6)

for all v ∈ V. Again, switching v by 2v in (6), we have

ϕ(23v) = 23 ϕ(v) (7)

for all v ∈ V. Thus, for any non-negative integer n ≥ 1, we can generalize the result that

ϕ(2nv) = 2n ϕ(v) (8)

for all v ∈ V. Therefore, the function ϕ is odd, it has the solution of the Cauchy additive
functional equation’s solution. So that the function ϕ is additive. Moreover, interchanging
(v1, v2, · · · , vn) with (v1, v2, 0, · · · , 0) in (4), we can obtain the Equation (1). Hence the proof
is now completed.

Theorem 3. If an even mapping ϕ : V → W satisfies the functional Equation (3) for all
v1, v2, · · · , vn ∈ V, then the function ϕ is quadratic.

Proof. Suppose that the mapping ϕ : V → W is even. Since the evenness of ϕ, which
satisfies the property ϕ(−v) = ϕ(v), v ∈ V. Using evenness property in Equation (3), we
simply obtain

∑
1≤i<j≤n

ϕ

(
−vi − vj +

n

∑
k=1;i 6=j 6=k

vk

)
=

(
n2 − 9n + 16

2

)
∑

1≤i<j≤n
ϕ(vi + vj)

−
(

n3 − 11n2 + 26n− 16
2

) n

∑
i=1

vi (9)

for all vi ∈ V; i = 1, 2, · · · , n. Setting v1 = v2 = · · · = vn = 0 in (9), we get ϕ(0) = 0.
Interchanging (v1, v2, · · · , vn) with (v, v, 0, · · · , 0) in (9), we have

ϕ(2v) = 22 ϕ(v) (10)

for all v ∈ V. Switching 2v instead of v in (10), we get

ϕ(22v) = 24 ϕ(v) (11)
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for all v ∈ V. Interchanging v with 2v in (11), we have

ϕ(23v) = 26 ϕ(v) (12)

for all v ∈ V. Thus, for any integer n ≥ 1, we can generalize the result that

ϕ(2nv) = 22n ϕ(v) (13)

for all v ∈ V. Therefore, if the function ϕ is even, it has the solution of the Euler quadratic
functional equation’s solution. Moreover, changing (v1, v2, · · · , vn) with (v1, v2, 0, · · · , 0)
in (9), we can get the functional Equation (2). Hence, the proof is now completed.

Theorem 4. If a function ϕ : V → W satisfies ϕ(0) = 0 and the functional Equation (3) for all
v1, v2, · · · , vn ∈ V if and only if there exists a mapping Q : V × V → W which is symmetric
bi-additive and a mapping A : V →W is additive such that ϕ(v) = Q(v, v) + A(v) for all v in V.

Proof. It is trivial.

3. Main Results

Here, we investigated the stability (in the sense of Hyers-Ulam stability) of (3) in β-
Banach modules by utilizing a fixed point approach for three different cases. Moreover, we
can divide this section into three subsections. In Section 3.1, we get the stability outcomes
for odd case; in Section 3.2, we get the stability outcomes for even case; in Section 3.3, we
examined our main outcomes of the function Equation (3) for the mixed case.

Before proceed, let us consider B∗ is a unital Banach algebra with ‖ · ‖B∗ ,
B∗1 = {s ∈ B∗| ‖s‖B∗ = 1}, W is a β-normed left Banach B∗-module and V is a β-normed
left B∗-module.

We utilize the below abbreviations for a mapping ϕ : V →W:

Θs ϕ(v1, v2, · · · , vn) : = ∑
1≤i<j≤n

ϕ

(
−svi − svj +

n

∑
k=1;i 6=j 6=k

svk

)

−
(

n2 − 9n + 16
2

)
∑

1≤i<j≤n
ϕ(svi + svj)

+

(
n3 − 11n2 + 26n− 16

2

)
s2

n

∑
i=1

ϕ(vi) + ϕ(−vi)

2

+

(
n3 − 11n2 + 30n− 20

2

)
s

n

∑
i=1

ϕ(vi)− ϕ(−vi)

2

for all v1, v2, · · · , vn ∈ V and s ∈ B∗1 .

3.1. Stability Results: When ϕ is Odd

Theorem 5. Let a mapping ψ : Vn → [0, ∞) such that

lim
m→∞

1
|2|mβ

ψ(2mv1, 2mv2, · · · , 2mvn) = 0, ∀ v1, v2, · · · , vn ∈ V. (14)

Let ϕ : V →W be an odd mapping such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ ψ(v1, v2, · · · , vn), ∀ v1, v2, · · · , vn ∈ V, (15)

and s ∈ B∗1 . If there is 0 < L < 1 (L is a Lipschitz constant) satisfies

v→ φ(v) =
ψ(v, v, 0, · · · , 0)

(2n− 6)
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and
φ(2v) ≤ |2|βLφ(v) (16)

for all v ∈ V, then there exists a unique additive mapping A1 : V →W satisfies

‖A1(v)− ϕ(v)‖β ≤
φ(v)

|2|β − |2|βL
, v ∈ V. (17)

Moreover, if ϕ(kv) is continuous in k ∈ R for every v ∈ V, then A1 is B∗-linear, i.e.,
A1(sv) = sA1(v) for all v ∈ V and all s ∈ B∗.

Proof. Letting s = 1, and v1 = v2 = v and the remaining v3 = v4 = · · · = vn = 0 in (15),
we get

‖2(2n− 6)ϕ(v)− (2n− 6)ϕ(2v)‖β ≤ ψ(v, v, 0, · · · , 0)∥∥∥∥ϕ(v)− ϕ(2v)
2

∥∥∥∥
β

≤ Lφ(v), v ∈ V. (18)

Consider the set
Υ := {a|a : V →W, a(0) = 0}

and define the generalized metric on Υ as below:

d(a, b) = inf{λ ∈ [0, ∞)|‖a(v)− b(v)‖β ≤ λφ(v), ∀ v ∈ V}. (19)

Easily, we can verify that (Υ, d) is a complete generalized metric space (see [20]).

Next, we define a function F : Υ→ Υ by

(Fa)(v) =
1
2

a(2v), ∀ a ∈ Υ, v ∈ V. (20)

Let a, b ∈ Υ and an arbitrary constant λ ∈ [0, ∞) with d(a, b) < λ. Utilizing the
definition of d, we obtain

‖a(v)− b(v)‖β ≤ λφ(v), (21)

for all v ∈ V. By the given hypothesis and the last inequality, one has∥∥∥∥1
2

a(2v)− 1
2

b(2v)
∥∥∥∥

β

≤ λLφ(v) (22)

for all v ∈ V. Hence,
d(Fa, Fb) ≤ Ld(a, b).

From inequality (18), we get

d(Fϕ, ϕ) ≤ 1
|2|β

. (23)

From Theorem 1, F has an unique fixed point A1 : V →W in Υ∗ = {a ∈ Υ| d(a, b) < ∞}
satisfies

A1(v) := lim
m→∞

(Fm ϕ)(v) = lim
m→∞

1
2m ϕ(2mv) (24)
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and A1(2v) = 2A1(v) ∀ v ∈ V. Also, using (23), we get

d(A1, ϕ) ≤ 1
1− L

d(Fϕ, ϕ)

≤ 1
1− L

1
|2|β

≤ 1
|2|β − |2|βL

. (25)

Hence, inequality (17) valid for all v ∈ V.
Now, we want to prove that the function A1 is additive. Using the inequalities (14),
(15) and (24), we obtain

‖Θ1 A1(v1, v2, · · · , vn)‖β = lim
m→∞

1
|2|mβ

‖Θ1 ϕ(2mv1, 2mv2, · · · , 2mvn)‖β

≤ lim
m→∞

1
|2|mβ

ψ(2mv1, 2mv2, · · · , 2mvn) = 0,

that is,

∑
1≤i<j≤n

ϕ

(
−vi − vj +

n

∑
k=1;i 6=j 6=k

vk

)
=

(
n2 − 9n + 16

2

)
∑

1≤i<j≤n
ϕ(vi + vj)

−
(

n3 − 11n2 + 30n− 20
2

) n

∑
i=1

ϕ(vi)

for all v1, v2, · · · , vn ∈ V. Therefore, by Theorem 2, the function A1 is odd.
Finally, we have to show that the function A1 is unique. Let us consider that there
exists an odd mapping A

′
1 : V →W satisfies (17). Since

d(ϕ, A
′
1) ≤

1
|2|β(1− L)

and A
′
1 is additive, we get A

′
1 ∈ Υ∗ and (FA

′
1)(v) =

1
2 A

′
1(2v) = A1(v) for all v ∈ V,

i.e., A
′
1 is a fixed point of F in Υ∗. Clearly, A

′
1 = A1.

Moreover, if ϕ(kv) is continuous in k ∈ R for every v ∈ V, then using the proof of [3],
A1 is R-linear.
Switching v1 = v2 = v and v3 = v4 = · · · = vn = 0 in (15), we get

‖(2n− 6)ϕ(2sv)− (n3 − 11n2 + 34n− 32)ϕ(sv) + (n3 − 11n2 + 30n− 20)sϕ(v)‖β

≤ ψ(v, v, 0, · · · , 0) (26)

for all v ∈ V and all s ∈ B∗1 . Thus, using definition of A1 and the inequalities (14) and
(26), we get

‖(2n− 6)A1(2sv)− (n3 − 11n2 + 34n− 32)A1(sv) + (n3 − 11n2 + 30n− 20)sA1(v)‖β

= lim
m→∞

1
|2|mβ

‖(2n− 6)ϕ(2m+1sv)− (n3 − 11n2 + 34n− 32)ϕ(2msv)

+(n3 − 11n2 + 30n− 20)sϕ(2mv)‖β

≤ lim
m→∞

1
|2|mβ

ψ(2mv, 2mv, 0, · · · , 0) = 0

for all v ∈ V and all s ∈ B∗1 . So,

(2n− 6)A1(2sv)− (n3 − 11n2 + 34n− 32)A1(sv) + (n3 − 11n2 + 30n− 20)sA1(v) = 0



Mathematics 2022, 10, 493 7 of 21

for all v ∈ V and all s ∈ B∗1 . Since A1 is additive, we get A1(sv) = sA1(v) for all v ∈ V
and all s ∈ B∗1 ∪ {0}.
Since A1 is R-linear, let s ∈ B∗\{0}. Then A1(sv) = sA1(v) for all v ∈ V and s ∈ B∗.
Hence, A1 is B∗-linear.

Corollary 1. If an odd function ϕ : V →W such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ α + γ

(
n

∑
i=1
‖vi‖w

β

)
, v1, v2, · · · , vn ∈ V, (27)

and s ∈ B∗1 , then there exists a unique additive mapping A1 : V →W satisfies

‖ϕ(v)− A1(v)‖β ≤

(
α + 2γ‖v‖w

β

)
(2n− 6)

(
|2|β − |2|βw

) , v ∈ V,

where 0 < w < 1, α, γ ∈ [0, ∞). Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V, then A1
is B∗-linear.

Proof. By putting

ψ(v1, v2, · · · , vn) = α + γ

(
n

∑
i=1
‖v‖w

β

)
and L = |2|β(w−1) in Theorem 5, we obtain our needed result.

Corollary 2. Let w > 0 such that nw < 1 and α, γ ∈ R+, and let ϕ : V →W be an odd mapping
such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ α + γ

[
n

∏
i=1
‖vi‖w

β +
n

∑
i=1
‖vi‖nw

β

]
, v1, v2, · · · , vn ∈ V,

and s ∈ B∗1 , then there exists a unique additive mapping A1 : V →W satisfies

‖ϕ(v)− A1(v)‖β ≤

(
α + 2γ‖v‖nw

β

)
(2n− 6)

(
|2|β − |2|βnw

) (28)

for all v ∈ V. Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V, then A1 is B∗-linear.

Proof. By letting

ψ(v1, v2, · · · , vn) = α + γ

[
n

∏
i=1
‖vi‖w

β +
n

∑
i=1
‖vi‖nw

β

]

and L = |2|β(nw−1) in Theorem 5 , we obtain our needed result.

Theorem 6. Let a mapping ψ : Vn → [0, ∞) such that

lim
m→∞

|2|mβψ
(
2−mv1, 2−mv2, · · · , 2−mvn

)
= 0 (29)

for all v1, v2, · · · , vn ∈ V. Let ϕ : V →W be an odd mapping satisfies (15). If there is 0 < L < 1
such that

v→ φ(v) =
ψ(v, v, 0, · · · , 0)

(2n− 6)

and
φ(v) ≤ |2|−βLφ(2v) (30)



Mathematics 2022, 10, 493 8 of 21

for all v ∈ V, then there exists a unique additive mapping A1 : V →W satisfies

‖ϕ(v)− A1(v)‖β ≤
L

|2|β − |2|βL
φ(v), v ∈ V. (31)

Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V, then A1 is B∗-linear.

Proof. Letting s = 1 and v1 = v2 = v and the remaining v3 = v4 = · · · = vn = 0 in (15),
we get

‖2(2n− 6)ϕ(v)− (2n− 6)ϕ(2v)‖β ≤ ψ(v, v, 0, · · · , 0) (32)

for all v ∈ V. Interchanging v with v
2 in (32), we have∥∥∥2ϕ

(v
2

)
− ϕ(v)

∥∥∥
β
≤ Lφ(v) (33)

for all v ∈ V. Assume the set

Υ := {a|a : V →W, a(0) = 0}

and define the generalized metric on Υ as below:

d(a, b) = inf{λ ∈ [0, ∞)|‖a(v)− b(v)‖β ≤ λφ(v), ∀ v ∈ V}. (34)

Easily, we can verify that (Υ, d) is a complete generalized metric space (see [20]).

Next, we can define a function F : Υ→ Υ by

(Fa)(v) = 2a
(v

2

)
, ∀ a ∈ Υ, v ∈ V. (35)

Let a, b ∈ Υ and an arbitrary constant λ ∈ [0, ∞) with d(a, b) < λ.
Using the definition of d, we obtain

‖a(v)− b(v)‖β ≤ λφ(v), (36)

for all v ∈ V. By the given hypothesis and the last inequality, one has∥∥∥2a
(v

2

)
− 2b

(v
2

)∥∥∥
β
≤ λLφ(v) (37)

for all v ∈ V. Hence,
d(Fa, Fb) ≤ Ld(a, b).

From inequality (33), we get

d(Fϕ, ϕ) ≤ L
|2|β

.

From Theorem 1, F has an unique fixed point A1 : V →W in Υ∗ = {a ∈ Υ| d(a, b) < ∞}
such that

A1(v) := lim
m→∞

(Fm ϕ)(v) = lim
m→∞

2m ϕ
( v

2m

)
(38)
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and A1
( v

2
)
= 1

2 A1(v) ∀ v ∈ V. Also,

d(A1, ϕ) ≤ 1
1− L

d(Fϕ, ϕ)

≤ L
|2|β − |2|βL

. (39)

Hence, the inequality (31) valid for all v ∈ V.
Again, we want to show that the function A1 is additive. Using the inequalities (29),
(15) and (38), we obtain

‖Θ1 A1(v1, v2, · · · , vn)‖β = lim
m→∞

|2|mβ‖Θ1 ϕ
( v1

2m ,
v2

2m , · · · ,
vn

2m

)
‖β

≤ lim
m→∞

|2|mβψ
( v1

2m ,
v2

2m , · · · ,
vn

2m

)
= 0,

for all v1, v2, · · · , vn ∈ V. Therefore, by Theorem 2, the function A1 is odd.
Finally, we have to show that the function A1 is unique. Let us consider that there
exists an odd mapping A

′
1 : V →W satisfies (31). Since

d(ϕ, A
′
1) ≤

L
(1− L)|2|β

and A
′
1 is additive, we have A

′
1 ∈ Υ∗ and (FA

′
1)(v) = 2A

′
1
( v

2
)
= A1(v) for all v ∈ V,

i.e., A
′
1 is a fixed point of F in Υ∗. Clearly, A

′
1 = A1.

Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V, then using the proof of [3],
A1 is R-linear.
Replacing v1 = v2 = v

2 and the remaining v3 = v4 = · · · = vn = 0 in (15), we get

‖(2n− 6)ϕ(sv)− (n3 − 11n2 + 34n− 32)ϕ
( sv

2

)
+ (n3 − 11n2 + 30n− 20)sϕ

(v
2

)
‖β

≤ ψ
(v

2
,

v
2

, 0, · · · , 0
)

(40)

for all v ∈ V and all s ∈ B∗1 . Thus, using definition of A1, the inequalities (29) and (40),
we get

‖(2n− 6)A1(sv)− (n3 − 11n2 + 34n− 32)A1

( sv
2

)
+(n3 − 11n2 + 30n− 20)sA1

(v
2

)
‖β

≤ lim
m→∞

|2|mβψ
( v

2m+1 ,
v

2m+1 , 0, · · · , 0
)
= 0

for all v ∈ V and all s ∈ B∗1 . So,

(2n− 6)A1(sv)− (n3 − 11n2 + 34n− 32)A1

( sv
2

)
+(n3 − 11n2 + 30n− 20)sA1

(v
2

)
= 0

for all v ∈ V and all s ∈ B∗1 . Since A1 is additive, we get A1(sv) = sA1(v) for all v ∈ V
and all s ∈ B∗1 ∪ {0}.
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Since A1 is R-linear, let s ∈ B∗\{0}.

A1(sv) = A1

(
‖s‖B∗ ·

s
‖s‖B∗

v
)

= ‖s‖B∗ · A1

(
s
‖s‖B∗

v
)

= ‖s‖B∗ ·
s
‖s‖B∗

A1(v)

= sA1(v), v ∈ V, s ∈ B∗.

Hence, A1 is B∗-linear.

Corollary 3. If ϕ : V →W is an odd mapping such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ γ

(
n

∑
i=1
‖vi‖w

β

)
, v1, v2, · · · , vn ∈ V, (41)

and s ∈ B∗1 , then there exists a unique additive mapping A1 : V →W satisfies

‖ϕ(v)− A1(v)‖β ≤
2γ‖v‖w

β

(2n− 6)
(
|2|βw − |2|β

)
for all v ∈ V, where w > 1 and γ ∈ R+. Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V,
then A1 is B∗-linear.

Proof. By letting

ψ(v1, v2, · · · , vn) = γ

(
n

∑
i=1
‖v‖w

β

)
and L = |2|β(1−w) in Theorem 6, we obtain our needed outcome.

Corollary 4. If ϕ : V →W is an odd mapping such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ γ

[
n

∏
i=1
‖vi‖w

β +
n

∑
i=1
‖vi‖nw

β

]

for all v1, v2, · · · , vn ∈ V and b ∈ B∗1 . Then there exists unique additive mapping A1 : V → W
satisfies

‖ϕ(v)− A1(v)‖β ≤
2γ‖v‖nw

β

(2n− 6)
(
|2|βnw − |2|β

) (42)

for all v ∈ V, where w > 0 and γ ∈ R+ with nw > 1. Moreover, if ϕ(kv) is continuous in k ∈ R
for all v ∈ V, then A1 is B∗-linear.

Proof. By taking

ψ(v1, v2, · · · , vn) = γ

[
n

∏
i=1
‖vi‖w

β +
n

∑
i=1
‖vi‖nw

β

]
and L = |2|β(1−nw) in Theorem 6, we obtain our needed outcome.

3.2. Stability Results: When ϕ Is Even

Theorem 7. Let a mapping ψ : Vn → [0, ∞) such that

lim
m→∞

1
|2|2mβ

ψ(2mv1, 2mv2, · · · , 2mvn) = 0 (43)
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for all v1, v2, · · · , vn ∈ V. Let ϕ : V → W be an even mapping with ϕ(0) = 0 such that (15). If
there is 0 < L < 1 such that

v→ φ(v) =
ψ(v, v, 0, · · · , 0)

(2n− 4)

and
φ(2v) ≤ |2|2βLφ(v) (44)

for all v ∈ V, then there exists a unique quadratic mapping Q2 : V →W satisfies

‖ϕ(v)−Q2(v)‖β ≤
φ(v)

|2|2β − |2|2βL
(45)

for all v ∈ V. Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V, then Q2 is B∗-quadratic,
i.e., Q2(sv) = s2Q2(v) for all v ∈ V and all s ∈ B∗.

Proof. Letting s = 1 and v1 = v2 = v and the remaining v3 = v4 = · · · = vn = 0 in (15),
we get ∥∥∥(2n− 4)ϕ(2v)− 22(2n− 4)ϕ(v)

∥∥∥
β
≤ ψ(v, v, 0, · · · , 0)∥∥∥∥ ϕ(2v)

22 − ϕ(v)
∥∥∥∥

β

≤ Lφ(v), v ∈ V. (46)

Consider the set Υ := {a|a : V →W, a(0) = 0} and define the generalized metric on
Υ as below:

d(a, b) = inf{λ ∈ [0, ∞) | ‖a(v)− b(v)‖β ≤ λφ(v), ∀ v ∈ V}. (47)

Clearly, (Υ, d) is a complete generalized metric space (see [20]).
We can define a function F : Υ→ Υ by

(Fa)(v) =
1
22 a(2v), ∀ a ∈ Υ, v ∈ V. (48)

Let a, b ∈ Υ and an arbitrary constant λ ∈ [0, ∞) with d(a, b) < λ.
Using the definition of d, we obtain

‖a(v)− b(v)‖β ≤ λφ(v), (49)

for all v ∈ V. By the given hypothesis and the last inequality, one has∥∥∥∥ 1
22 a(2v)− 1

22 b(2v)
∥∥∥∥

β

≤ λLφ(v) (50)

for all v ∈ V. Hence,
d(Fa, Fb) ≤ Ld(a, b).

By using the inequality (46) that

d(Fϕ, ϕ) ≤ 1
|2|2β

.

Thus, by Theorem 1, F has a unique fixed point Q2 : V →W in Υ∗ = {a ∈ Υ| d(a, b) <
∞} satisfies

Q2(v) := lim
m→∞

(Fm ϕ)(v) = lim
m→∞

1
22m ϕ(2mv) (51)
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and Q2(2v) = 22Q2(v) for all v ∈ V. Also,

d(Q2, ϕ) ≤ d(Fϕ, ϕ)

1− L

≤ 1
|2|2β − |2|2βL

. (52)

Thus, inequality (45) holds for all v ∈ V.
Now, we show that Q2 is quadratic. By (43), (15) and (51), we have

‖Θ1Q2(v1, v2, · · · , vn)‖β = lim
m→∞

1
|2|2mβ

‖Θ1 ϕ(2mv1, 2mv2, · · · , 2mvn)‖β

≤ lim
m→∞

1
|2|2mβ

ψ(2mv1, 2mv2, · · · , 2mvn) = 0,

that is,

∑
1≤i<j≤n

ϕ

(
−vi − vj +

n

∑
k=1;i 6=j 6=k

vk

)
=

(
n2 − 9n + 16

2

)
∑

1≤i<j≤n
ϕ(vi + vj)

−
(

n3 − 11n2 + 26n− 16
2

) n

∑
i=1

ϕ(vi) + ϕ(−vi)

2

for all v1, v2, · · · , vn ∈ V. Therefore, by Theorem 3, the function Q2 is even. Next, we
want to prove that the function Q2 is unique. Consider there exists an another
quadratic mapping Q

′
2 : V →W satisfies the inequality (45). Then,

d(ϕ, Q
′
2) ≤

1
|2|2β − |2|2βL

and Q
′
2 is quadratic, which gives Q

′
2 ∈ Υ∗ and (FQ

′
2)(v) =

1
22 Q

′
2(2v) = Q2(v) for all

v ∈ V, i.e., Q
′
2 is a fixed point of F in Υ∗. Hence, Q

′
2 = Q2.

Moreover, if ϕ(kv) is continuous in k ∈ R for every v ∈ V, then using the proof of [3],
Q2 is R-quadratic.
Replacing v1 = v2 = v and the remaining v3 = v4 = · · · = vn = 0 in (15), we get

‖(2n− 4)ϕ(2sv)− (n3 − 11n2 + 34n− 32)ϕ(sv) + (n3 − 11n2 + 26n− 16)s2 ϕ(v)‖β

≤ ψ(v, v, 0, · · · , 0) (53)

for every v ∈ V and all s ∈ B∗1 . Using definition of Q2, (43) and (53), we have

‖(2n− 4)Q2(2sv)− (n3 − 11n2 + 34n− 32)Q2(sv) + (n3 − 11n2 + 26n− 16)s2Q2(v)‖β

= lim
m→∞

1
|2|mβ

‖(2n− 4)ϕ(2m+1sv)− (n3 − 11n2 + 34n− 32)ϕ(2msv)

+(n3 − 11n2 + 26n− 16)s2 ϕ(2mv)‖β

≤ lim
m→∞

1
|2|mβ

ψ(2mv, 2mv, 0, · · · , 0) = 0

for all v ∈ V and all s ∈ B∗1 . So,

(2n− 4)Q2(2sv)− (n3 − 11n2 + 34n− 32)Q2(sv) + (n3 − 11n2 + 26n− 16)s2Q2(v) = 0
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for all v ∈ V and all s ∈ B∗1 . Since Q2 is quadratic, we get Q2(sv) = s2Q2(v) for all
v ∈ V and all s ∈ B∗1 ∪ {0}. Since Q2 is R-quadratic, let s ∈ B∗\{0}, then Q2(sv) =
s2Q2(v) for all v ∈ V and all s ∈ B∗. Hence, Q2 is B∗-quadratic.

Corollary 5. Let ϕ : V →W be an even function with ϕ(0) = 0 such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ α + γ

(
n

∑
i=1
‖vi‖w

β

)
(54)

for every v1, v2, · · · , vn ∈ V and s ∈ B∗1 , then there is only one quadratic function Q2 : V → W
fulfils

‖ϕ(v)−Q2(v)‖β ≤

(
α + 2γ‖v‖w

β

)
(2n− 4)

(
|2|2β − |2|βw

) , v ∈ V.

where 0 < w < 2, α, γ ∈ [0, ∞). Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V, then
Q2 is B∗-quadratic.

Proof. By letting

ψ(v1, v2, · · · , vn) = α + γ

(
n

∑
i=1
‖v‖w

β

)
and L = |2|β(w−2) in Theorem 7, we obtain our needed result.

Corollary 6. Let w > 0 such that nw < 2 and α, γ ∈ R+, and let an even mapping ϕ : V → W
and ϕ(0) = 0 such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ α + γ

[
n

∏
i=1
‖vi‖w

β +
n

∑
i=1
‖vi‖nw

β

]

for all v1, v2, · · · , vn ∈ V and s ∈ B∗1 , then there exists a unique quadratic mapping Q2 : V →W
satisfies

‖ϕ(v)−Q2(v)‖β ≤

(
α + 2γ‖v‖nw

β

)
(2n− 4)

(
|2|2β − |2|βnw

) (55)

for all v ∈ V. Moreover, if ϕ(kv) is continuous in k ∈ R for all fixed v ∈ V, then Q2 is
B∗-quadratic.

Proof. By letting

ψ(v1, v2, · · · , vn) = α + γ

(
n

∑
i=1
‖v‖w

β

)
and L = |2|β(nw−2) in Theorem 7, we obtain our needed result.

Theorem 8. Let ψ : Vn → [0, ∞) be a function such that

lim
m→∞

|2|2mβψ
(
2−mv1, 2−mv2, · · · , 2−mvn

)
= 0 (56)

for all v1, v2, · · · , vn ∈ V. Let ϕ : V → W be an even function with ϕ(0) = 0 such that (15). If
there is 0 < L < 1 satisfies

v→ φ(v) =
ψ(v, v, 0, · · · , 0)

(2n− 4)

and
φ(v) ≤ |2|−2βLφ(2v) (57)
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for all v ∈ V, then there exists a unique quadratic mapping Q2 : V →W satisfies

‖ϕ(v)−Q2(v)‖β ≤
L

|2|2β − |2|2βL
φ(v), v ∈ V. (58)

Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V, then Q2 is B∗-quadratic.

Proof. Letting s = 1 and v1 = v2 = v and the remaining v3 = v3 = · · · = vn = 0 in (15),
we get ∥∥∥(2n− 4)ϕ(2v)− 22(2n− 4)ϕ(v)

∥∥∥
β
≤ ψ(v, v, 0, · · · , 0) (59)

for all v ∈ V. Switching v by v
2 in (59), we have∥∥∥22 ϕ
(v

2

)
− ϕ(v)

∥∥∥
β
≤ Lφ(v) (60)

for all v ∈ V. Consider the set Υ := {a|a : V →W, a(0) = 0} and define the
generalized metric on Υ as below:

d(a, b) = inf{λ ∈ [0, ∞) | ‖a(v)− b(v)‖β ≤ λφ(v), ∀ v ∈ V}. (61)

Clearly, (Υ, d) is a complete generalized metric space (see [20]). Now, we define a
function F : Υ→ Υ by

(Fa)(v) = 22a
(v

2

)
(62)

for all v ∈ V and all a ∈ Υ. Let a, b ∈ Υ and an arbitrary constant λ ∈ [0, ∞) with
d(a, b) < λ.
Using the definition of d, we get

‖a(v)− b(v)‖β ≤ λφ(v), (63)

for all v ∈ V. By the given hypothesis and the last inequality, one has∥∥∥22a
(v

2

)
− 22b

(v
2

)∥∥∥
β
≤ λLφ(v) (64)

for all v ∈ V. Hence,
d(Fa, Fb) ≤ Ld(a, b).

By utilizing inequality (60) that

d(Fϕ, ϕ) ≤ L
|2|2β

.

Thus, by Theorem 1, F has a only one fixed point Q2 : V →W in Υ∗ = {a ∈ Υ
| d(a, b) < ∞} satisfies

Q2(v) := lim
m→∞

(Fm ϕ)(v) = lim
m→∞

22m ϕ
( v

2m

)
(65)

and Q2
( v

2
)
= 1

22 Q2(v), ∀ v ∈ V. Also,

d(Q2, ϕ) ≤ 1
1− L

d(Fϕ, ϕ)

≤ L
|2|2β − |2|2βL

. (66)

Thus, the inequality (58) holds for all v ∈ V.
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Now, we show that Q2 is quadratic. By (56), (15) and (65), we have

‖Θ1Q2(v1, v2, · · · , vn)‖β = lim
m→∞

|2|2mβ
∥∥∥Θ1 ϕ

( v1

2m ,
v2

2m , · · · ,
vn

2m

)∥∥∥
β

≤ lim
m→∞

|2|2mβψ
( v1

2m ,
v2

2m , · · · ,
vn

2m

)
= 0,

Therefore, by Theorem 3, the function Q2 is even. Next, we want to prove that the
function Q2 is unique. Consider there is a quadratic function Q

′
2 : V →W which

fulfils the inequality (58). Then,

d(ϕ, Q
′
2) ≤

L
|2|2β − |2|2βL

and Q
′
2 is quadratic, which gives Q

′
2 ∈ Υ∗ and (FQ

′
2)(v) = 22Q

′
2
( v

2
)
= Q2(v) for

every v ∈ V, i.e., Q
′
2 is a fixed point of F in Υ∗. Hence, Q

′
2 = Q2.

Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V, then using the proof of [3], Q2
is R-quadratic.
Interchanging (v1, v2, · · · , vn) with

( v
2 , v

2 , 0, · · · , 0
)

in (15), we get∥∥∥(2n− 4)ϕ(sv)− (n3 − 11n2 + 34n− 32)ϕ
( sv

2

)
+(n3 − 11n2 + 26n− 16)s2 ϕ

(v
2

)∥∥∥
β
≤ ψ

(v
2

,
v
2

, 0, · · · , 0
)

(67)

for all v ∈ V and all s ∈ B∗1 . Using definition of Q2, (56) and (67), we have

∥∥∥(2n− 4)Q2(sv)− (n3 − 11n2 + 34n− 32)Q2

( sv
2

)
+(n3 − 11n2 + 26n− 16)s2Q2

(v
2

)∥∥∥
β

≤ lim
m→∞

|2|2mβψ
( v

2m+1 ,
v

2m+1 , 0, · · · , 0
)
= 0

for all v ∈ V and all s ∈ B∗1 . So,

(2n− 4)Q2(sv)− (n3 − 11n2 + 34n− 32)Q2

( sv
2

)
+(n3 − 11n2 + 26n− 16)s2Q2

(v
2

)
= 0

for all v ∈ V and all s ∈ B∗1 . Since Q2 is quadratic, we get Q2(sv) = s2Q2(v) for all
v ∈ V and all s ∈ B∗1 ∪ {0}. Since Q2 is R-quadratic, let s ∈ B∗\{0},

Q2(sv) = Q2

(
‖s‖B∗ ·

s
‖s‖B∗

v
)

= ‖s‖2
B∗ ·Q2

(
s
‖s‖B∗

v
)

= ‖s‖2
B∗ ·

(
s
‖s‖B∗

)2
Q2(v)

= s2Q2(v), v ∈ V,

and all s ∈ B∗. Hence, Q2 is B∗-quadratic.
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Corollary 7. Let ϕ : V →W be an even function with ϕ(0) = 0 such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ γ

(
n

∑
i=1
‖vi‖w

β

)
, v1, v2, · · · , vn ∈ V, (68)

and s ∈ B∗1 , then there exists a unique quadratic mapping Q2 : V →W satisfies

‖ϕ(v)−Q2(v)‖β ≤
2γ‖v‖w

β

(2n− 4)
(
|2|βw − |2|2β

) , v ∈ V.

where w > and γ ∈ R+ . Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V, then Q2 is
B∗-quadratic.

Proof. By letting

ψ(v1, v2, · · · , vn) = α + γ

(
n

∑
i=1
‖v‖w

β

)
and L = |2|β(2−w) in Theorem 8, we achieve our needed result.

Corollary 8. Let ϕ : V →W be an even function with ϕ(0) = 0 such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ γ

[
n

∏
i=1
‖vi‖w

β +
n

∑
i=1
‖vi‖nw

β

]

for all v1, v2, · · · , vn ∈ V and b ∈ B∗1 , then there exists a unique quadratic mapping Q2 : V → W
satisfies

‖ϕ(v)−Q2(v)‖β ≤
2γ‖v‖nw

β

(2n− 4)
(
|2|βnw − |2|2β

) , v ∈ V, (69)

where w > 0 such that nw > 2 and γ ∈ R+. Moreover, if ϕ(kv) is continuous in k ∈ R for all
v ∈ V, then Q2 is B∗-quadratic.

Proof. By putting

ψ(v1, v2, · · · , vn) = α + γ

(
n

∑
i=1
‖v‖w

β

)
and L = |2|β(2−nw) in Theorem 8, we obtain our needed outcome.

3.3. Stability Results for the Mixed Case

Theorem 9. Let a mapping ψ : Vn → [0, ∞) such that

lim
m→∞

1
|2|mβ

ψ(2mv1, 2mv2, · · · , 2mvn) = 0, lim
m→∞

1
|2|2mβ

ψ(2mv1, 2mv2, · · · , 2mvn) = 0 (70)

for all v1, v2, · · · , vn ∈ V. If a mapping ϕ : V → W and ϕ(0) = 0 such that (15). If there exists a
constant 0 < L < 1 satisfies

ψ(2v, 2v, 0, · · · , 0) ≤ |2|βLψ(v, v, 0, · · · , 0) and

ψ(2v, 2v, 0, · · · , 0) ≤ |2|2βLψ(v, v, 0, · · · , 0) (71)

for all v ∈ V, then there exists a unique additive mapping A1 : V → W and a unique quadratic
mapping Q2 : V →W satisfies
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‖ϕ(v)− A1(v)−Q2(v)‖β

≤ (ψ(v, v, 0, · · · , 0) + ψ(−v,−v, 0, · · · , 0))
|2|2β − |2|2βL

[
|2|β

(2n− 6)
+

1
(2n− 4)

]
for all v ∈ V. Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V, then A1 is B∗-linear

and Q2 is B∗-quadratic.

Proof. If we divide the function ϕ into two parts such as even and odd by letting

ϕe(v) =
ϕ(v) + ϕ(−v)

2
and ϕo(v) =

ϕ(v)− ϕ(−v)
2

(72)

for v ∈ V, then ϕ(v) = ϕe(v) + ϕo(v). Let

χ(v1, v2, · · · , vn) =
[ψ(v1, v2, · · · , vn) + ψ(−v1,−v2, · · · ,−vn))

2β
,

then by (70), (71) and (72), we have

lim
m→∞

1
|2|mβ

χ(2mv1, 2mv2, · · · , 2mvn) = 0;

lim
m→∞

1
|2|2mβ

χ(2mv1, 2mv2, · · · , 2mvn) = 0,

χ(2v, 2v, 0, · · · , 0) ≤ |2|βLχ(v, v, 0, · · · , 0),

and χ(2v, 2v, 0, · · · , 0) ≤ |2|2βLχ(v, v, 0, · · · , 0),

‖Θs ϕo(v1, v2, · · · , vn)‖β ≤ χ(v1, v2, · · · , vn),

‖Θs ϕe(v1, v2, · · · , vn)‖β ≤ χ(v1, v2, · · · , vn).

Hence, by Theorem 5 and 7, there exists a unique additive mapping A1 : V →W and
a unique quadratic mapping Q2 : V →W satisfies

‖ϕo(v)− A1(v)‖β ≤ 1
(2n− 6)|2|β(1− L)

χ(v, v, 0, · · · , 0),

and

‖ϕe(v)−Q2(v)‖β ≤ 1
(2n− 4)|2|2β(1− L)

χ(v, v, 0, · · · , 0)

for all v ∈ V. Therefore,

‖ϕ(v)− A1(v)−Q2(v)‖β ≤ ‖ϕo(v)− A1(v)‖β + ‖ϕe(v)−Q2(v)‖β

≤
[

1
(2n− 6)|2|β(1− L)

+
1

(2n− 4)|2|2β(1− L)

]
χ(v, v, 0, · · · , 0)

≤ 1
|2|2β − |2|2βL

[
|2|β

(2n− 6)
+

1
(2n− 4)

]
(ψ(v, v, 0, · · · , 0) + ψ(−v,−v, 0, · · · , 0))

for all v ∈ V.

Corollary 9. Let ϕ : V →W be a function with ϕ(0) = 0 such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ α + γ
n

∑
i=1
‖vi‖w

β , v1, v2, · · · , vn ∈ V, (73)
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and every s ∈ B∗1 , then there exists a unique additive mapping A1 : V →W and a unique quadratic
mapping Q2 : V →W satisfies

‖ϕ(v)− A1(v)−Q2(v)‖β ≤
2
(

α + 2γ‖v‖w
β

)
(
|2|2β − |2|β(w+1)

)[ |2|β
(2n− 6)

+
1

(2n− 4)

]
for all v ∈ V, where 0 < w < 1 and α, γ ∈ R+ . Moreover, if ϕ(kv) is continuous in k ∈ R for all
v ∈ V, then A1 is B∗-linear and Q2 is B∗-quadratic.

Corollary 10. Let ϕ : V →W be a function with ϕ(0) = 0 such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ γ
n

∑
i=1
‖vi‖w

β (74)

for all v1, v2, · · · , vn ∈ V and s ∈ B∗1 , then there exists a unique additive mapping A1 : V →W
and a unique quadratic mapping Q2 : V →W satisfies

‖ϕ(v)− A1(v)−Q2(v)‖β ≤
4γ‖v‖w

β(
|2|2β − |2|βw

)[ |2|β
(2n− 6)

+
1

(2n− 4)

]
for all v ∈ V, where w > 2 and γ ∈ R+ . Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V,
then Q2 is B∗-quadratic and A1 is B∗-linear.

Theorem 10. Let a mapping ψ : Vn → [0, ∞) such that

lim
m→∞

|2|mβψ
( v1

2m ,
v2

2m , · · · ,
vn

2m

)
= 0, lim

m→∞
|2|2mβψ

( v1

2m ,
v2

2m , · · · ,
vn

2m

)
= 0 (75)

for all v1, v2, · · · , vn ∈ V. If a mapping ϕ : V → W with ϕ(0) = 0 such that (15). If there is a
constant 0 < L < 1 such that

ψ(v, v, 0, · · · , 0) ≤ |2|−βLψ(2v, 2v, 0, · · · , 0) and

ψ(v, v, 0, · · · , 0) ≤ |2|−2βLψ(2v, 2v, 0, · · · , 0) (76)

for all v ∈ V, then there exists a unique additive mapping A1 : V → W and a unique quadratic
mapping Q2 : V →W satisfies

‖ϕ(v)− A1(v)−Q2(v)‖β

≤ (ψ(v, v, 0, · · · , 0) + ψ(−v,−v, 0, · · · , 0))L
|2|2β(1− L)

[
|2|β

(2n− 6)
+

1
(2n− 4)

]
for all v ∈ V. Moreover, if ϕ(kv) is continuous in k ∈ R for all v ∈ V, then Q2 is B∗-quadratic
and A1 is B∗-linear.

Corollary 11. If ϕ : V →W is a function with ϕ(0) = 0 such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ γ
n

∑
i=1
‖vi‖w

β (77)

for every v1, v2, · · · , vn ∈ V and s ∈ B∗1 , then there exists a unique additive mapping A1 : V →W
and a unique quadratic mapping Q2 : V →W satisfies

‖ϕ(v)− A1(v)−Q2(v)‖β ≤
4γ‖v‖w

β(
|2|βw − |2|2β

)[ |2|β
(2n− 6)

+
1

(2n− 4)

]
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for every v ∈ V, where w > 2 and γ ∈ R+ . Moreover, if ϕ(kv) is continuous in k ∈ R for all
v ∈ V, then Q2 is B∗-quadratic and A1 is B∗-linear.

Corollary 12. If ϕ : V →W is a function with ϕ(0) = 0 such that

‖Θs ϕ(v1, v2, · · · , vn)‖β ≤ α + γ
n

∑
i=1
‖vi‖w

β , v1, v2, · · · , vn ∈ V, (78)

and s ∈ B∗1 , then there exists a unique additive mapping A1 : V → W and a unique quadratic
mapping Q2 : V →W satisfies

‖ϕ(v)− A1(v)−Q2(v)‖β ≤
2
(

α + 2γ‖v‖w
β

)
(
|2|β(w+1) − |2|2β

)[ |2|β
(2n− 6)

+
1

(2n− 4)

]
for all v ∈ V, where 0 < w < 1 and α, γ ∈ R+ . Moreover, if ϕ(kv) is continuous in k ∈ R for all
v ∈ V, then Q2 is B∗-quadratic and A1 is B∗-linear.

Remark 1. If an even mapping ϕ : R → V satisfies the functional Equation (3), then the below
assertions holds:

(1) ϕ(mc/2v) = mc ϕ(v), v ∈ R, m ∈ Q and c ∈ Z.
(2) ϕ(v) = v2 ϕ(1), v ∈ R if the function ϕ is continuous.

Example 1. Let an even mapping ϕ : R→ R defined by: ϕ(v) = ∑∞
p=0

ψ(2pv)
22p where

ψ(v) =

{
λv2, −1 < v < 1
λ, else,

(79)

then the mapping ϕ : R→ R satisfies

|Θϕ(v1, v2, · · · , vn)| ≤
(

n4 − 8n3 + 5n2 + 34n− 32
4

)(
4
3

)
λ

(
n

∑
j=1
|vj|2

)
(80)

for all v1, v2, · · · , vn ∈ R, but doesn’t exist a quadratic mapping Q2 : R→ R satisfies

|ϕ(v)−Q2(v)| ≤ δ|v|2, v ∈ R, (81)

where λ and δ is a constant.

Remark 2. If an odd mapping ϕ : R → V satisfies the functional Equation (3), then the below
assertions holds:

(1) ϕ(mcv) = mc ϕ(v), v ∈ R, m ∈ Q and c ∈ Z.
(2) ϕ(v) = vϕ(1), v ∈ R if the function ϕ is continuous.

Example 2. Let an odd mapping ϕ : R→ R defined by: ϕ(v) = ∑∞
p=0

ψ(2pv)
2p where

ψ(v) =

{
λv, −1 < v < 1
λ, else,

(82)
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then the mapping ϕ : R→ R satisfies

|Θϕ(v1, v2, · · · , vn)| ≤ 2
(

n4 − 8n3 + 5n2 − 42n− 40
4

)
λ

(
n

∑
j=1
|vj|
)

(83)

for all v1, v2, · · · , vn ∈ R, but doesn’t exist a additive mapping A1 : R→ R satisfies

|ϕ(v)− A1(v)| ≤ δ|v|, v ∈ R, (84)

where λ and δ is a constant.

4. Conclusions

As of our knowledge, our findings in this study are novel in the field of stability theory.
This is our antecedent endeavor to deal with a new type of mixed QA-functional equation.
It is shown that the Equation (3) is equivalent to each other to conclude that their solution
is both additive and quadratic mapping. The stability results of different forms of additive
and quadratic functional equations are obtained by many mathematicians in various spaces.
But, in this work, we have introduced mixed QA-functional Equation (3) and obtained its
general solution in Section 2. The main aim of this work is to examine the Hyers-Ulam
stability of (3), which has been achieved in Section 3.3 with the help of Section 3.1, where
the function ϕ is odd; and Section 3.2, where the function ϕ is even, in β-Banach modules
by using fixed point approach. By the Corollaries, we have discussed Hyers-Ulam stability
for the factors of sum of norms and sum of the product of norms.
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