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Abstract: The present contribution focuses on heat transmission in the conjugate mixed bioconvection
flow of Carreau nanofluid with swimming gyrotactic microorganisms through an inclined stretchable
cylinder with variable magnetic field impact and binary chemical reaction. Additionally, the investi-
gation involves the aspects of variable decrease or increase in heat source and non-uniform thermal
conductivity. A passively controlled nanofluid pattern is used to estimate this nano-bioconvection
flow case, which is believed to be more physically accurate than the earlier actively controlled
nanofluid typically employed. One of essential features of this investigation is the imposition of a
zero-mass flux condition at the surface of the cylinder. Through the implementation of an appropriate
transformation, the nonlinear PDE system is mutated into similar equations. The flow equations thus
obtained are solved numerically to explore the influence of the physical constraints involved through
implementation with the aid of the MATLAB bvp4c code. The solutions were captured for both zero
and non-zero bioconvection Rayleigh number, i.e., for flow with and without microorganisms. The
present numerical results are compared with the available data and are determined to be in excellent
agreement. The significant result of the present article is that the degree of nanoparticle concentration
in the nanofluid exhibits an increasing trend with higher values of activation energy constraint.

Keywords: Carreau nanofluid; bioconvection; non-uniform thermal conductivity; microorganisms;
binary chemical reaction; cylinder

1. Introduction

Newtonian liquids can be entirely elaborated on the basis of the impacts of pressure
and temperature, but the physical aspects of non-Newtonian liquids also take into account
the effects of the forces acting on them over time. The viscosity of miscellaneous liquids
does not depend on the imposed (shearing) force. In any case, there is a specific set of fluids
that exhibit an essentially different behavior. One of the categories of these miscellaneous
liquids is shear-thinning, in which the (apparent) viscosity is inversely proportional to
the strain rate. The constitutive pattern presented by Carreau [1] includes four additional
factors compared to Newtonian fluids; therefore, it is able to describe the rheology of a
vast range of non-Newtonian liquids. This pattern fits reasonably well in miscellaneous
flow situations, in particular, for some dilute, aqueous, and polymer solutions, as well
as melts. Chhabra and Uhlherr [2] presented the earliest theoretical investigation of the
creeping flow of the non-Newtonian Carreau liquid caused by a sphere. Laminar and
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double diffusion flow within a heated cavity containing Carreau fluid was simulated by
Tang and Kefayati [3]. Sochi [4] provided analytical formulas associating the volumetric
flow rate with the pressure drop, deduced for the flow of Carreau and Cross liquids over
thin slits and uniform circular tubes. The problem presented by the Von-Karman infinite
disk in relation to non-Newtonian liquids was addressed by Griffiths [5], who implemented
the Carreau pattern. Griffiths determined that that the Carreau viscosity pattern did not
suffer under any non-physical situations that could be encountered when dealing with
power-law patterns. Liron and Wilhelm [6] investigated the attitude of viscous liquid
when incorporating the impact of a magnetic field in a transverse trend with respect to
the flow. Soomro et al. [7] analyzed the MHD mixed convective flow pattern with thermal
velocity slip impacts. The MHD free and forced convection fluid flow was examined by Pal
et al. [8], evaluating the impact of thermal radiation on a stretching and shrinking surface
geometry. Daniel et al. [9] obtained mixed convection flow in an electrically conductive
nanoliquid as a result of magnetohydrodynamics. Shankaralingappa [10,11] presented a
numerical analysis of the thermal and mass distribution of a 3-D non-linear extending plate
with Al2O3-based non-Newtonian nanoliquid with thermophoretic particle deposition and
relaxation chemical reaction. In this context, a number of fruitful research papers that are
related to the current contribution have been published by several authors [12–18].

In addition, bioconvection refers to an attractive phenomenon in fluid mechanics
that has a variety of applications in bioscience and life science technology. The theory
of bioconvection explores impulsive pattern construction and mass stratification with re-
spect to the immediate communication among microbes, forces, and nanoparticles. The
bioconvective flow of non-Newtonioan Sisko nanofluid was scrutinized with respect to
activation energy and gyrotactic microorganisms by Khan et al. [19], while Waqas et al. [20]
considered non-Newtonian second-grade nanofluid. Shen et al. [21] considered a stretching
sheet in order to examine the heat transference in a bioconvective fluid flow containing
nanomaterials and gyrotactic microorganisms. Balla et al. [22] presented a case of bio-
convective nanofluid flow in a porous medium consisting of nanoparticles and oxytactic
microbes. Several contributions related to bioconvection have been published focusing on
the suspension of gyrotactic/oxytactic microorganisms in a variety of scenarios [23–33].
Furthermore, materials possessing a magnitude of 1 nm to 100 nm are denominated as
being nanoparticles or nanomaterials. The use of these kinds of nanoparticles was first
undertaken by Choi [34], who used these nanoparticles within a pure liquid, popularizing
the denotation of such a mixture as a nanofluid. The denotation as nanoliquids was first
described by Buongiorno [35], who introduced a two-phase pattern known as the Buon-
giorno two-phase model. Using this model, he inspected the features of nanoliquids by
employing both thermophoresis and Brownian diffusion processes. Since then, a number
of researchers have made contributions in the field of nanoliquids, as nanoliquids have
magnificent thermophysical features. Tunde et al. [36] elucidated the entropy genera-
tion in the bioconvective flow of Williamson nanoliquid through an oblique semi-infinite
surface immersed in porous media under the impact of gyrotactic microorganisms and
thermal radiation.

Activation energy describes the lowest amount of energy needed to instigate a chem-
ical reaction inside the system. In a small number of cases, it can be observed that the
activation energy is equal to zero. The instigation of a chemical reaction in order to examine
activation energy is necessary due to its enormous applications in chemical engineering,
mechanical chemistry, and the cooling of nuclear reactors. This sort of energy has been
investigated by several authors in their papers. Majeed et al. [37] reported Arrhenius acti-
vation energy for the Darcy-Forchheimer flow case with a fluid with an external magnetic
field past a stretchable sheet, focusing on the chemical reaction and the second-order slip
effect. The influence of both the activation energy and the chemical reaction of MHD mixed
convectional stagnation point via a stretching plate of Cross nanoliquid was examined
by Khan et al. [38]. Mustafa et al. [39] numerically analyzed the effects of the activation
energy of an MHD mixed convective flow of nanoliquid over a vertical stretching surface.
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Dhlamini et al. [40] investigated the trends of activation energy and the binary chemical
reaction in a time-dependent flow of mixed convective nanoliquid. Shafique et al. [41]
proposed a mathematical pattern for analyzing the combined impacts of heat and mass
transmission of Maxwell liquid flow with a binary chemical reaction produced by activation
energy. Additionally, since magnetohydrodynamics (MHD) has a wide range of applica-
tions, e.g., petroleum, environmental, and chemical technologies, it has attracted a great
deal of attention. The expression MHD denotes the employment of a magnetic field, often
imposed normal to the trend of liquid flow, which has the potential to impose a drag force,
referred to as the Lorentz force. The generated force acts against the trend of the liquid
flow, in turn impacting the fluid motion. Zhao et al. [42] discussed the aspect of magnetic
field heat transmission of nanoliquids in microchannels. Waqas et al. [43] addressed MHD
free and forced convection flow of non-Newtonian liquid through a nonlinear stretching
surface.

Inspired by the abovementioned literature and applications, the aim of the current
paper is to analyze the impact of the activation energy and mixed bioconvection flow of
Carreau nanofluid including gyrotactic microorganisms past an oblique slender cylinder.
The imposed thermal conductivity and magnetic field are varied. The mathematical pattern
is based on a system of nonlinear differential equations under boundary layer assumptions.
The viable similarity conversion technique reduces the modeled flow equations to an
ODE set which is then solved numerically with the assistance of the MATLAB bvp4c
code. The influence of a variety of involved factors and physical quantities is determined
numerically and presented graphically. To the best of our knowledge, this problem has not
yet been considered.

2. Flow Analysis

Let us configure a time-dependent magnetohydrodynamic (MHD) mixed bioconvec-
tion flow resulting from swimming gyrotactic microorganisms for a Carreau nanoliquid
through an oblique permeable stretched cylinder at an angle Ω with the horizontal axis, as
portrayed in Figure 1. The cylinder is stretched with a linear stretching velocity Uw = ax

1−ζt .
Furthermore, the conditions of non-uniform thermal conductivity and zero-mass flux are
imposed on the cylinder surface. A variable magnetic field is employed in such a way that
the cylinder is perpendicular to it and the Carreau nanofluid is presumed to be electrically
conducting with an intensity B(t) = B0

(1−ζt)1/2 , where B0 represents a constant. The surface

of the permeable cylinder is kept at a constant temperature Tw with a constant density of
motile microorganisms Nw, whereas far from the cylinder surface, the temperature, the
nanoparticle volume fraction, and the concentration of microorganisms are given as T∞, C∞
and N∞, respectively. The constitutive equation for the Carreau rheological pattern [18]
can be formulated as

µ = µ∞ + (µ0 − µ∞)
(

1 + (γ̃
.
γ)

2
) n−1

2 (1)
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On the basis of the controlling flow equation, 𝑥 and 𝑟 are Cartesian coordinates, (𝑢, 𝑣) indicate the velocity components of the Carreau two-phase nanofluid along the 𝑥- 
and 𝑟-axes, respectively, 𝑇, 𝐶 stand for the nanofluid temperature and concentration, 𝑁 
gives the micro-rotation velocity, the gravity acceleration is indicated by 𝑔, 𝛾⋆ denotes 
the average volume of the microorganisms, 𝑘 , 𝑘  denote the nanofluid thermal 
conductivity and chemical reaction constant, 𝑊  is a constant representing the maximum 
cell swimming speed, 𝜌  is the density of the nanoparticles, 𝐷, 𝐷, 𝐷 are the Brownian 
and thermophoretic diffusions and diffusivity of microorganisms, respectively, and the 
density of the motile microorganism is indicated by 𝜌 .  Additionally, realistic flow 
boundary conditions for the Carreau nanofluid are imposed as stated as [17,25]: 𝑢 = 𝑈 , 𝑣 = 0, 𝑇 = 𝑇  𝐷 𝜕𝐶𝜕𝑟 + 𝐷𝑇 𝜕𝑇𝜕𝑟 = 0, 𝑁 = 𝑁 at 𝑟 = 𝑅 (7)

Figure 1. Physical configuration of the problem.
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Herein, µ∞, µ0, γ̃ and n represent the viscosities at infinite and zero shear rate, the
material constant, and the power-law index. For the value of n, when (n = 1), the fluid is
described as possessing a Newtonian attitude, (0 < n < 1) represents the shear-thinning
attitude, and (n > 1) represents a shear-thickening fluid. Here, the state equation at infinite
shear rate viscosity (µ∞ = 0) is recognized. Therefore, the constitutive Equation (2) is re-

expressed as µ = µ0

(
1 + (γ̃

.
γ)

2
)(n−2)/2

. The shear rate
.
γ is formulated as

.
γ =

√
0.5 tr A2

1,

in which A1 = ∇V + (∇V)T is the 1st Rivlin–Erickson tensor, with V being the velocity.
Furthermore, the thermal conductivity of the Carreau liquid can be expressed by the
following relation [44]:

k f = k∞

(
1 + ε

T − T∞

Tw − T∞

)
where ε denotes the non-uniform thermal conductivity factor, and k∞ stands for the ambient
thermal conductivity of the Carreau nanoliquid. The impact of the binary chemical reaction
is imposed in order to determine the sloutal energy transport behavior of the Carreau
nanofluid. On the basis of these hypotheses, the 2-D fundamental flow formulas employed
are those given by [14,17,41].

∂(ru)
∂x

+
∂(rv)

∂r
= 0 (2)

∂u
∂t + u ∂u

∂x + v ∂u
∂r = ν f

(
1 + γ̃2

(
∂u
∂r

)2
) n−1

2 (
1
r

∂u
∂r + ∂2u

∂r2

)
− σB2

0
ρ f

u

+
g

ρ f
(ρ f β f (1−C∞)(T−T∞)−(ρp−ρ f )(C−C∞)−γ?(ρm−ρ f )(N−N∞))cos Ω

+(n− 1)ν f γ̃2
(

∂u
∂r

)2
∂2u
∂r2

(
1 + γ̃2

(
∂u
∂r

)2
) n−3

2

(3)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂r

=
1

(ρcp) f

1
r

(
∂

∂r

(
k f

∂T
∂r

))
+ 

(
D

∂T
∂r

∂C
∂r

+
D
T∞

(
∂T
∂r

)2
)

(4)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂r

=
D
r

∂

∂r

(
r

∂C
∂r

)
+

D
T∞

1
r

∂

∂r

(
r

∂T
∂r

)
− k2

r (C− C∞)

(
T

T∞

)m
e−(

E0
k?T ) (5)

∂N
∂t

+ u
∂N
∂x

+ v
∂N
∂r

+
bWc

C∞

1
r

∂

∂r

(
rN

∂C
∂r

)
=

D̃
r

∂

∂r

(
r

∂N
∂r

)
(6)

On the basis of the controlling flow equation, x and r are Cartesian coordinates, (u, v)
indicate the velocity components of the Carreau two-phase nanofluid along the x- and
r-axes, respectively, T, C stand for the nanofluid temperature and concentration, N gives
the micro-rotation velocity, the gravity acceleration is indicated by g, γ? denotes the
average volume of the microorganisms, k f , kr denote the nanofluid thermal conductivity
and chemical reaction constant, Wc is a constant representing the maximum cell swimming
speed, ρp is the density of the nanoparticles, D, D, D̃ are the Brownian and thermophoretic
diffusions and diffusivity of microorganisms, respectively, and the density of the motile
microorganism is indicated by ρm. Additionally, realistic flow boundary conditions for the
Carreau nanofluid are imposed as stated as [17,25]:

u = Uw, v = 0, T = Tw D ∂C
∂r + D

T∞
∂T
∂r = 0, N = Nwat r = R

u→ 0, T → T∞, C → C∞, N → N∞, as r → ∞
(7)

Let us mutate the above flow equations into dimensionless form using the following
transformation [17,36]:

η = r2−R2

2R

(
a

ν f (1−ζt)

)1/2
, ψ =

( aν f
1−ζt

)1/2
xRF(η),

θ(η) = T−T∞
Tw−T∞

, φ(η) = C−C∞
C∞

, ϑ(η) = N−N∞
Nw−N∞

(8)
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Herein, u = 1
r

∂ψ
∂r and v = − 1

r
∂ψ
∂x . Of course, the continuity equation (Equation (1)) is

obtained automatically, and other equations of flow turn into

(1+2γη)(1+We F′′ 2)
n−3

2 (1+n We F′′ 2)F′′′+γ(1+We F′′ 2)
n−3

2 (2+(n+1)We F′′ 2)F′′

+FF′′−F′2−A( 1
2 ηF′′+F′)−M F′+Ri(θ−Nr φ−Rbϑ)cos Ω=0

(9)

(1 + 2γη)
(
(1 + εθ)θ′′ + εθ′2

)
+ 2γθ′(1 + εθ) + PrFθ′ − 1

2 A Pr η θ′

+Pr(1 + 2γη)
(

Nbθ′φ′ + Ntθ′2
)
= 0

(10)

(1 + 2γη)φ′′ +
(

2γ− 1
2 A Le η

)
φ′ + LeFφ′ + Nt

Nb
(2γθ′ + (1 + 2γη)θ′′ )

−LeKrφ(δθ + 1)me−
E

δθ+1 = 0
(11)

(1 + 2γη)ϑ′′ +
(

2γ− 1
2 A Lb η

)
ϑ′ + Lb Fϑ′

−Pe(ϑ + ω)(1 + 2γη)(φ′′ + 2γφ′)− Pe(1 + 2γη)φ′ϑ′ = 0
(12)

With the newly transformed flow boundary conditions

F′ = 1, F = 0, θ = 1, Nbφ′ + Ntθ
′ = 0 ϑ = 1, when η = 0

F′ → 0, θ → 0, φ→ 0, ϑ→ 0, when η → ∞
(13)

The parameters appearing in the mutated governing equations can be defined as follows:

We = a3x2r2γ̃2

(1−ζt)3R2ν f
stands for Weissenberg number, γ =

(
(1−ζt)ν f

aR2

)1/2
is the curvature

parameter, M =
σB2

0
aρ f

is the magnetic field factor, Ri =
gβ f (1−C∞)(Tw−T∞)x

U2
w

refers to the mixed

convection factor, Nt =
D(Tw−T∞)

ν f T∞
gives the thermophoresis diffusion factor, Nb = DC∞

ν f

indicates the Brownian diffusion factor, Nr =
(ρp−rho f )C∞

β f ρ f (1−C∞)(Tw−T∞)
denotes the buoyancy

force ratio factor, Pr =
µcp
k f

represents the Parndtl number, Le =
ν f
D is the Lewis number,

Rb =
γ?(ρp−ρ f )

β f ρ f (1−C∞)(Tw−T∞)
denotes the bioconvection Rayleigh number, Lb =

ν f

D̃
refers to the

bioconvection Lewis number, A = ζ
a is the unsteadiness parameter, Pe = bWc

D̃
indicates

the Peclet number, Kr =
k2

r
a is the chemical reaction factor, E = E0

k?T∞
gives the activation

energy factor, δ = E0
k?T∞

is the temperature difference factor, and ω = N∞
Nw−N∞

denotes the
microorganism concentration difference factor.

On the basis of the dimensionless variables, the significant physical quantities in the
design—the skin friction factor C f , the Nusselt number Nu, and the density of the motile
microorganisms Nn—can be given in the following form:

C f =
τw|r=R
ρ f U2

w
, Nu =

x qw|r=R
k f (Tw − T∞)

, Nn =
x qn|r=R

D̃(Nw − N∞)
(14)

where shear stress, surface heat, and motile surface microorganism fluxes are designated
by τw, qn and qw, the mathematical expressions of which are as follows:

τw = µ f
∂u
∂r

(
1 + γ̃2

(
∂u
∂r

)2
)(n−1)/2

r=R

, qw = −k f

(
∂T
∂r

)
r=R

, qn = −D̃
(

∂N
∂r

)
r=R

(15)
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On the basis of the non-similarity transformation (Equation (8)), the obtained non-
dimensional mathematical expressions of the skin friction factor C f , the local Nusselt
number Nu, and local density of motile microorganisms Nn can be formulated as follows:

Re1/2C f = F′′ (0)
(
1 + WeF′′ 2(0)

)(n−1)/2

Re−1/2Nu = −θ′(0)
Re−1/2Nu = −ϑ′(0)

(16)

in which Re = ax2

ν f (1−ζt) designates the Reynold number.

3. Results and Discussion

In this section, we present an accurate examination of a Carreau two-phase nanofluid
flow with swimming gyrotactic microorganisms due to an oblique stretched cylinder under
the impact of pertinent factors. The mathematical results are presented as the profiles
of the skin-friction factor, heat and mass transmission rates, Carreau temperature, and
concentration, which are proven on the basis of Figures 2–13. The MATLAB bvp4c function
provides a numerical technique that was employed in order to obtain the solutions of the
metamorphic problem equations, i.e., Equations (9)–(12), along with boundary condition
equation, Equation (13). The present approach employs the collocation technique in order
to solve the boundary value problem in the form

y′ = F(x, y, P), a ≤ x ≤ b (17)

concerned with general nonlinear, two-point boundary conditions

G(y(a), y(b), P) = 0, (18)

where p represents a vector of anonymous factors. The approximate solution H(x) indicates
a continuous function that is a cubic polynomial on every subinterval xn, xn+1 of a mesh
a = x0 < x1 < x2 < . . . < xn = b, fulfilling the boundary conditions

G(H(a), H(b), P) = 0, (19)
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nanofluid, and thus, the flow fluctuation of the fluid presents a decreasing trend. The 
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Figure 2. Fluctuations of C f , Nu and Nn due to We factor.
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It can be seen that the magnitude of the skin friction coefficient and the density of 
motile microorganisms decreases with increasing buoyancy ratio factor, whereas the rate 
of heat transmission expressed in terms of Nusselt number increases. Since the buoyancy 
force has a dominant impact on viscous forces for larger values of 𝑅 , the mixed 
convection factor is responsible for making the fluid flow faster, which is undertaken with 
the aim of improving the motion of the fluid 

The impact of the power-law index factor n, where n = 0,0.5,1,2, on skin friction, 
Nusselt number, and density of motile microorganisms is presented in Figure 4, with R = 0,0.5. Please note that, physically, the power-law index n describes the slope (μ −μ )/(μ − μ ) in the power-law region. As can be seen, both theabsolute value of skin 
friction and the gradient of temperature improve with increasing values of the factorn, 
but the opposite trend is observed for the density of motile microorganisms. Physically, 
an improvement in the Carreau fluid factor n  enhances the viscosity of the fluid, 
resulting in a weakened opposing force. 
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enhance Lorentz force (anti-flow force). This drag-like force induces greaterresistance to 
transport phenomena due to the decrease in movement and increases the thickness ofthe 
thermal boundary layer. As can be seen, negative values of dragforce and density of 
motile microorganisms are improved, but the Nusselt number decreases. Negative values 
of 𝐶  and Nn are found to exhibit an increasing trend when investigating the unsteadiness 
factor 𝐴bothwith andwithout microorganisms, whereas increasing𝐴 causes a decrease 
inthe Nusselt number, as shown in Figure 7.  
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This solution also fulfills the set of D.E. at the middle and end points of every subinterval

H′(xn) = F(xn, H(xn)), (20)

H′((xn + xn+1)/2) = F((xn + xn+1)/2, H((xn + xn+1)/2)), (21)

H′(xn+1) = F(xn+1, H(xn+1)) (22)

The conditions shown above result in a set of nonlinear algebraic equations for the
factors defining H. Furthermore, for confirmation of the method, Table 1 presents a com-
parison of the data for the skin friction coefficient Re1/2 C f computed for various values
of curvature factor (γ) for the particular case of a Newtonian fluid (n = 1 or We = 0)
with independent time flow (A = 0) and in the absence of magnetic and buoyancy force
factors (B0 = Ri = 0); an excellent agreement can be observed with earlier published data
by Hashim et al. [45] and Rangi and Ahmad [46]. The range of imposed parameters is
1 ≤ We ≤ 100, 0 ≤ n ≤ 2, 0 ≤ M ≤ 2, 0.1 ≤ Ri ≤ 1.5, 0 (no microorganisms) ≤ Rb ≤ 0,
0 ≤ ε ≤ 5.0, 0 (steady state) ≤ A ≤ 0.3, 1 ≤ γ ≤ 10, and 0 ≤ Kr ≤ 5. The values of the
pertinent default factors were given as We = 10, m = n = 0.5, Nb = Nt = 0.7, M = 1,
Ri = 0.6, Rb = 0.0, 0.5, Pe = 0.7, A = 0.1, Pr = 10, ε = 1.0, ω = 0.2, Le = 2, Lb = 1.0,
γ = 1.0, E = 2.0, Kr = 1.0, Nr = δ = 0.5 unless otherwise stated.
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Table 1. A comparison of skin friction −Re1/2 C f .

γ [45] [46] Present

0 1.000000 1.000000 1.000000
0.25 1.094373 1.094378 1.094376
0.50 1.188727 1.188715 1.188728
0.75 1.281819 1.281833 1.281827
1.0 1.453373 1.459308 1.453361

Figure 2 presents the fluctuations of the skin friction coefficient Re1/2 C f the Nusselt
Re−1/2 Nu, and density of motile microorganisms Re−1/2Nn associated with thermal
conductivity factor ε as a function of We factor, where We = 1, 10, 25, 50, 100. Weissenberg
number is defined in terms of specific process time and relaxation time, and, with increasing
values of relaxation time yields increased resistance between fluid particles, that is, higher
Weissenberg numbers result in increased viscosity in the Carreau nanofluid, and thus, the
flow fluctuation of the fluid presents a decreasing trend. The plotted outcomes presented
in this figure indicate that as the Weissenberg number We increases, the magnitude of both
skin friction coefficient and Nusselt number decrease, while the value of the local density
of motile microorganisms increases. Additionally, it is obvious that the magnitude of skin
friction is weaker in the case of flow over a stretching cylinder without microorganisms.
The changes in the values of skin friction coefficient, rate of heat transmission, and density
of motile microorganisms for miscellaneous values of buoyancy ratio factor (Ri = 0.1, 0.3,
0.6, 1.0, 1.5) under cases Rb = 0 and 0.5 are presented in Figure 3.

It can be seen that the magnitude of the skin friction coefficient and the density of
motile microorganisms decreases with increasing buoyancy ratio factor, whereas the rate
of heat transmission expressed in terms of Nusselt number increases. Since the buoyancy
force has a dominant impact on viscous forces for larger values of Ri, the mixed convection
factor is responsible for making the fluid flow faster, which is undertaken with the aim of
improving the motion of the fluid.

The impact of the power-law index factor n, where n = 0, 0.5, 1, 2, on skin friction, Nus-
selt number, and density of motile microorganisms is presented in Figure 4, with Rb = 0, 0.5.
Please note that, physically, the power-law index n describes the slope (µ− µ∞)/(µ0 − µ∞)
in the power-law region. As can be seen, both theabsolute value of skin friction and the
gradient of temperature improve with increasing values of the factor n, but the opposite
trend is observed for the density of motile microorganisms. Physically, an improvement
in the Carreau fluid factor n enhances the viscosity of the fluid, resulting in a weakened
opposing force.

It is well known that the curvature factor corresponds inversely with the radius of a
cylinder, and thus an increment in curvature will lead to a decrease in the cylinder area,
and consequently reduced contact between the fluid elements and the cylinder, as well
as a subsequent reduction intemperature as a consequence of the reduction in the surface
domain of cylinder in contact with the fluid. The impact of curvature factor γ is presented
in Figure 5 for the cases with both thepresence andabsence of microorganisms. From the
figure, it is clear that the factor γ increases the values of skin friction, Nusselt number, and
density of motile microorganisms.

Figure 6 illustrates the trends of C f , Nu and Nn with respect to thermal conductivity
factor ε for miscellaneous magnetic field factor M. The magnetic field factor indicates
the ratio of magnetic force to viscous force, such that increasing values of M explicitly
enhance Lorentz force (anti-flow force). This drag-like force induces greaterresistance to
transport phenomena due to the decrease in movement and increases the thickness ofthe
thermal boundary layer. As can be seen, negative values of dragforce and density of motile
microorganisms are improved, but the Nusselt number decreases. Negative values of C f
and Nn are found to exhibit an increasing trend when investigating the unsteadiness factor
A bothwith andwithout microorganisms, whereas increasing A causes a decrease inthe
Nusselt number, as shown in Figure 7.
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It is clear that when unsteadiness increases, the cylinder surface loses more heat. Ad-
ditionally, temperature variations in the non-Newtonian Carreau nanofluid are presented
in Figure 8 with a variety of values of Weissenberg number We. Our observations reveal
that increasing values of We boost the nanofluid temperature through the boundary layer
both with and without the presence of microorganisms. The impactof non-uniform thermal
conductivity factor ε (varying from 0 to 5) on temperature distribution is presented in
Figure 9. It can be seen that as the particles collide with each other, they transmit energy,
which causes increased temperature distribution. As a result, increases in the thermal con-
ductivity factor yield augmentation in the temperature of the Carreau nanofluid. Therefore,
the trend of temperature is an ascending state with increasing values of ε.

As can be clearly seen in Figure 10, the mixed convection factor Ri results in decreased
Careau nanofluid temperature profiles. The influencesof theWeissenberg number, chemical
reaction, and non-uniform thermal conductivity factors on variations in microorganism
concentration are shown in Figures 11–13. As can be seen, all We, Kr and ε factors present
a decrease in the profile of microorganism concentration. It isclear that an increasing
reaction rate constant yields an augmentation in the term (1 + δθ)mEXP

(
−E

1+δθ

)
. This leads

to the occurrence of a destructive chemical reaction, as well as a subsidence in the mass
fraction profile.

4. Conclusions

The key aim of the present analysis was to scrutinize the trend of swimming motile
microorganisms in a time-dependent MHD 2-D convectional flow of Carreau nanomaterials
around an oblique cylinder. The novel notions of non-uniform thermal conductivity
and variable magnetic field were employed in order to consider the flow problem. The
conclusions drawn from the investigation are briefly presented as follows:

• The absolute drag force increases with increasing curvature, unsteadiness, magnetic
field and power-law factors, while it decreases with increasing Weissenberg number
and mixed convection factor.

• For shear-thinning fluid, a substantial decrease in the velocity and momentum bound-
ary layer thickness is noticed with increasing Weissenberg number.

• The temperatures curves increase with incrementation of both Weissenberg number
and non-uniform thermal conductivity factor, but decrease due to mixed convection.

• The solutal fluctuations decrease with increasing values of Weissenberg number, as
well as non-uniform thermal conductivity and chemical reaction factors.

• Absolute drag force and local values of density of motile microorganisms increase due
to A and M factors, while the local Nusselt number decreases.

• The heat transmission rate over the surface is greater for a cylinder than for a flat surface.
• The local Nusselt number in shear-thinning fluid decreases with incrementation of the

We number.
• Mixed convection and power-law factors result in increased magnitude of drag force

and Nusselt number, but decreased density of motile microorganisms.
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