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Abstract: This paper studies the synchronization control of nonlinear multiple time-delayed complex
spatiotemporal networks (MTDCSNs) based on partial integro-differential equations. Firstly, dealing
with an MTDCSN with time-invariant delays, P-sD control is employed and the synchronization
criteria are obtained in terms of LMIs. Secondly, this control method is further used in an MTDCSN
with time-varying delays. An example illustrates the effectiveness of the proposed methods.
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1. Introduction

As a typical collective behavior in nature, the synchronization of complex networks
has attracted a great deal of attention during the last few decades [1–3]. It has been widely
applied to engineering fields, such as secure communication [4,5], deception attacks [6–8],
the design of pseudorandom number generators [9], and image encryption [10].

In fact, many phenomena rely not only on time but also on space [11–13]. As a result,
many researchers have studied complex spatiotemporal networks (CSNs), owing to many
phenomena relating not only to time but also to space. Kanakov et al. studied the cluster
synchronization of the CSNs of oscillatory and excitable Luo–Rudy cells [14]. Kakmeni
and Baptista proposed synchronization and information transmission in CSNs under
a substrate Remoissenet–Peyrard potential [15]. Rybalova et al. investigated complete
synchronization under the condition of spatio-temporal chaos with the Henon map and
Lozi map [16]. Yang et al. studied the guaranteed cost boundary control of nonlinear CSNs
with a community structure [17] and the boundary control of CSNs modeled by partial
differential equations–ordinary differential Equations (PDE-ODEs) [18].

Owing to the extensive existence of time delays, it is important to research time-
delayed networks [19–22]. Yao et al. studied the passive stability and synchronization
of switching CSNs with time delays in terms of appropriate algebraic inequalities [23,24].
Zhou et al. proposed two methods—matrix invertibility and an adaptive law—for the
topology identification and finite-time topology identification of time-delayed complex
spatiotemporal networks (TDCSNs) [25,26]. Sheng et al. studied the exponential syn-
chronization of TDCSNs with Dirichlet boundary conditions and hybrid time delays via
impulsive control [27]. Lu et al. studied generalized sampled-data intermittent control for
the exponential synchronization of TDCSNs [28]. Yang et al. proposed the synchronization
of nonlinear complex spatio-temporal networks with multiple time-invariant delays and
multiple time-varying delays [29]. Zhang et al. proposed fuzzy time sampled-data control
and fuzzy time–space sampled-data control for the synchronization of T–S fuzzy TDCSNs
with additive time-varying delays [30].
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On the whole, most of the mentioned literature assumes that nodes are modeled by
partial differential equations, PDEs, or PDE-ODEs. Few studies consider models based
on partial integro-differential Equations (PIDEs). PIDEs have been applied to spread and
traveling waves [31], pricing models [32], biology [33], pattern formation [34], secure com-
munication [5], and medical science [35]. Many dynamical behaviors of PIDEs have been
studied [36–38]. However, there are still some technical difficulties in the synchronization
of multiple time-delayed TDCSNs based on PIDEs, such as communication among nodes
and controller design, which is the motivation for this paper.

Notations: I means an identity matrix with proper order; P < 0 is a negative definite
matrix, while P > 0 is positive definite; ‘∗’ is an ellipsis of transpose blocks in symmet-
ric matrices.

2. Problem Formulation

This paper studies a class of nonlinear MTDCSNs based on PIDEs:

∂yi(ζ, t)
∂t

= Θ1
∂2yi(ζ, t)

∂ζ2 + Θ2
∂yi(ζ, t)

∂ζ
+ Ayi(ζ, t− τ1(t)) + f (yi(ζ, t− τ2(t)))

+B
∫ ζ

0
yi(z, t− τ3(t))dz + c

N

∑
j=1

hijΓyj(ζ, t− τ4(t)) + ui(ζ, t),

∂yi(0, t)
∂ζ

= 0,
∂yi(L, t)

∂ζ
= 0, (1)

yi(ζ, t) = y0
i (ζ, t), (ζ, t) ∈ [0, L]× [−τ, 0],

where (ζ, t) ∈ [0, L]× [0, ∞). Here, yi(ζ, t), ui(ζ, t) ∈ Rn are the respective state and control
inputs, i ∈ {1, 2, · · · , N}. Θ1 ∈ Rn×n is the diffusion coefficient matrix. Θ2 ∈ Rn×n is
the convection coefficient matrix. A ∈ Rn×n and B ∈ Rn×n are the connection matrices.
0 < Γ ∈ Rn×n is the inner coupling matrix. The coupling strength c is a positive real
number. The coupling connection H = (hij)N×N is defined as hij > 0(i 6= j) if the agent j
connects to i and hii = − ∑

j 6=i
hij. f (·) is a nonlinear function that varies over time and space.

0 < τ1(t), τ2(t), τ3(t), τ4(t) ≤ τ, τ̇1(t) 6 µ1, τ̇2(t) 6 µ2, τ̇3(t) 6 µ3, and τ̇4(t) 6 µ4.
The isolated node is supposed to be:

∂s(ζ, t)
∂t

= Θ1
∂2s(ζ, t)

∂ζ2 + Θ2
∂s(ζ, t)

∂ζ
+ As(ζ, t− τ1(t)) + f (s(ζ, t− τ2(t)))

+B
∫ ζ

0
s(z, t− τ3(t))dz,

∂s(0, t)
∂ζ

= 0,
∂s(L, t)

∂ζ
= 0, (2)

s(ζ, t) = s0(ζ, t), (ζ, t) ∈ [0, L]× [−τ, 0].

We denote the synchronization error as εi(ζ, t) ∆
= yi(ζ, t)− s(ζ, t). The P-sD controller

is designed as

ui(ζ, t) = −KPiεi(ζ, t)− KDi
∂εi(ζ, t)

∂ζ
, (3)

where KPi, KDi ∈ Rn×n , i ∈ {1, 2, · · · , N}, need to be determined. The controller structure
in this paper is shown in Figure 1, where the notation “∂/∂ζ” represents a first-order spatial
differentiator. With (3), the error system of the MTDCSN (1) can be obtained as:



Mathematics 2022, 10, 509 3 of 15

∂εi(ζ, t)
∂t

= Θ1
∂2εi(ζ, t)

∂ζ2 + Θ2
∂εi(ζ, t)

∂ζ
− KDi

∂εi(ζ, t)
∂ζ

− KPiεi(ζ, t)

+Aεi(ζ, t− τ1(t)) + F(εi(ζ, t− τ2(t)))

+B
∫ ζ

0
εi(s, t− τ3(t))ds + c

N

∑
j=1

hijΓεj(ζ, t− τ4(t)), (4)

∂εi(0, t)
∂ζ

= 0,
∂εi(L, t)

∂ζ
= 0,

εi(ζ, t) = ε0
i (ζ, t), (ζ, t) ∈ [0, L]× [−τ, 0],

where F(εi(ζ, t− τ2(t)))
∆
= f (yi(ζ, t− τ2(t)))− f (s(ζ, t− τ2(t))), ε0

i (ζ)
∆
= y0

i (ζ)− s0(ζ). 

The P-sD 

controller 

(3) 

Process 

 

Off-line controller design 

  

Figure 1. The structure of the P-sD controller (3).

Assumption 1. For any a, b, assume there exists a scalar χ > 0 satisfying:

| f (a)− f (b)| 6 χ|a− b|. (5)

Lemma 1. ([39]) For any square integral vector ε with ε(0) = 0 and ε(L) = 0,∫ L

0
εT(z)ε(z)dz ≤ L2π−2

∫ L

0
ε̇T(z)ε̇(z)dz. (6)

This paper aims to use the controller (3) to achieve the synchronization of the MTD-
CSN (1) with the isolated node (2).

3. Synchronization of the MTDCSN with Time-Invariant Delays

We firstly researched the MTDCSN (1) with time-invariant delays, whose error system
yields:

∂εi(ζ, t)
∂t

= Θ1
∂2εi(ζ, t)

∂ζ2 + Θ2
∂εi(ζ, t)

∂ζ
− KDi

∂εi(ζ, t)
∂ζ

− KPi εi(ζ, t)

+Aεi(ζ, t− τ1) + F(εi(ζ, t− τ2))

+B
∫ ζ

0
εi(s, t− τ3)ds + c

N

∑
j=1

hijΓεj(ζ, t− τ4), (7)

∂εi(0, t)
∂ζ

= 0,
∂εi(L, t)

∂ζ
= 0,

εi(ζ, t) = ε0
i (ζ, t), (ζ, t) ∈ [0, L]× [−τ, 0].
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Theorem 1. Given the MTDCSN (1) with time-invariant delays, the MTDCSN (1) synchronizes
with the isolated node (2) under the control (3) if there are scalars αi > 0, MPi, MDi ∈ Rn×n and
symmetric positive definite matrices Ri, Si ∈ Rn×n satisfying the following LMIs:

Ψ1 ,


Ψ11 (IN ⊗Θ2)R̄− M̄D (IN ⊗ A)R̄ (cH ⊗ Γ)R̄
∗ −[(IN ⊗Θ1)R̄ + ∗] 0 0
∗ ∗ −S̄ 0
∗ ∗ ∗ −S̄

 < 0 (8)

Ψ2 ,
[
−S̄ R̄
∗ −χ−2ᾱ⊗ In

]
< 0, (9)

Ψ3 ,
[
−S̄ R̄
∗ −L−2π2ᾱ⊗ In

]
< 0, (10)

where Ψ11 , −[M̄P + ∗]+ ᾱ⊗ In + ᾱ⊗ BBT + 4S̄, ᾱ = diag{α1, α2, · · · , αN}, P̄ = diag{P1, P2,
· · · , PN}, Q̄ , diag{Q1, Q2, · · · , QN}, M̄P , diag{MP1, MP2, · · · , MPN}, and M̄D , diag
{MD1, MD2, · · · , MDN}. In this case, KPi = MPiR−1

i and KDi = MDiR−1
i .

Proof. We choose the Lyapunov functional candidate as:

V(t) = V1(t) + V2(t), (11)

where:

V1(t) =
∫ L

0
εT(ζ, t)P̄ε(ζ, t)dζ,

V2(t) =
∫ L

0

∫ t

t−τ1

εT(ζ, ρ)Q̄ε(ζ, ρ)dρdζ

+
∫ L

0

∫ t

t−τ2

εT(ζ, ρ)Q̄ε(ζ, ρ)dρdζ

+
∫ L

0

∫ t

t−τ3

εT(ζ, ρ)Q̄ε(ζ, ρ)dρdζ

+
∫ L

0

∫ t

t−τ4

εT(ζ, ρ)Q̄ε(ζ, ρ)dρdζ,

(12)

in which ε(ζ, t) ∆
=[εT

1 (ζ, t), εT
2 (ζ, t), · · · , εT

N(ζ, t)]T .
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Taking the time derivative of V1(t):

V̇1(t) =2
∫ L

0
εT(ζ, t)

∂ε(ζ, t)
∂t

dζ

=2
∫ L

0
εT(ζ, t)P̄(IN ⊗Θ1)

∂2ε(ζ, t)
∂ζ2 dζ

+ 2
∫ L

0
εT(ζ, t)P̄(IN ⊗Θ2)

∂ε(ζ, t)
∂ζ

dζ

− 2
∫ L

0
εT(ζ, t)P̄K̄D

∂ε(ζ, t)
∂ζ

dζ

− 2
∫ L

0
εT(ζ, t)P̄K̄Pε(ζ, t)dζ

+ 2
∫ L

0
εT(ζ, t)P̄(IN ⊗ A)ε(ζ, t− τ1)dζ

+ 2
∫ L

0
εT(ζ, t)P̄(cH ⊗ Γ)ε(ζ, t− τ4)dζ

+ 2
∫ L

0
εT(ζ, t)P̄F(ε(ζ, t− τ2))dζ

+ 2
∫ L

0
εT(ζ, t)P̄(IN ⊗ B)

∫ ζ

0
ε(z, t− τ3)dzdζ.

(13)

By integrating by parts:

2
∫ L

0
εT(ζ, t)P̄(IN ⊗Θ1)

∂2ε(ζ, t)
∂ζ2 dζ

=−
∫ L

0

∂ε(ζ, t)
∂ζ

[P̄(IN ⊗Θ1) + ∗]
∂ε(ζ, t)

∂ζ
dζ.

(14)

Using Assumption 1, for any αi > 0:

2
∫ L

0
εT(ζ, t)P̄F(ε(ζ, t− τ2))dζ

6
N

∑
i=1

αi

∫ L

0
εT

i (ζ, t)PiPiεi(ζ, t)dζ

+
N

∑
i=1

α−1
i

∫ L

0
FT(εi(ζ, t− τ2)F(εi(ζ, t− τ2))dζ

6
N

∑
i=1

αi

∫ L

0
εT

i (ζ, t)P̄i P̄iεi(ζ, t)dζ

+
N

∑
i=1

α−1
i χ2

∫ L

0
εT

i (ζ, t− τ2)εi(ζ, t− τ2)dζ.

(15)
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Using Lemma 1, for any αi > 0:

2
∫ L

0
εT(ζ, t)P̄(IN ⊗ B)

∫ ζ

0
ε(z, t− τ3)dzdζ

6
N

∑
i=1

αi

∫ L

0
εT

i (ζ, t)P̄iBBT P̄iεi(ζ, t)dζ

+
N

∑
i=1

α−1
i

∫ L

0

∫ ζ

0
εT

i (z, t− τ3)dz
∫ ζ

0
εi(z, t− τ3)dzdζ

6
N

∑
i=1

αi

∫ L

0
εT

i (ζ, t)PiBBT Piεi(ζ, t)dζ

+ L2π−2
N

∑
i=1

α−1
i

∫ L

0
εT

i (ζ, t− τ3)εi(ζ, t− τ3)dζ.

(16)

Taking the time derivative of V2(t):

V̇2(t) =4
∫ L

0
εT(ζ, t)Q̄ε(ζ, t)dζ

−
∫ L

0
εT(ζ, t− τ1)Q̄ε(ζ, t− τ1)dζ

−
∫ L

0
εT(ζ, t− τ2)Q̄ε(ζ, t− τ2)dζ

−
∫ L

0
εT(ζ, t− τ3)Q̄ε(ζ, t− τ3)dζ

−
∫ L

0
εT(ζ, t− τ4)Q̄ε(ζ, t− τ4)dζ.

(17)

Substituting (13)–(17) into the time derivative of V(t) yields:

V̇(t) 6
∫ L

0
ε̃T(ζ, t)Ψ̄ε̃(ζ, t)dζ +

∫ L

0
εT(ζ, t− τ2)Ψ̄1ε(ζ, t− τ2)dζ

+
∫ L

0
εT(ζ, t− τ3)Ψ̄2ε(ζ, t− τ3)dζ,

(18)

where ε̃(ζ, t) , [εT(ζ, t), ∂εT(ζ,t)
∂ζ , εT(ζ, t− τ1), εT(ζ, t− τ4)]

T , and:

Ψ̄1 ,


Ψ̄11 P̄(IN ⊗Θ2)− KD P̄ P̄(IN ⊗ A) cP̄(H ⊗ Γ)
∗ −P̄[IN ⊗Θ1 + ∗] 0 0
∗ ∗ −Q̄ 0
∗ ∗ ∗ −Q̄

, (19)

Ψ̄2 , −Q̄ + χ2(ᾱ−1 ⊗ In), (20)

Ψ̄3 , −Q̄ + L2π−2(ᾱ−1 ⊗ In), (21)

in which

Ψ11 , −[P̄K̄P + ∗] + P̄(ᾱ⊗ In)P̄ + P̄(ᾱ⊗ BBT)P̄ + 4Q̄.
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Pre- and post-multiplying (19) by diag{P−1, P̄−1, P̄−1, P̄−1}, (20) by P̄−1, and (21) by
P̄−1, respectively, one has:

Ψ̂1 ,


Ψ̂11 Ψ̂12 (IN ⊗ A)P̄−1 (cH ⊗ Γ)P̄−1

∗ −[(IN ⊗Θ1)P̄−1 + ∗] 0 0
∗ ∗ −P̄−1Q̄P̄−1 0
∗ ∗ ∗ −P̄−1Q̄P̄−1

, (22)

Ψ̂2 , −P̄−1Q̄P−1 + χ2P̄−1(ᾱ−1 ⊗ In)P̄−1, (23)

Ψ̂3 , −P̄−1Q̄P̄−1 + L2π−2P̄−1(ᾱ−1 ⊗ In)P̄−1, (24)

in which:

Ψ̂11 , −[K̄P P̄−1 + ∗] + ᾱ⊗ In + ᾱ⊗ BBT + 4P−1Q̄P̄−1,

Ψ̂12 , (IN ⊗Θ2)P̄−1 − K̄D P̄−1.

Setting P−1
i = Ri, KDiP−1

i = MDi, KPiP−1
i = MPi, P−1

i QiP−1
i = Si, one has (22) < 0 if

and only if (8) < 0, (23) < 0 if and only if (9) < 0, and (24) < 0 if and only if (10) < 0.
Since (8)–(10) hold, V̇(t) ≤ −κ||ε̃(·, t)|| ≤ −κ||ε(·, t)|| for all non-zero ε(·, t), where κ is
the minimal eigenvalue of−Ψ, which ensures the synchronization of the MTDCSN (1) with
the isolated node (2).

4. Synchronization of the MTDCSN with Time-Varying Delays

Theorem 2. Given the MTDCSN (1) with time-varying delays, the MTDCSN (1) synchronizes
with the isolated node (2) under the controller (3), if there are scalars αi > 0, matrices MPi,
MDi ∈ Rn×n, and symmetric positive definite matrices Ri, Si ∈ Rn×n satisfying the following
LMIs:

Ξ1 ,


Ξ11 Ξ12 (IN ⊗ A)R̄ (cH ⊗ Γ)R̄
∗ −[(IN ⊗Θ1)R̄ + ∗] 0 0
∗ ∗ −(1− µ1)S̄ 0
∗ ∗ ∗ −(1− µ4)S̄

 < 0, (25)

Ξ2 ,
[
−(1− µ2)S̄ R̄

∗ −χ−2ᾱ⊗ In

]
< 0, (26)

Ξ3 ,
[
−(1− µ3)S̄ R̄

∗ −L−2π2ᾱ⊗ In

]
< 0, (27)

where Ξ11 , −[M̄P + ∗] + ᾱ⊗ In + ᾱ⊗ BBT + 4S̄, Ξ12 , (IN ⊗Θ2)R̄− M̄D, ᾱ = diag{α1, α2,
· · · , αN}, P̄ = diag{P1, P2, · · · , PN}, Q̄ , diag{Q1, Q2, · · · , QN}, M̄P , diag{MP1, MP2, · · · ,
MPN}, and M̄D , diag{MD1, MD2, · · · , MDN}. In this case, KPi = MPiR−1

i , KDi = MDiR−1
i .

Proof. We choose the Lyapunov functional candidate as:

V(t) = V1(t) + V3(t), (28)

where:

V3(t) =
∫ L

0

∫ t

t−τ1(t)
εT(ζ, ρ)Q̄ε(ζ, ρ)dρdζ

+
∫ L

0

∫ t

t−τ2(t)
εT(ζ, ρ)Q̄ε(ζ, ρ)dρdζ

+
∫ L

0

∫ t

t−τ3(t)
εT(ζ, ρ)Q̄ε(ζ, ρ)dρdζ

+
∫ L

0

∫ t

t−τ4(t)
εT(ζ, ρ)Q̄ε(ζ, ρ)dρdζ.

(29)
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Taking the time derivative of V3(t):

V̇3(t) = 4
∫ L

0
εT(ζ, t)Q̄ε(ζ, t)dζ

−(1− τ̇1(t))
∫ L

0
εT(ζ, t− τ1(t))Q̄ε(ζ, t− τ1(t))dζ

−(1− τ̇2(t))
∫ L

0
εT(ζ, t− τ2(t))Q̄ε(ζ, t− τ2(t))dζ

−(1− τ̇3(t))
∫ L

0
εT(ζ, t− τ3(t))Q̄ε(ζ, t− τ3(t))dζ

−(1− τ̇4(t))
∫ L

0
εT(ζ, t− τ3(t))Q̄ε(ζ, t− τ4(t))dζ

6 4
∫ L

0
εT(ζ, t)Q̄ε(ζ, t)dζ (30)

−(1− µ1)
∫ L

0
εT(ζ, t− τ1(t))Q̄ε(ζ, t− τ1(t))dζ

−(1− µ2)
∫ L

0
εT(ζ, t− τ2(t))Q̄ε(ζ, t− τ2(t))dζ

−(1− µ3)
∫ L

0
εT(ζ, t− τ3(t))Q̄ε(ζ, t− τ3(t))dζ

−(1− µ4)
∫ L

0
εT(ζ, t− τ3(t))Q̄ε(ζ, t− τ4(t))dζ.

The latter part of this proof is similar to that of Theorem 1 and so is omitted.

Remark 1. It is obvious that Theorem 2 is suitable only for situations where there is no quickly
increasing time delay, since LMIs (25)–(27) imply µ1 < 1, µ2 < 1, µ3 < 1, µ4 < 1, i.e.,
τ̇1(t) < 1,τ̇2(t) < 1, τ̇3(t) < 1, τ̇4(t) < 1.

Remark 2. Different from the synchronization for TDCSNs [23–30] modeled by PDEs, the MTD-
CSNs studied in this paper are modeled by PIDEs.

Remark 3. Different from the SPID control for the exponential stabilization of complex PIDE
networks with a single time delay [40], this paper deals with the synchronization of the MTDCSN
based on PIDEs with multiple time delays existing in the state, communication, nonlinear term,
and integral term.

5. Numerical Simulation

Example 1. Consider the MTDCSN (1) with random initial conditions and the following parameters:

Θ1 =

[
1 0
0 4

]
, Θ2 =

[
1 0
0 1.2

]
, A =

[
2.2 −0.2
0.5 1

]
,

B =

[
2 0
0 2

]
, L = 1, c = 0.2,

τ1 = 1, τ2 = 2, τ3 = 1, τ4 = 2, (31)

H =


−3 1 1 1
2 −6 2 2
1 1 −4 2
1 2 2 −5

.
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It is obvious that τ = max{τ1, τ2, τ3, τ4} = 2 and χ = 1. From Figure 2, it can be seen that
the MTDCSN (1) cannot achieve synchronization without control. According to Theorem 1, solving
LMIs (8)–(10) with Matlab, we can obtain: α1 = α2 = α3 = α4 = 11.8915, and

R1 =

[
1.0943 −0.0033
−0.0033 0.8875

]
, R2 =

[
1.0894 −0.0033
−0.0033 0.8864

]
,

R3 =

[
1.0925 −0.0033
−0.0033 0.8871

]
, R4 =

[
1.0909 −0.0033
−0.0033 0.8867

]
,

S1 =

[
1.0943 −0.0033
−0.0033 0.8875

]
, S2 =

[
1.0894 −0.0033
−0.0033 0.8864

]
,

S3 =

[
1.0925 −0.0033
−0.0033 0.8871

]
, S4 =

[
1.0909 −0.0033
−0.0033 0.8867

]
.

(32)

Therefore, the control gains KPi and KDi are obtained as:

KP1 =

[
16.7885 0.0621
0.0621 20.7015

]
, KP2 =

[
16.8639 0.0622
0.0622 20.7267

]
,

KP3 =

[
16.8164 0.0621
0.0621 20.7108

]
, KP4 =

[
16.8416 0.0622
0.0622 20.7192

]
,

KD1 =

[
1.0000 −0.0004
0.0003 1.2000

]
, KD2 =

[
1.0000 −0.0004
0.0003 1.2000

]
,

KD3 =

[
1.0000 −0.0004
0.0003 1.2000

]
, KD4 =

[
1.0000 −0.0004
0.0003 1.2000

]
.

(33)

It is shown in Figure 3 that the MTDCSN (1) achieves synchronization with the isolated node (2)
under control with the gains (33). The controller is shown in Figure 4.

Figure 2. εi(ζ, t) of the multiple time-delayed complex spatiotemporal network (MTDCSN) without
control in Example 1.
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Figure 3. εi(ζ, t) of the MTDCSN with control in Example 1.

Figure 4. The controller ui(ζ, t) in Example 1.
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Example 2. We consider the MTDCSN (1) with random initial conditions and the same parameters
as those in Theorem 1, except:

τ1(t) = 2 + sin(0.25πt), τ2(t) = 1 + 0.3cos(πt + π/4),

τ3(t) = 2− exp(−t/2), τ4(t) = 2 + 0.8 arctan(t).
(34)

We take max{τ1(t), τ2(t), τ3(t), τ4(t)} ≤ τ = 3 and χ = 1. From (34), it is obvious that
µ1 = 0.25π, µ2 = 0.3π, µ3 = 0.5, µ4 = 0.8.

From Figure 5, it can be seen that the MTDCSN (1) cannot achieve synchronization without
control. According to Theorem 2, solving LMIs (25)–(27) with Matlab, we can obtain: α1 = α2 =
α3 = α4 = 6.8606, and

R1 =

[
0.9737 −0.0029
−0.0029 0.7897

]
, R2 =

[
0.9694 −0.0029
−0.0029 0.7887

]
,

R3 =

[
0.9721 −0.0029
−0.0029 0.7893

]
, R4 =

[
0.9707 −0.0029
−0.0029 0.7890

]
,

S1 =

[
0.9737 −0.0029
−0.0029 0.7897

]
, S2 =

[
0.9694 −0.0029
−0.0029 0.7887

]
,

S3 =

[
0.9721 −0.0029
−0.0029 0.7893

]
, S4 =

[
0.9707 −0.0029
−0.0029 0.7890

]
.

(35)

Therefore, the control gains KPi and KDi are obtained as:

KP1 =

[
40.3444 0.1801
0.1511 47.6124

]
, KP2 =

[
40.3914 0.1813
0.1523 47.6637

]
,

KP3 =

[
40.3605 0.1806
0.1516 47.6307

]
, KP4 =

[
40.3762 0.1810
0.1520 47.6478

]
,

KD1 =

[
1.0000 −0.0002
0.0000 1.2000

]
, KD2 =

[
1.0000 −0.0002
0.0000 1.2000

]
,

KD3 =

[
1.0000 −0.0002
0.0000 1.2000

]
, KD4 =

[
1.0000 −0.0002
0.0000 1.2000

]
,

(36)

It is shown in Figure 6 that the MTDCSN (1) achieves synchronization with the isolated node (2)
under control with the gains (36). The controller is shown in Figure 7.
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Figure 5. εi(ζ, t) of the MTDCSN without control in Example 2.

Figure 6. εi(ζ, t) of the MTDCSN with control in Example 2.
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Figure 7. The controller ui(ζ, t) in Example 2.

6. Conclusions

This paper aimed to study the synchronization of a class of nonlinear MTDCSNs.
The model was established using coupled semi-linear parabolic PIDEs. P-sD control
was employed for the MTDCSN with time-invariant delays and was further used for the
MTDCSN with time-varying delays. The synchronization criteria were obtained in terms
of LMIs for time-invariant delays and time-varying delays, respectively. An example was
used to illustrate the effectiveness of the proposed methods. Compared with other methods,
this method not only considers multiple time-invariant and time-varying delays but also
deals with PIDE-based complex spatiotemporal networks. In future work, the pinning
synchronization of MTDCSNs will be studied.
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