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Abstract: While traffic speed data and travel time estimates are increasingly more available from
commercial vendors, they are not sufficient for proper management and performance evaluation
of transportation networks. Effective traffic control and demand management requires information
about volumes, which is provided by fixed location sensors, such as loop detectors or cameras,
and those are sparse. This paper proposes a method for estimating route choice using sparse flow
measurements and estimated speed on the road network based on compressed sensing technology
widely used in image processing, where from a handful of scattered pixels, a full image is recovered.
What is known includes flows at origins and at selected links of the road network, where the detection
is present; speed estimates are available for all network links. We find coefficients that split origin
flows among routes starting at those origins. The advantage of the proposed methodology is that
it does not rely on simulation that is prone to calibration errors but only on measured data. We
also show how vehicle flows can be estimated at links with no detection, which enables computing
performance measures for road networks lacking complete sensor coverage. Finally, we propose a
method for selecting plausible routes between origins and destinations.

Keywords: traffic measurement; sparse methods; O-D estimation; Tikhonov regularization; LASSO

1. Introduction

One of the main challenges of urban traffic management is the shortage of traffic
volume measurements. While traffic speed data and travel time estimates are increasingly
more available from commercial vendors, they do not provide information about traffic
volumes needed for effective traffic control, demand management and performance eval-
uation. Traffic volumes are measured by static sensors (loop detectors, magnetic sensors,
radars and cameras) mounted into the roadside infrastructure, and those are sparse. What
would help in this situation is the knowledge of the origin-destination (O-D) matrix and
information about route assignment.

The difficulty of O-D estimation is in the fact that it is an underdetermined (allowing
multiple solutions) problem [1–4]. Traditionally, there are three main approaches to the O-D
estimation [5]: the first one assumes that trips follow a gravity type pattern and the problem
is reduced to calibrating the parameters of such a model from the observed counts [6]; the
second approach estimates the O-D matrix by using user equilibrium traffic assignment
based on Wardrop’s first principle [7,8]; and the third is an entropy maximising approach,
in which the most likely trip matrix compatible with the observed flows is sought [1].

To make use of the first approach, one has to deal with land use data, attraction
potential of zones and detailed activity models—e.g., [9–13]. The combination of the second
and third approaches entails the use of various traffic data sources and the invocation of
traffic assignment, which employs one or another traffic model. This topic was extensively
studied throughout the years—e.g., [1–3,14–22]. The literature survey on the second and
third approaches is given in [23]. Generally, the methodology can be summarized in the
following iterative 5-step process requiring simulation:
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1. An a priori O-D matrix is assumed that may be an old O-D matrix or a matrix
generated from surveys.

2. The flows in the O-D matrix are mapped to the network using traffic assignment
algorithms.

3. Assigned flows are compared with measured flows.
4. The a priori O-D matrix is adjusted to match the measured flows. For this, different

solution approaches can be used.
5. The adjusted O-D matrix is used again in step 1 until convergence of the assigned and

measured flows and/or the a priori and estimated matrix.

This paper proposes a method of estimating route choice using sparse flow measure-
ments and estimated speed on the road network. The flows at origins and at selected
links of the road network are known, where the detection is present; speed estimates are
available for all network links. We find coefficients that split origin flows among routes
starting at those origins. The problem is cast as a non-negative least squares problem with
sparsity constraints. To our knowledge, the proposed approach is new, and it promises
efficient technology for road network performance evaluation and traffic flow estimation
required for traffic control and demand management.

The rest of the paper is organized as follows. Section 2 contains the problem formu-
lation. The algorithm for computing split coefficients is presented in Section 3. Section 4
describes approaches to the initial selection of plausible routes. Finally, Section 5 concludes
the paper.

2. Problem Statement

The road network consists of directed links and nodes: Links represent stretches of
roads with specified direction of travel, and nodes connect the links. A node with no input
links is called origin (O), and a node with no output links is called destination (D). For a
given urban area, transportation planners come up with the four-step demand model [24],
where the area is divided into zones resulting from land use analysis and forecasting. Thus,
for Z zones, we obtain (Z2 − Z) O-D pairs (each zone is connected to other zones but
not itself).

We assume that for every O-D pair, we know all plausible routes. Thus, we have the
list of all routes in a given road network. Furthermore, we assume that at each time, we
have an estimate of speed for all the links in the road network. (Speed estimates may come
from GPS probes and are provided by commercial vendors, such as HERE Traffic).

Suppose for a moment that vehicle flows at every origin, and vehicle flows at some
links that belong to one or more routes in the road network are known: these flows are
measured by inductive loops, magnetic sensors, radars or cameras.

Throughout the paper, we shall use the notation presented in Table 1.

Problem 1. For each origin o ∈ O, find coefficients αro splitting the origin flow between routes
ro ∈ Ro. The dual problem formulation is as follows: for each link l ∈ L̃ with known flow fl , find
which portion βo

l of this flow is contributed by which origin o.
This is a compressed sensing problem [25] applied to transportation. Compressed sensing is a

signal processing technique for efficiently acquiring and reconstructing a signal by finding solutions
to underdetermined linear systems. Taking advantage of the signal’s sparseness in some domain,
it allows the entire signal to be determined from relatively few measurements. One prominent
application of compressed sensing is magnetic resonance tomography.

By solving this problem, we achieve the following:

1. Method of computing how much each origin contributes to given bottleneck activation and
resulting congestion;

2. Method of computing flows on links without direct flow measurements—all without simulation;
3. Method of determining the value of road sensor measurements (some may be redundant) and

indicating places that need detection.
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Table 1. Notation.

Parameter Description

O Set of origins. Its size |O| = Z, the number of zones.
o ∈ O Origin.
R Set of all routes.

Ro ⊂ R Subset of routes starting at origin o ∈ O.
r ∈ R Route.

ro ∈ Ro Route starting at origin o ∈ O.
L Set of links that belong to one or more routes inR.

L̃ ⊂ L Subset of route links with flow measurements.
|L̃| (|L|) Number of links in the set.

l ∈ L̃ (l ∈ L) Link.
|l| Link length.

Rl ⊂ R Subset of routes containing link l ∈ L.
|Rl | (|Ro| or |R|) Number of routes in the set.

rl ∈ Rl Route containing link l ∈ L.
f o Flow (vehicle count) measured at origin o ∈ O.
fl Flow (vehicle count) measured at link l ∈ L̃.

αro ∈ [0, 1] Portion of flow f o directed to route ro. ∑ro∈Ro αro = 1.
βo

l ∈ [0, 1] Portion of flow fl , contributed by vehicles from origin o. ∑o∈O βo
l = 1.

vl Speed measured or estimated at link l ∈ L.

3. Computing Split Coefficients

We shall consider two cases: (1) static case—vehicles are counted at origins and at
links with detection only once; and (2) case with traffic dynamics—when vehicles from
origins arrive at links with detection after some travel delays. The first case is relatively
easy and explains the idea. Its practical application is in sensor placement in which links
should detectors be installed to enable the unique solution of the problem described in the
previous section. The second case requires speed estimates on all route links of the road
network. These two cases are described next.

3.1. Static Case

This case describes a hypothetical situation when f o vehicles leave each origin o ∈ O,
and then fl vehicles are counted at each link l ∈ L̃. All happens “in one shot” without
taking into account travel delays or traffic conditions. Matching the origin flows f o with
those measured at links, fl , we arrive at the following linear equations:

∑
o∈O

f o ∑
ro∈Rl

αro = fl , l = 1, . . . , |L̃|, (1)

where {αro} is unknown and should be found. Here, the notation ro ∈ Rl means the fol-
lowing: routes originating at the origin o and passing through link l. Additional constraints
apply to split coefficients (see Table 1):

∑
ro∈Ro

αro = 1, ∀o ∈ O; (2)

αro ≥ 0, ro ∈ Ro, ∀o ∈ O. (3)
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Converting Equations (1) and (2) to matrix form, we obtain the following:

Φ1
|L̃|×|R1| · · · Φo

|L̃|×|Ro | · · · Φ|O||L̃|×|R|O| |
11×|R1| · · · 01×|Ro | · · · 01×|R|O| |

...
. . .

...
...

...
01×|R1| · · · 11×|Ro | · · · 01×|R|O| |

...
...

...
. . .

...
01×|R1| · · · 01×|Ro | · · · 11×|R|O| |





α1
|R1|×1

...
αo
|Ro |×1

...
α
|O|
|R|O| |×1


=



f1
...
fl
...

f|L|
1|O|×1


, (4a)

where subscripts denote matrix dimensions; 0 is a matrix with all elements equal to 0; 1 is a

matrix with all elements equal to 1; αo
|Ro |×1 =

[
α1o · · · αro · · · α|Ro |o

]T
; and

Φo
|L̃|×|Ro | = {φlro}l=1,...,|L̃|

ro=1,...,|Ro |, with φlro =

{
f o, if route ro ∈ Rl ,
0, otherwise.

In Equation (4a), the parts above the horizontal lines corresponds to Equation (1),
and the parts below the horizontal lines correspond to Equation (2).

To simplify the notation, we rewrite Equation (4a) as follows.

Φα = f . (4b)

Due to the nonnegativity constraints (3), the system of linear Equation (4b) cannot be
solved directly but must be cast as a convex optimization problem, namely, as nonnegative
least squares.

min
α≥0
‖Φα− f‖2

2. (5)

This problem always has a solution. If the original system of equations and inequali-
ties (1)–(3) has a unique solution, solving problem (5) produces exactly that. In case the
system (1)–(3) is overdetermined and inconsistent—that is, it has no solution—the solution
of problem (5), α∗ ≥ 0, yields the smallest in Euclidean norm sense perturbation to f , δ f ,
such that Φα∗ = f + δ f .

The most interesting case is when the original system (1)–(3) and problem (5), are
underdetermined, allowing infinite number of solutions. It is also the most common
practical situation, when there are many more routes in the network than functional
sensors. How do we determine the solution then? The first obvious suggestion is as follows:
install more flow measuring sensors. The links for new sensor installation should be picked
so that new rows in matrix Φ would be linearly independent of the existing ones reducing
the dimension of matrix kernel. Unfortunately, even with new sensors in place, the system
will likely remain underdetermined, as in the real world there are typically many more
possible routes between zones than sensors.

The general approach to regularization of underdefined problem (5) is to add `1 or `2
norm penalty to the objective function.

min
α≥0
‖Φα− f‖2

2 + ‖α‖p, p = 1 or 2. (6)

Regularization with `2 norm (p = 2) is called Tikhonov regularization [26], also known
as ridge regression. Tikhonov regularization promotes assigning values to components of
vector α as uniformly as possible.

Regularization with `1 norm (p = 1) is referred to as LASSO (Least Absolute Shrink-
age and Selection Operator). LASSO regularization is generally used to promote sparse
solutions. For our problem, however, it does not help, because the `1 norm constraint (2)
and (3) is already built into the problem, making this form of penalty redundant. There are
two possible approaches to introducing sparsity constraints to (5).
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It was shown in [27] that the practical method of introducing sparsity constraints to a
problem with built-in `1 norm constraint is to use the infinity norm.

min
α≥0
‖Φα− f‖2

2 +
1
‖α‖∞

. (7)

Since function 1/‖α‖∞ is concave, the minimization problem (7) is non-convex. The
good news, however, is that it can be exactly solved by |R| convex programs in |R|+ 1
dimensions.

min
αro ,∀ro∈Ro ,∀o∈O

{
min

α≥0,λ≥0
‖Φα− f‖2

2 + λ : αro ≥ 1
λ

}
. (8)

The second approach, suggested in [28], is to use weighted `1 norm as a penalty:

min
α≥0
‖Φα− f‖2

2 + ∑
αro ,∀ro∈Ro ,∀o∈O

wro αro , (9)

where wro denotes nonnegative weights. In this case, the higher the weight, the more is
the given route penalized. Thus, those routes that we believe are less likely to be used
should receive a higher weight. Then, problem (9) is solved several times in sequence,
where the weights used for the next iteration are computed from the values of current
solution. Section 4 is dedicated to selection of plausible routes and provides hints to the
initial weight assignment.

Now that split coefficients αro are computed, for a given link l ∈ L̃, we obtain the
portion of flow generated by the origin o ∈ O, βo

l :

βo
l =

f o ∑ro∈Rl
αro

fl
, (10)

where fl 6= 0.
It is possible to find coefficients βo

l directly, analogously to how we performed it for
αro . They are obtained by solving the following system of equations and inequalities.

∑
l∈L̃

βo
l fl = f o, ∀o ∈ O; (11)

∑
o∈O

βo
l = 1, ∀l ∈ L̃; (12)

βo
l ≥ 0, ∀l ∈ L̃, ∀o ∈ O. (13)

Translating (11) and (12) into matrix form, we obtain the following:

Ψ1
1×|L̃| · · · 01×|L̃| · · · 01×|L̃|

...
. . .

...
. . .

...
01×|L̃| · · · Ψo

1×|L̃| · · · 01×|L̃|
...

. . .
...

. . .
...

01×|L̃| · · · 01×|L̃| · · · Ψ|O|
1×|L̃|

e1
1×|L̃| · · · e1

1×|L̃| · · · e1
1×|L̃|

...
...

...
...

...
el

1×|L̃| · · · el
1×|L̃| · · · el

1×|L̃|
...

...
...

...
...

e|L̃|
1×|L̃| · · · e|L̃|

1×|L̃| · · · e|L̃|
1×|L̃|





β1
1
...

β1
|L̃|
· · ·
βo

1
...

βo
|L̃|
· · ·
β
|O|
1
...

β
|O|
|L̃|



=



f 1

...
f o

...
f |O|

1|L̃|×1


, (14a)
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where el
1×|L̃| denotes a unit vector with l-th component equal to 1 and the following is the case.

Ψo
1×|L̃| = {ψ

o
l }l=1,...,|L̃| with ψo

l =

{
fl , ifRl ∩Ro 6= ∅,
0, otherwise.

For short notation, we rewrite the following (14a).

Ψβ = f̂ . (14b)

Just as before, taking into account (13), we can cast it as a constrained least squares
problem:

min
β≥0;

βo
l =0:Rl∩Ro=∅

‖Ψβ− f̂‖2
2, (15)

which in the underdetermined case is solved using regularization, similarly to what was
described above.

Normally, problem (15) is cheaper to solve than its counterpart (5), because in most
practical cases |O||L̃| < |R|, but its solution provides less information. Note that while
recovering coefficients βo

l from known values αro is straight forward, the reverse is not
always possible, as shown by the trivial example presented in Figure 1. Here, f o = fl and,
thus, βo

l = 1, yet there is no information about how the flow is split between routes 1 and 2.

Figure 1. Example: βo
l = 1, while α1o and α2o are unknown.

The complexity of the described problems depends on the choice of the least squares
solver. According to [29], for a matrix with m rows and n columns with m� n, it ranges
between O(mn2) and O(n3).

3.2. Accounting for Traffic Dynamics

Now, we consider the setup where flows f o(t), o ∈ O, and fl(t), l ∈ L̃, are measured
continuously and speed information, vl(t), l ∈ L, is available. (In reality, these measure-
ment data are updated in discrete time intervals, e.g., every 30 s). Our goal is to find split
coefficients αro (t).

Suppose, at time step t∗, we obtain flow values fl(t∗) from all links with detection, L̃.
Knowing vl(·) (and thus, travel times, |l|/vl(t)) on all links L for all time steps t ≤ t∗, we
can compute for a given link l ∈ L̃ and given route ro ∈ Rl , o ∈ O, time t0

l,ro when a vehicle
using route ro had to leave origin o in order to reach link l at time t∗. Define the following:

∆ = t∗ − min
l∈L̃;

ro∈Rl ,o∈O

t0
l,ro , (16)

and denote the following.
t0 = t∗ − ∆. (17)

Assuming the FIFO (First-In-First-Out—no overtaking) rule, any vehicle that left its
origin before t0 has already reached its destination, or at least left behind all the detectors
on its route, by time t∗. Or, in other words, only those vehicles, leaving their destinations
in the time interval [t0, t∗) can contribute to the measured flows fl(t∗), l ∈ L̃.
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The analog of system (4a) in the time-dependent case can be represented as follows:

[
Φ1
|L̃|×∆|R1|(t) · · · Φo

|L̃|×∆|Ro |(t) · · · Φ|O||L̃|×∆|R|O| |(t)
]


α1
∆|R1|×1(t)

...
αo

∆|Ro |×1(t)
...

α
|O|
∆|R|O| |×1

(t)


=



f1(t∗)
...

fl(t∗)
...

f|L|(t∗)

, (18)

with relaxed constraints.

∑
ro∈Ro

αro (t) ≤ 1, t = t0, . . . , t∗; ∀o ∈ O. (19)

Here, we have the following:

αo
∆|Ro |×1(t) =


αo
|Ro |×1(t

0)

...
αo
|Ro |×1(t

∗)

,

and the following is also the case.

Φo
|L̃|×∆|Ro |(t) = {φlro (t)}l=1,...,|L̃|

t=t0,...,t∗ ;
ro=1,...,|Ro |

, with φlro (t) =
{

f o(t), if ro ∈ Rl and t = t0
l,ro ,

0, otherwise.

Simplifying the notation, we rewrite (18) as follows.

Φ(t)α(t) = f (t∗). (20)

Adding nonnegativity constraints, we have the following.

αro (t) ≥ 0, t = t0, . . . , t∗; ro ∈ Ro, ∀o ∈ O, (21)

We cast the constrained least squares problem.

min
α(t)≥0

∑ro∈Ro αro (t)≤1

‖Φ(t)α(t)− f (t∗)‖2
2. (22)

In the situation of underdetermined system for the time-dependent case, we should
impose sparsity constraints (as opposed to `2 norm regularization) using either infinity
norm replacement (8) or weighted `1 norm penalty (9). The reason is that problem (22) is
solved for one time instant t∗ only and, in general, for given time t ∈ [t0, t∗) and given origin
o ∈ O, it allows us to recover only some coefficients αro (t) but not all. Coefficients αro (t)
for routes not contributing to measurements at time t∗ will be nullified—see definition of
φlro (t) above. Hence, the relaxed constraints are obtained (19)—compare this with (2).

Constraints (19) may be modified as follows:

∑
ro∈Ro

αro (t) ≤ ao(t), t = t0, . . . , t∗; ∀o ∈ O, (23)

where parameters ao(t) ∈ [0, 1] are continuously updated using the recovered split co-
efficients αro (t) as problem (22) is solved continuously, every time for new t∗. We start
with ao(t) = 1 and then, after each iteration subtracts, the recovered coefficients αro (t)
from ao(t).
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Once coefficients αro (t), t = t0, . . . , t∗, are computed, for given link l ∈ L̃ and time t∗,
we derive the portion of measured flow fl(t∗) generated by the origin o ∈ O, βo

l (t
∗).

βo
l (t
∗) =

∑t=t0,...,t∗ ;
ro∈Rl

αro (t) f o(t)

fl(t∗)
. (24)

We note (without demonstrating) that it is possible to derive the dual problem analo-
gous to (15) for the time-dependent case.

Finally, let us discuss how flow fl+(t∗) at an arbitrary link l+ ∈ L can be computed if
coefficients αro (t), t ≤ t∗, are known. For each route r ∈ Rl+ , using available speed data,
we find the origin and time t0

r,l+ , when vehicles had to leave that origin to arrive at link l+

at time t∗. Thus, the following is the case.

fl+(t
∗) = ∑

r∈Rl ;
ro=r,o∈O

αro (t0
r,l+) f o(t0

r,l+). (25)

In the commonly used four-step demand model, route assignment is performed by an
iterative process of flow balancing according to Wardrop’s principle of user equilibrium [30],
where computational burden and accuracy heavily depend on the underlying dynamical
traffic model. In contrast to that, we propose utilizing commercial speed data, for which
its supply and affordability keep growing, for running a series of convex optimization
problems resulting in (1) route assignment and (2) in flow estimates on all the link routes,
which can be used for corridor performance computation and traffic control.

4. Selecting Plausible Routes

One obvious method of finding plausible routes between given origin and destina-
tion out of all possible ones, is to select several best routes for which their lengths are
approximately equal. Introducing traffic dynamics modifies this problem: Utilizing user
equilibrium principle [30], we replace lengths by travel times. Now, the question is how to
pick plausible routes if travel times on them change throughout the day with traffic speed.

Suppose, we know all potential routes between the zones (i.e., for every O-D pair) and,
hence, have the list of all links (belong to potential routes) that are used in our algorithm.
We define the plausible route as the route that minimizes the travel time between an
O-D pair. Since the travel time on a link depends on the traffic congestion in the road
network, the plausible route changes based on the departure time from the origin and is
time-dependent. Thus, we find the set of all plausible routes that minimizes travel-time
throughout the day. Towards this end, we model the road-network as time-dependent
weighted graph, where travel-cost of each link is a piecewise linear function of time, and the
time-dependent fastest path for every O-D pair is computed.

Time-dependent Graph: A Time-dependent Graph is defined as G(N ,L, T) where
N = {ni} is a set of nodes and L ⊆ N × N is a set of links representing the network
links each connecting two nodes. For every link l(ni, nj) ∈ L and ni 6= nj, there is a cost
function cni ,nj(t), where t is the time variable in time domain T. The link cost function
cni ,nj(t) specifies the travel-time from ni to nj starting at time t. In this paper, we assume
that G(N ,L, T) satisfies the FIFO (First-In-First-Out) property. Figure 2 illustrates an
example of time-dependent weighted graph, where link travel-times are function of time.
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(a) Road Network (b) cn1 ,n2 (t) (c) cn2 ,n3 (t)

(d) cn2 ,n4 (t) (e) cn4 ,n5 (t) (f) cn3 ,n5 (t)

Figure 2. A Time-dependent Graph G(N ,L, T)

The travel-cost of any given path in G(N ,L, T) is time-dependent and defined as follows.
Time-dependent Travel Cost: Let {o = n1, n2, . . . , nk = d} denote a path, which contains

a sequence of nodes where l(ni, ni+1) ∈ L and i = 1, . . . , k− 1. Given a G(N ,L, T), a path
(o  d) from origin o to destination d and a departure-time at the origin to, the time-
dependent travel cost TT(o d, to) is the time it takes to travel the path. Since the travel
time of an link varies depending on the arrival time to that link, the travel time of a path is
computed as follows.

TT(o d, to) =
k−1

∑
i=1

cni ,ni+1(ti), where t1 = to, ti+1 = ti + c(ni ,ni+1)
(ti), i = 1, . . . , k.

We find a set of plausible routes by computing time-dependent fastest path for each
O-D pair. Given a G(N ,L, T), o, d, and to, the time-dependent fastest path TDFP(o, d, to)
is a path with the minimum travel-time among all paths from o to d for starting time to.
Time-dependent fastest problem in FIFO networks is polynomially solvable [31,32] by gen-
eralization of Dijkstra’s algorithm, where, analogous to shortest path distances, the arrival
time to the nodes is used as the labels that form the basis of the greedy algorithm.

To illustrate this, consider Figure 3, which shows the set of fastest routes (i.e., plausible
routes) for a hypothetical road network. The fastest routes are color coded for different
departure times for the same origin and destination pair (each color represents the fastest
route for a specific departure time). We computed time-dependent fastest paths for 48 con-
secutive departure-times between 7:00 a.m. and 7:00 p.m., spaced 15 min apart. As shown,
there are a total of nine distinct plausible routes in this road networkm and they change
during the course of the day.
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Figure 3. Set of plausible routes for a pair of origin and destination in a hypothetical road network.

5. Conclusions

We presented an algorithm for estimating how vehicle flows are split between routes
in a given traffic network. The proposed method builds upon the compressed sensing tech-
nology, heavily used in image and signal processing, and uses state-of-the art techniques
of introducing sparsity constraints to a convex optimization problem that already has a
built-in `1 norm constraint. The advantage of the proposed methodology is that it does not
rely on simulation that is prone to calibration errors but only on measured data.

We showed the differences between the problem of computing coefficients that split
origin flows between routes and the problem of computing the portions of measured flows
contributed by given origins. The latter problem is more computationally friendly, but it is
less informative. We also discussed how vehicle flows can be estimated at links with no
detection. This is important because it allows us to compute the following performance
measures on the network scale as well as for individual sub-route inside the road net-
work: vehicle miles (Kilometers) traveled, emissions with assumption on the portion of
hybrids, electrical vehicles, trucks in the mixed traffic flow, vehicle hours traveled, delay
and productivity loss.

In the latter case, we would be able to break up the values of these performance
measures by origin.

Finally, the method for selecting plausible routes between origins and destinations
taking into account the changing traffic state was suggested.
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