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Abstract: Electric power distribution systems have been heavily engaged in evolutionary changes
toward effective usage of distribution networks for dependability, quality, and improvement of
services delivered to customers throughout the years. This was accomplished via a procedure known
as reconfiguration. Several strategies have been offered by various authors for successful distribution
feeder reconfiguration with a novel optimization method. As a result, this work developed a Discrete
Particle Swarm Optimization (DPSO) method to address the issue of distribution system feeder
reconfiguration during both steady-state and dynamic power system operations. In a dynamic state,
the power demand and generation required are continually changing over time, and the DPSO
algorithm finds a new set of solutions to fulfill the power demand. Many network topologies are
investigated for the dynamic operation. The feeder reconfiguration single-objective optimization
problem was transformed into a multi-objective optimization problem by taking into account both
real power loss reduction and distribution system load balancing. The suggested technique was
verified using various IEEE 16, 33, and 69 bus standard test distribution systems to determine the
efficiency of the developed DPSO algorithm. The simulation findings reveal that DPSO outperforms
other optimization algorithms in terms of actual power loss reduction and load balancing, while
solving multi-objective distribution system feeder reconfiguration.

Keywords: feeder reconfiguration; load balancing; discrete particle swarm optimization; pareto-
optimality; non-dominance

1. Introduction

The smart grid is an intelligent power distribution system that integrates traditional
and sophisticated control, monitoring, and protection technologies for increased depend-
ability, efficiency, and supply quality. At the distribution level, feeder reconfiguration can
be utilized to improve the power system’s steady-state and dynamic operation. This could
be accomplished by balancing loads, minimizing power loss in distribution systems, or
restoring service in the event of a power outage. Feeder reconfiguration entails readjust-
ing the topology of the primary distribution network via remote control of the tie and
sectionalizing switches in normal and abnormal conditions, while retaining the radial
topology. The solutions to the aforementioned feeder reconfiguration problems may be
accomplished via mathematical programming, classical approaches, and heuristic algo-
rithms. However, owing to inefficiency, computational cost, and other constraints, classical
and heuristic approaches have been phased out in favor of a new breed of artificial intelli-
gence or meta-heuristic algorithms to solve distribution network feeder reconfiguration
problems [1,2].

Due to the aforementioned drawbacks of early solutions to distribution network
feeder reconfiguration problems, many researchers in the literature have introduced several
optimization strategies and algorithms with a single objective function for power loss
minimization, increased power quality, and distribution system topology maintenance
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(load balancing). The authors introduced Discrete Particle Swarm Optimization (DPSO)
with multi-objective function (power loss minimization and load balancing) in this paper
to address problems associated with distribution feeder reconfiguration for effective and
efficient utilization of the existing distribution system network.

Metaheuristics algorithms are efficient search techniques that are used to guide the
search procedure in order to efficiently explore the search space in order to discover the
best solution. Today, population-based metaheuristic algorithms, such as Cuckoo search
algorithm [3], Genetic Algorithm (GA) [4], Particle Swarm Optimization (PSO) [5], Ant
Colony Optimization (ACO) [6], Honey Bee Mating Optimization (HBMO) [7], and others,
are used to solve the feeder reconfiguration problem. In addition, the use of distributed
generations and switched capacitor banks to address feeder reconfiguration problems has
lately gained popularity. Ref. [8] addressed the distribution network problem by combin-
ing network reconfiguration and the installation of switched capacitor banks, while [9]
solved the distribution network problem by combining distributed energy resources with
capacitor banks.

Because the switching states of the feeder can only have values of 0 (open switch or
tie-line) and 1 (closed switch or tie-line), the distribution network feeder reconfiguration
problem is of a discrete character (closed switch or section line). Many scholars, however,
avoid the difficulties associated with binary problems by treating distribution network
feeder reconfiguration as a continuous problem and solving it with continuous optimization
methods, such as GA, ACO, and HBMO. Ref. [10] used Binary PSO to address the feeder
reconfiguration problem. However, because many authors concluded that the canonical
BPSO is unsuitable for solving the distribution network feeder reconfiguration problem,
the authors were forced to develop a shift operator to construct the binary coding of
the PSO and to enable the permutation of 0’s bit into 1’s, and vice versa. In terms of
goal functions, the majority of the offered algorithm solutions exclusively address single-
objective distribution network reconfiguration. Many scholars who work on multi-objective
feeder reconfiguration utilize a weighted-sum approach to simplify the problem and then
produce an optimal solution based on the original weight components. Ref. [11] introduced
a discretized network reconfiguration using dataset technique by achieving the best solution
of network reconfiguration, as well as DG size and placement, using an optimization
algorithm known as the Water cycle algorithm (WCA). The approach was proven on IEEE
33 and 69 bus systems and was used to optimize DG power factor for power loss mitigation.
Ref. [12], presented the Harris hawks optimization (HHO) method for distribution network
reconfiguration with the goal of reducing total power loss, while maintaining an improved
distribution network voltage profile. The suggested method’s efficacy was proved on two
conventional IEEE 33 and 85 bus systems, as well as an artificial 295 bus system, under DG
and load fluctuation.

This research provides a revolutionary Discrete or Binary Particle Swarm Optimization
technique for improving distribution network operation and performance through optimal
feeder reconfiguration by minimizing real power loss and maximizing load balancing. This
unique method considers the multi-objective distribution network feeder reconfiguration
problem as a binary problem and solves it using the BPSO [13] algorithm with no modi-
fications to the original algorithm. The real power loss and load balancing objectives are
mathematically defined and considered separately of one another. The solution algorithm
developed has been tested on the IEEE 16-Bus, 33-Bus, and 69-Bus distribution systems.
The simulation results show that the original BPSO is capable of resolving the problem of
distribution network feeder reconfiguration. Furthermore, the challenges of real power
loss minimization and load balancing are incompatible, which means that by minimizing
one of the two objectives, the other will not necessarily be minimized. In this scenario, the
voltage profile could be utilized as a guide to choose the best ideal option.

The remainder of the paper is structured as follows. Section 2 describes the formula-
tion of the distribution network feeder reconfiguration problem. Section 3 describes the
developed Discrete Particle Swarm Optimization (DPSO) method in depth. Section 4 goes



Mathematics 2022, 10, 531 3 of 17

into depth about the findings of the suggested technique with the various case scenarios
that were investigated. Section 5 compares the developed DPSO findings with literature
in detail. Finally, in Section 6, the broader conclusions are provided based on the detailed
results reported in Section 4.

Description of the Feeder Reconfiguration

The research methodology consists of developing a DPSO method as described in
Section 3 (Steps 1 to 15) to reduce real power loss and optimizing the load balancing index
with higher capacity reserve in its branches and a network topology that is more resistant
to overload. To demonstrate the methodology, three case studies of IEEE 16, 33, and 69
distribution systems are considered. One of the case studies (IEEE 16 bus) is described
below. Figure 1 depicts a three-feeder, three-Tie switch, seven capacitors, and sixteen-node
distribution network. Each solid line in this diagram represents a sectionalizing switch that
is ordinarily closed, and each dashed line represents a tie switch that is normally open. If a
malfunction upstream on feeder 1 considerably lowers its capacity, part of the loads linked
to it must be transferred to the other two feeders. This reconfiguration must be done in such
a way that the voltage limitations, line capacity, feeder capacity, and radiality constraints
requirements are all met. Prolonging the life of the switching devices, this reconfiguration
should need a limited number of switching operations.
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Figure 1. The IEEE 16-bus distribution system. 
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2. Feeder Reconfiguration in a Distribution Network

The distribution network feeder reconfiguration problem has two objectives: to min-
imize real power loss and to maximize the load balancing index. The real power loss
minimization problem is theoretically expressed as Equation (1). The total real power loss
in a distribution system is expressed mathematically as the sum of the real component of
the apparent power difference between the buses in the distribution system.

Ploss = ∑NB
j=1
k=1
j 6=k

real
(

Vj × ijk
∗ −Vk × ijk

∗
)

, (1)

where:
j is the sending bus of line j− k,
k is the receiving bus of line j− k,
Vj, Vk are the sending and receiving end voltage of the line j− k, respectively,
ijk∗ is the conjugate of the current flow in line j− k,
Ploss is the total real power loss in the distribution system,
NB is the number of buses in the network, and
Vj × ijk∗ = Sjk and Vk × ijk∗ = Skj.
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The Load Balancing Index (LBI-sys) is mathematically expressed in Equation (2) (Baran
and Wu, 1989). To keep the distribution network feeders as balanced as feasible, the load
balancing index LBI-sys should be minimized.

LBIsys =
1

NL ∑NL
l=1

Sl
Sl max

, (2)

where:
l is the branch number of the line j− k,
Sl is the apparent power loss in the branch l,
Sl max is the power rating of branch l,
LBIsys is the load balance index of the network, and
NL is the number of branches in the distribution system.
Load balancing strives to optimize the use of network branches, to maximize branch

capacity utilization, to avoid overloading a single branch, and to supply a load from other
branches. A low load balancing index value suggests that the distribution system has more
capacity reserve in its branches and that the network structure is more resistant to overload.

When the objectives of an optimization problem are incompatible, there is no single
optimal solution but, rather, a set of solutions. Multi-objective optimization challenges can
be mathematically expressed as shown in Equation (3).

minf(x) = [f1(x), f2(x), . . . , fn(x)], (3)

subject to:
gj(x) ≤ 0 j = 1, 2, . . . , J (inequality constraint),

hk(x) = 0 k = 1, 2, . . . , K (equality constraint),

xi
L ≤ xi ≤ xi

U i = 1, 2, . . . , I (variables limit),

where:
n is the number of objective functions,
gj and hk are the inequality and equality constraints, respectively, and
I, J, and K are the number of decision variables, the number of inequality constraints,

and the number of equality constraints, respectively,
Not all of the search space’s solutions are ideal. A set of optimal solutions is produced

by a multi-objective optimization problem with competing objectives. As a result, the
search space can be separated into two groups:

- a set S1 of optimal solutions (non-dominated set) and
- a set S2 of non-optimal solutions (dominated set).

To discover the best solutions in the search space, the multi-objective optimization
method employs the concept of dominance and non-dominance. Any two solutions in
S1 are not dominated by each other, and any solution in S1 is dominated by at least one
solution in S1.

Let us consider u = [u1, u2, . . . , ui] and v = [v1, v2, . . . , vi], two solutions to the
search space. u dominates v (u < v) if:

- u is no worse than v for all objectives, i.e., fi(u) ≤ fi(v), ∀ i = 1, 2, . . . , n, and
- u is strictly better than v for at least one objective, i.e., fi(u) < fi(v), for at least

one i ∈ {1, 2, . . . , n}.
Pareto-dominance is the notion discussed above. If there is no other solution v in the

search space that is Pareto-optimal, then solution u is Pareto-optimal that fi(v) < fi(u), for
all the objectives of the problem. The set S1 of Pareto optimal (non-dominated) solutions
is referred to as the Pareto-optimal set [14]. Equations (2) and (3), compute the load flow
based on the optimal particle position to determine the personal best position in Step 5 of
the developed DPSO algorithm.
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3. Development of the Discrete Particle Swarm Optimization Method

Eberhart and Kennedy first proposed the Particle Swarm Optimization (PSO) tech-
nique in 1995. It is a stochastic search method that was inspired by the behavior of a flock
of birds or a school of fish [15]. The binary PSO is an alternative to the canonical PSO.
Kennedy and Eberhart [16] proposed it for the first time in 1997.

The following stages are used to develop the Discrete PSO-based solution technique
for the multi-objective feeder reconfiguration problem:

Step 1: Read the distribution system network data, which includes the number of
nodes, distribution lines, tie lines, bus type (Slack, PV, PQ), load data, generator data, and
distribution line data.

Step 2: Set the binary PSO parameters, such as the acceleration coefficients c1 and c2;
the minimum and maximum inertia weights (wmin and wmax); the particle velocity limits
(vmin and vmax); the number of particles (Np); the dimension of the search space (D); and
the stopping criteria (maximum number of iterations tmax).

Step 3: Initialize the particle position, which is the binary coded representation of
the distribution network’s section and tie-switches. The binary bit ones (1) and zeros
(0) represent the section and tie switches, respectively. A particle represents a potential
distribution network structure. A viable candidate solution is one that is practical (comply
with the distribution network feeder reconfiguration constraints) topology of distribution
networks.

The IEEE 16-bus distribution system is depicted in Figure 1, and its specifications are
listed in Table 1 [17].

Table 1. The 16-bus distribution network is represented in binary (Bits).

Line No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sending Bus 1 4 4 6 2 8 8 9 9 3 13 13 15 5 10 7
Receivingbus 4 5 6 7 8 9 10 11 12 13 14 15 16 11 14 16

Status 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

Table 1 contains the binary version of the 16-bus distribution system depicted in
Figure 1. Lines 14, 15, and 16 of Table 1 indicate tie-switches with binary bit (status) zeros,
and the remaining lines represent section switches with binary bit ones.

The location of a particle is a string of bits that represents the open or closed condition
of the section and tie-switches in the distribution network. A conceivable particle in the
16-bus distribution system is symbolized by:

xi
k = [1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0],

where:
i is the particle number, and
k is the iteration number. k is equal to 0 for the initial particle position.
Step 4: Initialize the particle velocity, which reflects the likelihood that each bit in the

particle’s position will change from open (0) to close (1) or from close (1) to open (0). Each
particle in the search space moves at a distinct speed.

Equation (4) is used to compute the particle’s velocity.

velocity(i, j) = vmin + (vmax − vmin)×rand, (4)

where:
i is the particle number,
j is the index of the dimension of the search space,
velocity(i, j) is the probability of the j-bit of particle i to change its status from open to

close or close to open,
vmin is the minimum velocity,
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vmax is the maximum velocity, and
rand is a random number in the range [0, 1] .
Step 5: Determine your personal best particle position. The original particle position

is presumed to be the optimal particle position in this scenario. Then, using Equations
(2) and (3), compute the load flow based on the optimal particle position and get the real
power loss and load balancing index. A particle’s personal best position has two individual
fitness values, which indicate the particle’s real power loss and the load balancing index.
As a result, the fitness of a particular particle i is defined as follows:

fitnessi = [fitness1i, fitness2i], (5)

where:
fitnessi is the fitness of particle i,
fitness1 is the real power loss for the particle’s position, and
fitness2 is the load balancing index for the particle’s position.
Step 6: From the set of particle best positions given in Step 5, determine the global best

particle position. In this situation, the best particle position with the least amount of real
power loss and the highest load balancing index value is the global best particle position.

Step 7: Compute the distribution network’s bus incidence matrix. The bus incidence
matrix is used to determine whether or not a link exists between the two nodes. This aids
in determining if the network topology is radial or not.

Begin the binary PSO iteration process by setting the iteration counter t to 1.
Step 8: After updating the bus incidence matrix for the proposed network topologies,

check the topological constraints to see if all of the possible solutions match the topology
criteria. This phase ensures that the real power loss and load balancing index are calculated
only for distribution network topologies that are feasible.

Step 9: Using the Newton–Raphson load flow technique, determine the power flow
in the distribution network. Then, using Equations (2) and (3), use the power flow results
to determine the real power loss and load balancing index of each candidate network
configuration.

Step 10: Update the particles’ personal bests in accordance with Equation (6).

Pbestt+1
i =

{
xt+1

i , if fitness1t+1
i < fitnesst

Pbest1i and fitness2t+1
i < fitnesst

Pbest2i

Pbestt
i , otherwise

, (6)

where:
Pbesti

t is the personal best position of particle i at iteration t,
xi

t+1 is the position of particle i at iteration t + 1,
fitness1i

t+1 is the real power loss of particle i at iteration t + 1,
fitness2i

t+1 is the load balancing index of particle i at iteration t + 1,
fitnessPbest1i

t is the real power loss of Pbesti
t at iteration t, and

fitnessPbest2i
t is the load balancing index of Pbesti

t at iteration t.
Step 11: Update the global best in the swarm of particles as per Equation (7).

Gbestt+1 =

{
Pbestt+1

i , if fitnesst+1
Pbest1i < fitnesst

Gbest1 and fitnesst+1
Pbest2i < fitnesst

Gbest1

Gbestt, otherwise
, (7)

where:
Gbestt+1 is the global best solution of the swarm at iteration t + 1,
fitnessGbest1

t is the real power loss of Gbest at iteration t, and
fitnessGbest2

t is the load balancing index of Gbest at iteration t.
Step 12: Equation (9) is used to calculate the inertia weight, and Equation (8) is used

to update the velocity of all particles.

vi
k+1 = ω× vi

k + c1×rand1×
(

Pbesti − xi
k
)
+ c2×rand2×

(
Gbesti − xi

k
)

, (8)
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where:
ω is the inertia weight.
Equation (9) is used to compute the inertia weight:

ω = ωmax −
(
ωmax −ωmin

tmax

)
×t , (9)

where:
ωmax is the maximum inertia weight,
ωmin is the minimum inertia weight,
tmax is the maximum number of iterations, and
t is the iteration number.
Step 13: Update the position of the particles in accordance with Equation (10):

xi
k =

{
1 if r < sig

(
vi

k)
0 if r ≥ sig

(
vi

k) , (10)

where:
r is a uniformly distributed random number in the interval [0,1], and
sig is a sigmoid function defined by sig(α) = 1

1+e−α .
Step 14: Increase the binary PSO search process’s iteration count, and repeat steps 8 to

13 until the stopping condition (maximum number of iterations) is met.
Step 15: Print the outcomes of multi-objective optimization, such as the global best

solution (optimal distribution network topology) and the accompanying fitness values (real
power loss and load balancing index).

Equations (6) and (7) are used to update the personal best position and the global
best position, respectively, to ensure that the final solution of the search process is not
dominated by any other feasible solution in the search space. When the Binary PSO is
utilized in practice, the particle velocity is limited to the interval [−4, 4] to avoid saturating
the sigmoid function (Kennedy et al., 2001). Figure 2 depicts the flowchart for the BPSO
solution algorithm for the multi-objective feeder reconfiguration problem.
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4. The BPSO Solution Algorithm’s Results for the Multi-Objective Distribution
Network Feeder Reconfiguration Problem

For three distribution systems, the developed multi-objective BPSO solution algorithm
for the multi-objective distribution network feeder reconfiguration problem is examined.
They are as follows:

- IEEE 16 bus distribution system;
- IEEE 33 bus distribution system; and
- IEEE 69-bus distribution system.

Tables 2–4 for the investigated distribution systems give a comparative examination
of the distribution system before and after the feeder reconfiguration. The study is based
on the real power loss, load balancing index, voltage profile, and change in distribution
network structure.

4.1. Case Study 1: The IEEE 16-Bus Distribution System

The developed multi-objective BPSO method is utilized to determine the best network
topology to minimize real power loss and load balancing index in a 16-bus distribution
system. Table 2 compares the optimization outcomes for a 16-bus distribution system
before and after feeder reconfiguration.

Before the feeder reconfiguration, the tie-lines are located at branch numbers 14, 15,
and 16; however, after the feeder reconfiguration, the tie-lines are located at branch numbers
7, 8, and 16. This demonstrates that the created multi-objective BPSO algorithm successfully
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redesigned the distribution system and discovered its best network topology. The network
architecture improvement reduced the real power loss and load balancing index of the
16-bus distribution system. Following the feeder reconfiguration, the distribution system’s
real power loss is decreased to 468.3304 kW from 514.02932 kW, and the load balancing
index is reduced to 2.7676× 10−3 from 2.9812× 10−3. In comparison to the initial distri-
bution system solution, this optimization approach results in a real power loss reduction
of roughly 8.89033 percent and an LBI improvement of 7.166 percent. As demonstrated in
Figure 3, the adjustment in distribution network design improved the voltage profile. The
minimum voltage at bus 12 before the feeder reconfiguration is 0.9682 p.u., and it improves
to 0.9707 p.u. after the feeder reconfiguration.

Table 2. The simulation results of the 16-bus distribution system.

Algorithm
Developed

BPSO
Algorithm

ACO
[18]

MINLP
[19]

Refined
GA
[20]

Modified
Tabu-Search

[21]

Before
reconfiguration

Tie switches 14 15 16 14 15 16 14 15 16 14 15 16 14 15 16
Real power loss 511.4029 kW 511.4 kW 511.44 kW 511.4 kW 511.4 kW
Load Balancing

index (LBI) 2.9812× 10−3 − − − −

Minimum
voltage

0.9707 p.u.
@ bus 12

0.9707 p.u.
@ bus 12

0.9707 p.u.
@ bus 12

0.9707 p.u.
@ bus 12

0.9707 p.u.
@ bus 12

After
reconfiguration

Tie switches 7 8 16 7 8 16 7 8 16 7 8 16 7 8 16

Real power loss 466.0833 kW 466.1 kW 466.13 kW 466.1 kW 466.1 kW
Real power

loss reduction 8.8618% 8.858% 8.856% 8.858% 8.858%

Load Balancing
index (LBI) 2.7676× 10−3 − − − −

Load balance
improvement 7.166% − − − −

Minimum
voltage 0.9693 p.u. 0.9693 p.u. 0.9693 p.u. 0.9693 p.u. 0.9693 p.u.

CPU Time 0.36 s − − − −
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4.2. Case Study 2: The IEEE 33-Bus Distribution System

Figure 4 depicts the single line diagram of the 33-bus distribution system, and its
specifications may be found in Baran and Wu (1989). Table 3 shows a comparison of
the optimization outcomes of the 33-bus distribution system before and after feeder
reconfiguration.
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Table 3. The simulation results of the 33-bus distribution system’s multi-objective feeder reconfigura-
tion problem.

Algorithm
Developed

BPSO
Algorithm

Sequential Switch
Opening Method

[22]

Modified PSO
[23]

HBMO
[7]

Before
reconfiguration

Tie switches 33 34 35 36 37 33 34 35 36 37 33 34 35 36 37 33 34 35 36 37
Real power loss 208.4322 kW 202.05 kW 202.6 kW 208.15 kW
Load Balancing

Index (LBI) 2.9812× 10−3 − − −

After
reconfiguration

Tie switches
7 9 14 32 37

7 9 14 32 37 7 9 14 32 37 7 9 14 32 377 9 14 28 31
7 9 14 28 32

Real power loss
138.9105 kW

139.21 kW 139.5 kW 139.53 kW144.1694 kW
139.9645 kW

Real power
loss reduction

33.3546%
31.1012% 31.1% 31.14%30.8315%

32.8489%

Load Balancing
Index (LBI)

1.4503× 10−4

− − −1.3487× 10−4

1.3751× 10−4

Load balancing
improvement

29.2125%
− − −34.1697%

32.88251%

Minimum voltage

0.9423 p.u.
@ bus 32 0.93796

@ bus 32
0.9378 p.u. 0.9378 p.u.

0.9239 p.u.
@ bus 32

0.9413 p.u.
@ bus32

CPU Time ~1.9 s − − ∼8 s
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As a result, there are three Pareto-optimal or non-dominated network topology al-
ternatives when using the devised multi-objective BPSO algorithm for optimal feeder
reconfiguration of the 33-bus network. They are as follows:

- Network topology 1: The tie switches for the 33-bus distribution system may be found
at branches 7 (branch 7-8), 9 (branch 9–10), 14 (branch 14–15), 32 (branch 32–33), and
37 (branch 25–29). The real power loss for this network design is 138.9105 kW, and
the load balancing index is 1.4503× 10−4. Compared to the baseline distribution
system, this optimization method results in a real power loss reduction of roughly
33.3546 percent and an LBI improvement of 29.2125 percent. In the search space,
network topology 1 has the lowest real power loss. As a result, network topology 1
outperforms all other proposed network topologies in terms of real power loss.

- Network topology 2: The tie switches of the 33-bus distribution system are branches
7 (branch 7–8), 9 (branch 9–10), 14 (branch 14–15), 28 (branch 28–29), and 31 (branch
31–32). The real power loss for this network design is 144.1694 kW and the load
balancing index is 1.3487× 10−4. Compared to the original distribution system, this
optimization method results in an actual power loss reduction of roughly 30.8315 per-
cent and an LBI improvement of 34.1697 percent. Network topology 2 has the lowest
load balancing index in the search space. As a result, network topology 2 is non-
dominant in the search space in terms of load balancing index.

- Network topology 3: The tie switches of the 33-bus distribution system are branches
7 (branch 7–8), 9 (branch 9–10), 14 (branch 14–15), 28 (branch 28–29), and 32 (branch
32–33). The real power loss for this network design is 139.9645 kW and the load
balancing index is 1.3751× 10−4. Compared to the baseline distribution system, this
optimization method results in a real power loss reduction of roughly 32.8489 percent
and an LBI improvement of 32.88251 percent.

The real power loss of network topology 3 (139.9645 kW) is more than that of net-
work topology 1 (138.9105 kW), and the load balancing index of network topology 1
(1.4503× 10−4) is greater than that of network topology 3. Similarly, the real power loss of
network topology 2 (144.1694 kW) is more than that of network topology 3 (139.9645 kW),
and the load balancing index of network topology 2 (1.3751× 10−4) is lower than that of
network topology 3. As a result, the solution network topologies 1, 2, and 3 are Pareto-
optimal and non-dominated with regard to each other, according to the Pareto-optimality
criterion described in Section 2.

However, as with most real-world situations, the solution to the multi-objective prob-
lem requires only one network topology. As a result, higher-level knowledge is necessary
to divide the Pareto-optimal network topologies. The voltage profile is employed as the
higher-level information in this scenario. Figure 5 depicts the voltage profiles of the non-
dominated solutions. Figure 5 shows that network configuration 3 has a higher voltage
profile than network topologies 1 and 2. As a result, despite the fact that network topology
3 has a lower minimum voltage (0.9413 p.u.) than network topology 1 (0.9423 p.u.), network
topology 3 emerges as the recommended optimal solution of the multi-objective feeder
reconfiguration problem for the 33-bus distribution system.
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4.3. Case Study 3: The IEEE 69-Bus Distribution System

Figure 6 depicts a single line diagram of the 69-bus distribution system. The parame-
ters of the 69-bus distribution network are given in [24].
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Figure 6. The 69-bus distribution system.

Table 4 presents a comparison of the optimization outcomes of the 69-bus distribution
system before and after feeder reconfiguration. The application of the multi-objective
feeder reconfiguration method to the 69-bus distribution system yields a number of non-
dominated solution network topologies.

The non-dominated solutions are divided into two categories:

- Set 1 is a collection of solution network topologies with a total power loss of 98.5952 kW
and a load balancing index of 1.5479× 10−4. Compared to the initial distribution
system, these optimization techniques result in an actual power loss reduction of
roughly 56.1761 percent and an LBI improvement of 35.6355 percent.

- Set 2 is a collection of solution network topologies with a real power loss of 101.2961 kW
and a load balancing index of 1.5295× 10−4. Compared to the initial distribution
system, these optimization techniques result in an actual power loss reduction of
roughly 54.9756 percent and an LBI improvement of 36.4006 percent.

Any solution network topology in Set 1 has a lower real power loss but a greater load
balancing index than any solution network topology in Set 2. As a result, the solution
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network topologies in the two sets are Pareto-optimal in relation to one another. Given that
the solution to the multi-objective problem requires just one network topology, the voltage
profile is utilized to select the best optimal network topology from the two sets. Figures 7
and 8 depict the voltage profiles of the network topologies in Sets 1 and 2. Figures 7 and 8
show that the solution network topologies in Set 1 have a better voltage profile than those
in Set 2. Furthermore, in Figure 7, the solution network architecture 4 from Set 1 has
the best voltage profiles. As a result, the optimal solution of the multi-objective feeder
reconfiguration problem for the 69-bus distribution system is solution network topology 4
from Set 1.

Table 4. Simulation findings for the 69-bus distribution system’s multi-objective feeder reconfigura-
tion problem.

Algorithm Developed BPSO Algorithm Harmony Search
[25]

Selective PSO
[26]

Before
reconfiguration

Tie switches 69 70 71 72 73 69 70 71 72 73 69 70 71 72 73
Real power loss 224.9804 kW 225 kW 224.96 kW
Load Balancing

Index (LBI) 2.0488× 10−4 − −

After
reconfiguration

Tie switches
Set 1 Set 2

13 18 56 61 69 14 56 63 69 70

14 55 61 69 70
14 56 61 69 70
14 57 61 69 70
14 58 61 69 70

12 18 56 61 69
12 18 57 61 69
12 18 58 61 69
12 19 55 61 69
12 20 55 61 69
12 20 57 61 69

Real power loss 98.5952 kW 101.2961 kW 99.35 kW 98.9824 kW
Real power

loss reduction 56.1761% 54.9756% 55.85% ∼56%

Load Balancing
Index (LBI) 1.5479× 10−4 1.5295× 10−4 − −

Load balancing
improvement 35.6355% 36.4006% − −

Minimum
voltage

0.9495 p.u.
@ bus 61

0.9495 p.u.
@ bus 61

0.9428 p.u.
@ bus 63 −

CPU Time ∼12 s ∼12 s − −
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5. Discussion on the Comparison of the Developed BPSO Results with the Literature

It is difficult to compare the results of the developed multi-objective BPSO algorithm
to the literature because no literature works have been discovered that consider distribution
network feeder reconfiguration for real power loss minimization and load balancing as
a multi-objective optimization problem. Refs. [27,28] developed various algorithms for
solving the distribution network feeder reconfiguration problem for actual power loss min-
imization and load balancing. However, the authors saw the two aims as non-conflicting,
and, as a result, the proposed algorithms were single-objective algorithms designed to
minimize real power loss. Nonetheless, the produced BPSO results are compared to the
literature in Tables 2–4 for the 16-bus, 33-bus, and 69-bus systems, respectively. The com-
parison study demonstrates that, when only the real power minimization aim is considered,
the results of the developed BPSO algorithm are compatible with those of the literature, and
the developed BPSO method achieves a greater real power loss reduction than the literature.

6. Conclusions

The purpose of this paper was to offer a novel Binary Particle Swarm Optimization
algorithm solution to the multi-objective distribution network feeder reconfiguration prob-
lem. The goal of the multi-objective distribution network feeder reconfiguration problem
was to minimize real power loss while also optimizing load balancing in the distribution
network. To determine the best distribution system topology, the multi-objective feeder
reconfiguration algorithm employs the Pareto-optimality principle. The performance of
the developed BPSO algorithm was tested using the IEEE 16-bus, 33-bus, and 69-bus
distribution systems. The simulation findings demonstrated:

- For the analyzed 16-bus, 33-bus, and 69-bus distribution systems, the developed BPSO
algorithm provides an optimal solution network topology to the multi-objective feeder
reconfiguration problem.

- The aims of real power loss minimization and load balancing are diametrically op-
posed. They may appear to be non-conflicting, depending on the loads, parameters,
and distribution system design, as seen with the 16-bus distribution system.

Future research will evaluate the performance of the created BPSO algorithm in resolv-
ing distribution network feeder reconfiguration problems for a real-world utility network.
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Abbreviation
Mathematical Notations and Acronyms
fitnessPbest1i

t real power loss of Pbesti
t at iteration t

fitnessPbest2i
t load balancing index of Pbesti

t at iteration t
Pbesti

t personal best position of particle i at iteration t
fitnessGbest1

t real power loss of Gbest at iteration t
fitnessGbest2

t load balancing index of Gbest at iteration t
fitness1i

t+1 real power loss of particle i at iteration t + 1
fitness2i

t+1 load balancing index of particle i at iteration t + 1
ijk∗ conjugate of the current flow in line j− k
xi

t+1 position of particle i at iteration t + 1
Gbestt+1 global best solution of the swarm at iteration t + 1
LBIsys load balance index of the network
Ploss total real power loss in the distribution system
Sl max power rating of branch l
Sl apparent power loss in the branch l
Vj, Vk are the sending and receiving end voltage of the line j− k, respectively
fitnessi fitness of particle i
gj and hk are the inequality and equality constraints, respectively
tmax maximum number of iterations
vmax maximum velocity
vmin minimum velocity
ωmax maximum inertia weight
ωmin minimum inertia weight
ACO Ant Colony Optimization
D dimension of search space
DPSO Discrete Particle Swarm Optimization
GA Genetic Algorithm
HBMO Honey Bee Mating Optimization
Np number of particles
PSO Particle Swarm Optimization
NB number of buses in the network
NL number of branches in the distribution system
fitness1 real power loss for the particle’s position
fitness2 load balancing index for the particle’s position
j sending bus of line j− k
k receiving bus of line j− k
l branch number of the line j− k
n number of objective functions
r uniformly distributed random number in the interval [0,1]
rand random number in the range ]0, 1[.
sig sigmoid function defined by sig(α) = 1

1+e−α
t iteration number
ω inertia weight
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