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Abstract: In this work, the effect of the fractional time derivative on the piezo-thermo-elastic medium
is studied, using the hybrid Laplace transform and finite element methods (LFEM). The generalized
fractional piezoelectric–thermoelastic basic equations for piezo-thermo-elastic medium are formu-
lated. The Laplace transforms are used for the time derivatives, and the finite element method is
used to discretize for the space derivatives. The inversions process is performed using the Stehfest
numerical technique. The finite element approach is used to obtain the solutions of complex coupled
formulations of this problem. The effects of fractional time derivative and thermal relaxation time
on piezoelectric–thermoelastic mediums are studied. It can be seen from the distribution that the
thermal-induced displacement, the temperature and the stress of the medium increase at a high
fractional parameter.

Keywords: fractional time parameter; finite element approach; Laplace transforms; piezo-thermo-
elastic medium

1. Introduction

Recently, the problem of heat transfer in piezoelastic medium has been investigated
by many researchers. Piezoelectricity undergoes mechanical stress when applied to solid
samples, e.g., crystals, ceramics, and biomaterial such as bone, DNA, and other proteins.
Piezoelectricity is comprehended as a linearly electro-mechanical interaction of a me-
chanical nature, and an electric case in crystal materials with no symmetrical obverse.
Piezoelectricity is a changeful process, in that material exhibits a direct piezoelectric effect
(the inner generation of electric charges produced due to mechanical forces), and it also
exhibits reversible piezoelectricity (the inner generation of mechanical strain produced due
to the electric field). Piezoelectricity can be investigated from lead zirconate titanate crystals
when their static structure is distorted by approximately 0.1% of the original dimension.
On the contrary, applying an exterior electric field on the same crystals will change 0.1% of
their static dimension. Reverse piezoelectricity can be used to produce ultrasonic waves of
sound. The piezoelectric effect is used in a large area of applications, for example, produc-
ing and detecting sound, high voltages, electronic frequency generation, micro-balances, to
drive an ultrasonic nozzle, or the ultra-fine centering of an optical assembly. Moreover, it is
the base of many scientific instruments with atomic resolution. Generalized thermoelastic
theories have been proposed to overcome the limitations of classical coupling thermo-
elasticity [1], in which heat travels at an infinite velocity. These models introduce time lags
into the diffusion-types parabolic basic formulation of classical coupled thermo-elasticity,
and transform them into wave-types hyperbolic equations. We observe that this finite
wave-types heat propagation speed offers a more physically accommodating behavior [2,3].
Two of the most popular models are the Lord–Shulman model (LS model) [4] and the Green
and Lindsay model (GL model) [5]. In the Lord and Shulman theory, the Fourier thermal
conduction law is modulated by introducing a thermal delay time in the line of the Maxwell
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Cattaneo law. The Green and Lindsay model uses two thermal-delay time parameters
and introduces the rate of temperature change into the stress–strain (Duhamel–Neumann
relationship) and strain–entropy relationships. Other generalized thermoelastic models
in the literature include the theory of Green–Naghdi (G-N) [6,7], which proposed another
three generalized thermoelastic theories by modifying the energy equation, subsequently
labelled by G-N I, G-N II and G-N III. Marin [8] studied the domain of influence theory
for micro-stretch elastic material. Othman et al. [9] studied the novel models of a plane
wave of two-temperature fiber-reinforced thermo-elastic material under the effect of gravity
with three-phase-lag models. Marin [10] presented a partition of energy in micro-stretch
thermoelastic bodies. Many works concerning the phenomenon of wave propagations
in piezoelectric structure have been carried out by Cheng and Sun [10]. He et al. [11]
used the Laplace transformation and its numerical inversions to study the generalized
thermo-piezoelectric problem under one relaxation time due to moving heating sources.
Akbarzadeh et al. [12] investigated the thermo-piezoelectric analysis of function-graded
piezoelectric mediums. Ma and He [13] investigated the dynamics responses of a gener-
alized piezo-electric-thermoelasticity problem under the fractional time derivative of the
thermoelastic model. Saeed and Abbas [14] studied the effect of the nonlocal thermo-
elastic model in thermo-elastic nanoscale materials. Guha and Singh [15] studied the
reflections/transmissions of plane waves in composite half-spaces reinforced with rotating
piezothermal elasticity fibers, initially stressed and imperfectly linked. Ragab et al. [16]
studied the thermo-elastic piezo-electric fixed rod exposed to axial moving heating sources
under DPL model. Biswas [17] studied the surface wave in piezo-thermo-elastic’s transverse
isotropic layer lying over piezo-thermo-elastic’s transverse isotropic plane. Yang et al. [18]
investigated the analysis of a composite piezoelectric semi-conductor cylindrical shell un-
der the thermal loading. Singh, et al. [19] studied the shear wave in a piezo-fiber-reinforced
poroelastic composites structure with sandwiched a functionally graded buffer layer: this
is the power series approach. Serpilli et al. [20] disccused the higher order interface con-
dition for piezoelectrics’ spherical hollow composite: these are asymptotic approaches
and transfer matrix homogenization methods. Most deformation problems can be analyti-
cally solved using Laplace–Fourier transformation techniques, but finding the inversions
of these approaches is quite difficult. To obviate these complications, the finite element
scheme is chosen for time-domain problems. The procedure to solve problems related
to deformations by the finite element method is presented. It is a powerful technique,
improved for the numerical solution of complex problems in structural mechanics. Abbas
and Kumar [21] studied the deformation of micropolar thermoelastic planes due to the
heat source by the finite element method. Abbas et al. [22] used the finite element scheme
to study the responses of heating resource in a transversely isotropic thermoelasticity
plane with mass diffusions. Over recent decades, many problems have been solved by
generalized thermoelastic theories, as in [23–31].

In this work, I propose to investigate the effects of the thermal relaxation time and
the fractional time derivative in piezoelectric–thermoelastic materials. The finite element
method is used to solve the complex coupled equations of this problem. The variations of
the variables considered are obtained and presented graphically.

2. Mathematical Model

The piezo-electric-thermo-elastic basic equations for linear thermo-piezo-electric mate-
rial in the absence of body forces and free charges are expressed as [32]:

Motion equations:

σij,j = ρ
∂2ui
∂t2 (1)

Gauss relation and electric field equation [16]:

Di,i = 0 (2)
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Di = eiklεkl + τikEk + PiT (3)

where Ej = −ϕ,i.
The heat conduction equation [33]:

kijT,ij =

(
∂

∂t
+

τα
o

Γ(α + 1)
∂1+α

∂t1+α

)(
ρceT + Toβijui,j − ToPi ϕ,i

)
(4)

Stress–strain–temperature and electric field relations:

σij = Cijklεkl − ekijEk − βijTδij (5)

Strain–displacement relations:

εij =
1
2
(
ui,j + uj,i

)
(6)

where ui is the displacement vector component, εkl is the strain tensor component, Ei is
the electric field vector component, Di is the component of electric displacement, ρ is the
density of mass, Cijkl is the elastic constants, eijk is the piezoelectric constants, βij is the
thermal modulus, ce is the specific heat at constant deformation, kij is the coefficient of
thermal conductivity, ϕ is the electric potential function, Pi is the pyroelectric constant, To is
the initial reference temperature, α is the fractional-order parameter such that 0 < α ≤ 1,
t is the time, T is the temperature increment, T = T∗ − To, T∗ is the absolute temperature,
τo is the thermal relaxation time, and τik is the dielectric constant. As in [34], take into
consideration that:

∂αg(x, t)
∂tα

=


g(x, t)− g(x, 0), α→ 0,

Iα−1 ∂g(x,t)
∂t , 0 < α < 1,

∂g(x,t)
∂t , α = 1,

(7)

where Iα is the fraction of Riemann–Liouville integral introduced as a natural general-
ization of the m-times repeated well-known integral in Img(x, t) written in the form of
convolution type:

Img(x, t) =
∫ t

0

(t− s)m

Γ(m)
g(x, s)ds, m > 0 (8)

where Γ(m) is the Gamma function and g(t) is Lebesgue’s integrable function. In the case
where g(x, t) is continuous absolutely, then:

lim
m→1

∂mg(x, t)
∂tm =

∂g(x, t)
∂t

(9)

The different parameter values with wide ranges 0 < α ≤ 1 cover both conductivities,
α = 1 for normal conductivity and 0 < α < 1 for low conductivity. We can consider the
dynamic responses of thermo-piezoelectric rods with finite length L. Let the piezo-electric
rods polarization directions be parallel with the axial directions. The problem can be
handled as one dimension and the one dimension is assumed to be aligned along the x-axis.
For this case, we suppose that the components of displacement can be given by:

ux = u(x, t), uy = 0, uz = 0 (10)

For this case, the basic equations can be reduced to:

c11
∂2u
∂x2 + e11

∂2 ϕ

∂x2 − β11
∂T
∂x

= ρ
∂2u
∂t2 , (11)
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e11
∂2u
∂x2 − τ11

∂2 ϕ

∂x2 + P1
∂T
∂x

= 0, (12)

k11
∂2T
∂x2 =

(
∂

∂t
+

τα
o

Γ(α + 1)
∂1+α

∂t1+α

)(
ρceT + Toβ11

∂u
∂x
− ToP1

∂ϕ

∂x

)
, (13)

σxx = C11
∂u
∂x

+ e11
∂ϕ

∂x
− β11T, (14)

To simplify the derivation traditionally, the non-dimensional quantities can be intro-
duced by:

T′ =
T
To

,
(

x′, u′
)
= cω(x, u),

(
t′, τ′o

)
= c2ω(t, τo), ϕ′ =

cωτ11

e11
ϕ, σ′xx =

σxx

C11
(15)

where ω = ρce
k11

and c =
√

C11
ρ . By using these non-dimensional parameters (15), the above

formulations can be rewritten as (the dashes have been neglected for convenience):

∂2u
∂x2 + R1

∂2 ϕ

∂x2 − R2
∂T
∂x

=
∂2u
∂t2 (16)

∂2u
∂x2 −

∂2 ϕ

∂x2 + R3
∂T
∂x

= 0, (17)

∂2T
∂x2 =

(
∂

∂t
+

τα
o

Γ(α + 1)
∂1+α

∂t1+α

)(
T + R4

∂u
∂x
− R5

∂ϕ

∂x

)
, (18)

σxx =
∂u
∂x

+ R1
∂ϕ

∂x
− R2T, (19)

where R1 = e11e11
c11τ11

, R2 = β11To
c11

, R3 = To P1
e11

, R4 = β11
k11ω , R5 = e11P1

τ11k11ω .

3. Applications

The initial conditions are expressed as:

u(x, 0) = 0.0,
∂U(x, 0)

∂t
= 0.0, ϕ(x, 0) = 0.0,

∂ϕ(x, 0)
∂t

= 0.0, T(x, 0) = 0,
∂T(x, 0)

∂t
= 0, (20)

while the boundary conditions can be presented by:

u(0, t) = 0, D(0, t) = 0, T(0, t) = T1H(t), (21)

where H(t) is the time step function and T1 is a constant.

4. Laplace Transforms

The transforms of Laplace for any function f (x, t) can be defined by:

f (x, p) = L[ f (x, t)] =
∫ ∞

0
f (x, t)e−ptdt, (22)

where p is the parameter of Laplace. Therefore, by using the definitions (22) and the initial
conditions (20), the formulations (16)–(19) and the boundary conditions (21) can be given as:

d2u
dx2 + R1

d2 ϕ

dx2 − R2
dT
dx

= p2u, (23)

d2u
dx2 −

d2 ϕ

dx2 + R3
dT
dx

= 0, (24)

d2T
dx2 =

(
p +

τα
o p1+α

Γ(α + 1)

)(
T + R4

du
dx
− R5

dϕ

dx

)
, (25)
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σxx =
du
dx

+ R1
dϕ

dx
− R2T, (26)

u(0, p) = 0, D(0, p) = 0, T(0, p) =
T1

p
, (27)

5. Finite Element Method

The main goal of this work is to obtain a finite element method for the modal analysis
of piezoelectric–thermoelastic material. One of the most operational and effective methods
of verifying the accuracy of the results of a finite element analysis is to compare them with
the results of other researchers: in this study, the benchmark results. The finite element
procedures consist of two steps: the first step is the space discretization by standard
procedures of weak formulations as in [21,35]. The non-dimension weak formulations for
the basic formulations are introduced. The sets of independent test function, to consist
of temperature δT the displacement δu and the electric potential δϕ are specified. The
basic formulations are multiplied by independent test function and after that integrated
over the locatives domain using the boundary conditions of the problem. Thus, the
corresponding nodal values for the electric potential, the temperature and the displacement
can be expressed as follows:

T =
n

∑
j=1

NjT j(p), u =
n

∑
j=1

Njuj(p), ϕ =
n

∑
j=1

Nj ϕj(p), (28)

where N points to the shape functions and n points to the node numbers per element. As
parts of Galerkin’s standard procedure of the finite element method, the shape functions
and test functions are the same. Thus,

δT =
n

∑
j=1

NjδT j, δu =
n

∑
j=1

Njδuj, δϕ =
n

∑
j=1

Njδϕj, (29)

Now, the finite element weak formulations of Equations (21)–(24) can be written by
the following:

∫ L

0

dδu
dx

(
du
dx

+ R1
dϕ

dx
− R2T

)
dx +

∫ L

0
δu
(

p2u
)

dx = δu
(

du
dx

+ R1
dϕ

dx
− R2T

)L

0
, (30)

∫ L

0

dδϕ

dx

(
du
dx
− dϕ

dx
+ R3T

)
dx = δϕ

(
du
dx
− dϕ

dx
+ R3T

)L

0
, (31)

∫ L

0

dδT
dx

dT
dx

dx +
∫ L

0
δT
((

p +
τα

o p1+α

Γ(α + 1)

)(
T + R4

du
dx
− R5

dϕ

dx

))
dx = δT

(
dT
dx

)L

0
, (32)

The second step for the final solution of the physical quantity distribution, a numeri-
cally reversal method was adopted depending on Stehfest [36]. In this method, the inverse
f (x, t) of the Laplace transforms f (x, s) is approximated by the relation:

f (x, t) =
ln2

t

M

∑
j=1

Vj f
(

x, j
ln2

t

)
, (33)

where Vj is given by the following equation:

Vj = (−1)
n
2 +1

min(i, n
2 )

∑
k= i+1

2

k
n
2 +1(2k)!( n

2 − k
)
!k!(i− k)!(2k− 1)!

. (34)
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6. Numerical Results and Discussions

In this part, the material properties of the thermo-piezo-elastic material vide [13] has
been picked for the reason of numerical simulations, given as:

c11 = 74.1× 109(N)
(

m−2
)

, e11 = −0.2 (C)
(

m−2
)

, τ11 = 0.392× 10−10(F)
(

m−1
)

, To = 293(K) ,

ce = 420(J)(Kg)
(

K−1
)

, β11 = 0.621× 106(N)
(

K−1
)(

m−2
)

, P1 = 4× 10−4(C)
(

K−1
)(

m−2
)

,

ρ = 7600(Kg)
(

m−3
)

, K11 = 1.4(w)
(

K−1
)(

m−1
)

, τo = 0.05.

On the basis of the above dataset, in the context of the fractional-order thermoelastic
model, the nature of the governing equations, in essence, is characterized by the fractional-
order parameter α. In the calculations, to study how the fractional-order parameter α, as
well as the thermal relaxation time τo, influences the variations of the considered variables,
three different values for α, (i.e., α = 0.1, 0.5, 1) and with and with thermal relaxation time
for τo, (i.e., τo = 0.0, 0.05) are taken at time t = 0.3. The obtained results are illustrated in
Figures 1–10. Figures 1–5 explain the physical quantities calculated numerically along the
distance x for three values of fractional-order parameter α with thermal relaxation time
τo = 0.05. Figures 6–10 explain the physical quantities calculated numerically along the
distance x, with and without thermal relaxation time, when the fractional-order parameter
α = 0. Numerical calculations are carried out for the displacement, the temperature, electric
potential, the electric field and the stress variations along the distance x in the context
of the fractional thermoelastic model with one thermal relaxation time. Figures 1 and 6
demonstrate the variation of temperature along the distance x. It is noticed that the
temperature of the solid phase begins by its maximum value at x = 0 and gradually
reduces with the increasing of the distance x until zeros beyond a wave front for the
thermoelastic model satisfies the boundary conditions of the problem. Figures 2 and 7
show the variation of the electric potential as a function of the distance x. It is observed
that the electric potential has maximum values on x = 0 and reduces with the rising of
the distance x to come to zero according to the values of fractional-order parameter α and
the thermal relaxation time τo. The variations of displacement through the distance x are
shown in Figures 3 and 8. It is clear that the displacement begins from zero, which satisfies
the boundary conditions of the problem after rising up to maximum values at a specific
location within easy reach of the surface. Figures 4 and 9 show the variations of the electric
field with respect to the distance x. It is clear that it starts from maximum values, after that
it decreases with the rising of the distance x to come to zero. Figures 5 and 10 show the
effects of the of fractional-order parameter α and the thermal relaxation time τo in the stress
with respect to the distance x. As expected, it clear that the fractional-order parameter α and
the thermal relaxation time τo have the great effect on the values of all physical quantities.
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In this work, the responses of thermoelastic–piezoelectric materials exposed to thermal
loading are studied using the model of thermoelasticity with thermal relaxation time. The
coupled governing equations of thermoelasticity and piezoelectricity are presented. It is
expected that the present finite element method can be applied to generalized piezo-thermo-
elastic problems. Based on this, a rigorous hybrid finite element procedure is developed
and has been demonstrated as a highly accurate means in dealing with the fractional time
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derivative in the piezo-thermo-elastic medium. The achievement of this work can be further
extended to solve two-dimensional and three-dimensional cases and will be presented in a
subsequent report.
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