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Abstract: This paper addresses a batch loading and scheduling problem of minimizing the makespan
on parallel batch processing machines. For batch loading, jobs with compatible families can be
assigned to the same batch process even if they differ in size; however, batches can only be formed
from jobs within the same family, and the batch production time is determined by the family. During
the batch scheduling, the deterioration effects are continuously added to batches processed in each
parallel machine so that the batch production times become deteriorated. The deteriorated processing
time of batches can be recovered to the original processing times of batches by a maintenance or
cleaning process of machines. In this problem, we sequentially determine the batching of jobs and the
scheduling of batches. Due to the complexity of the problem, we proposed a three-stage ant colony
optimization algorithm. The proposed algorithm found an optimal solution for small-sized problems
and achieved near-optimal solutions and better performance than a genetic algorithm or a particle
swarm optimization for large-sized problems.

Keywords: scheduling; batching; ant colony optimization; mixed linear integer programming;
deterioration; rate-modifying activity

1. Introduction

Batch-processing machines (BPMs) have been applied to numerous manufacturing
industries such as ceramics, steel, and integrated circuits industries to enhance the pro-
ductivity of production. Due to this reason, several BPM scheduling problems have been
studied in recent years. In general, the BPM sequentially processes batches, a group of jobs
processed together in the same machine. The job is the smallest unit of an order requested
by a customer. In this paper, we deal with the batch loading and scheduling problem
(BLSP) at the diffusion operation in the semiconductor industry [1,2]. In addition to general
batching, the concept of job family processing the same operation is adopted. Owing to
the chemical nature of the diffusion operation in the semiconductor industry, only jobs
with the same family can be assigned to the same batch. Thus, in this manufacturing
environment, the batch production time is determined by the family type. In most batch
scheduling studies, the batch production time is assumed to be constant. However, for a
real-world scheduling problem, the batch production times increase due to the inclusion of
activities such as the loading/unloading of jobs and alignment/calibration of tools. The
increased batch production times can be recovered to the original production times of each
batch by a maintenance or cleaning process of machines. The recovering process is called
rate-modifying activity (RMA) [3]; multiple RMAs are considered in the schedule. The
RMA time is assumed to be constant, and the RMA can be scheduled between batches. In
this paper, the deterioration of batch production time linearly depends on the consecutive
batch production runs without the RMA. Thus, it can be formulated as a linear function
of the interval between the starting time of the first batch after the previous RMA and
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the completion time of the last batch before the recent RMA. The interval between RMAs
including periods before the first and after the last RMAs is called a bucket, which is
defined in Joo and Kim [4].

In this paper, we address BLSP with incompatible job families in parallel BPMs subject
to time-dependent batch deterioration and RMAs applied between batches. The BLSP can
be decomposed into the two sub-problems of batch loading and batch scheduling [5–7].
In the example of a batch loading problem shown in Figure 1a, 11 jobs belonging to three
families are shown. All of the jobs must be formed in batches, which can only be assigned
to batches within the same family. For example, batch 1 is formed from jobs 1 and 6, which
have the same family type. The sum of their job sizes does not exceed the batch capacity.
In Figure 1a, job 1–4, 5–8, and 9–11 belong to family 1, 2, and 3, respectively. The size of
job is (0.43, 0.49, 0.34, 0.40, 0.49, 0.54, 0.43, 0.66, 0.37, 0.40, 0.46). The machine capacity is 1.
The sum of job sizes in a batch does not exceed the batch capacity. For example, the sum of
job sizes of job 1 and 4 is 0.83 (S1 + S4 = 0.43 + 0.40 = 0.83 ≤ 1). After batches have been
formed from all of the jobs, the batches must be scheduled to machines, which is referred
to as the batch scheduling procedure.

Here, the problem with batch deterioration and RMAs during batch scheduling is
considered. An illustrative example of the batch scheduling problem is shown in Figure 1b.
As the batch production time including the deterioration increases, the assigning of RMAs
between batches should be considered. Since the problem becomes complex, the batch
scheduling problem is decomposed into three stages using buckets. The bucket is the set
of batches between RMAs. The first stage is to determine the number of buckets. The
second stage is to assign batches to each bucket. The last stage is to schedule the buckets
to machines. In Figure 1b, the number of buckets is set to 3. The processing time for
family is (44, 36, 52). Since batch 1–2, 3–5, and 6–7 consist of jobs for family 1, 2, and 3,
respectively, the processing time of batch 1–2, 3–5, and 6–7 is 44, 36, and 52, respectively.
The number of machines is 2. The deterioration rate is 0.25 and the processing time of
RMA is 30. As a batch is processed, time is added equally to the difference between the last
RMA completion time and the batch start time multiplied by the deterioration rate. For
example, when batch 4 is processed in bucket 1, since the processing time of batch 2 has
elapsed without RMA, 11 (= 44× 0.25) is added to the original processing time of batch
4. On the other hand, batch 6 of bucket 3 is not affected by deterioration because there is
an RMA immediately before it. Once the batches have been assigned and sequenced in
three buckets, the buckets are scheduled to the corresponding machines. As a result, the
makespan can be calculated.
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Figure 1. Batch loading and scheduling problem. (a) Batch loading procedure. (b) Batch scheduling
procedure.

The BLSP with no deterioration was addressed by Jia et al. [2], who proposed ant
colony optimization (ACO) and the multi-fit (MF) algorithm for solving the batch loading
and batch scheduling problems, respectively. We proposed the same algorithm for the
batch loading problem, but the MF algorithm cannot be used in our problem because batch
deterioration and RMAs impose complexity on the batch scheduling problem. Therefore,
we decompose the batch scheduling problem into the three stages mentioned above. In
the first stage, the number of buckets is determined between the lower and upper bounds.
The fixed number of buckets determines the positions of the RMAs and helps to reduce
the search space. In the second stage, a rule-based ACO is applied to assign batches to
the buckets defined in the preceding stage. In the last stage, the buckets are scheduled to
machines using a dispatching rule.

The remainder of this paper is organized as follows. A previous related work is
reviewed in Section 2. Section 3 presents our mixed-integer programming (MIP) model. In
Sections 4–6, the overall batch scheduling algorithm is proposed, with the MF algorithm
applying the RMA scheduling rule developed in Section 4, the ACO-based three-stage
algorithm proposed in Section 5, and the genetic algorithm (GA) and particle swarm
optimization (PSO) approaches proposed in Section 6. Section 7 presents our experimental
results and, finally, the conclusions are presented in Section 8.

2. Literature Review

To enhance productivity, many BPM studies have attracted the attention of various
production areas such as ceramics, steel, and integrated circuit industries. For reviewing
the related studies on BPM, we divided BPM studies into seven categories: manufacturing
system, production methods, family constraint, job sizes, deterioration constant, recovering
process, method, and objective function. The initial studies on BPMs assumed the size
of jobs in a batch to be identical. The batch scheduling problem was first introduced by
Ikura and Gimple [8]. They proposed a polynomial-time algorithm for minimizing the
makespan under an assumption of identical job sizes. In this problem, the total job size
in each batch must not exceed the batch capacity. For solving the BLSP with identical job
sizes, Lee et al. [9] proposed dynamic programming algorithms to minimize the maximum
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tardiness and the number of tardy jobs. Cheng et al. [10] proposed a novel ACO for
minimizing the makespan. Subsequent studies have extended this approach to single
BPMs with non-identical job sizes. Uzsoy [11] proposed the use of heuristics and a B&B
algorithm to minimize the total weighted completion time. Two heuristics for solving
this problem were proposed by Dupont and Ghazvini [5]. Later studies extended this
to the problem of parallel BPMs with non-identical job sizes. Jia et al. [12] considered
parallel BPMs with arbitrary capacities carrying out jobs of arbitrary sizes with dynamic
arrival times. They proposed the use of two meta-heuristics based on ACO to minimize the
makespan. Ozturk et al. [13] considered the problem of parallel BPMs with identical job
sizes and release dates. They proposed a branch and bound (B&B) algorithm to minimize
the makespan. Zhou et al. [6] considered parallel BPMs with arbitrary release times and non-
identical job sizes. They presented different heuristics for solving batch loading and batch
scheduling problems. The batch loading problem is tractable under the application of GA,
ACO, and greedy randomized adaptive search procedure algorithms. Jia et al. [14] proposed
a fuzzy ACO for minimizing the makespans for parallel batch processing machines with
jobs having non-identical sizes and fuzzy processing times. Parallel BPM studies have also
been extended to unrelated parallel BPMs. Arroyo and Leung [15,16] considered unrelated
parallel batch machines with different capacities processing jobs with arbitrary sizes and
non-zero ready times. They proposed several heuristics based on rules applying best-fit,
first-fit, and meta-heuristic-based iterated greedy algorithms. Arroyo et al. [17] considered
the use of unrelated parallel BPMs to minimize the total job flow time. They proposed a
simple and effective iterated greedy algorithm and compared them to three meta-heuristic
algorithms. Gao and Yuan [18] considered unbounded parallel batch scheduling problems
involving jobs with agreeable release dates and processing times. They demonstrated that
such problems are binary NP-hard. Zhou et al. [19] considered unrelated parallel BPM
processing jobs with non-identical sizes and arbitrary release times. They proposed using a
GA with a random key to schedule batches to the machines in such cases.

The studies described above focused on problems in which all jobs were compatible.
However, the issue of incompatible jobs has occurred in actual situations. For instance,
incompatibilities arise from a non-empty intersection on intervals and two-dimensional
volumes for individual jobs [20,21]. Uzsoy [1] considered the problem of single BPM with
incompatible families. He developed B&B and polynomial-time dynamic programming
algorithms to minimize the makespan, lateness, and total weighted completion time. Azi-
zoglu and Webster [22] considered a BPM with incompatible families, identical processing
times, arbitrary job weights, and arbitrary job sizes. They proposed a B&B algorithm that
can solve this problem with less than 25 jobs in a reasonable time. Dupont and Dhaenens-
Flipo [7] considered a BPM with non-identical job sizes for minimizing the makespan. To
solve problems with large numbers of jobs, they added two rules to a B&B algorithm to
minimize the makespan. Yao et al. [23] considered single BPMs with incompatible job fami-
lies and dynamic arrivals. They proposed a decomposed B&B algorithm for minimizing
the total batch completion time and makespan. Jolai [24] considered BPMs with identical
job sizes and incompatible families and applied a polynomial-time dynamic programming
algorithm to minimize the number of tardy jobs. Parallel BPMs with incompatible families
have also been extensively examined. Balasubramanian et al. [25] considered the problem
of identical parallel BPMs with incompatible families. They proposed an approach in which
the batch processing time is determined based on the family and developed two GAs for
scheduling jobs to batches and machines, respectively. Li et al. [26] further considered
the problem of incompatible families and proposed a method for determining the batch
processing time based on the length of the longest job. For parallel BPMs with incompat-
ible job families and release times, constraint programming and apparent tardiness cost
approaches were presented [27,28].

In previous studies on the BLSP, the processing time was assumed to be constant and
known in advance. In several real-world industry situations, however, the processing time
increases due to the deterioration phenomenon. The concept of a deteriorating job was
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introduced by Gupta and Gupta [29], who considered a single BPM governed by a linear
deterioration function. The literature on deterioration follows two general tracks: sequence-
and time-dependent deterioration. The case of parallel machine scheduling under sequence-
dependent deterioration was addressed by Ding et al. [30], who proposed an ejection chain
algorithm for minimizing the completion-time-based criteria. The case of time-dependent
deterioration was first introduced by Browne and Yechiali [31]. Soleimani et al. [32]
proposed cat swarm optimization on unrelated parallel machine scheduling problems
with time-dependent deterioration. In general, the degree of deterioration increases with
the length of the job process. To recover the inefficient execution of processes under
deterioration, it is necessary to carry out the recovering processes called RMAs by Lee and
Leon [3]. RMAs return a machine to its initial state. Joo and Kim [33] considered a single
BPM with time-dependent deterioration to which RMAs are applied and proposed hybrid
meta-heuristic algorithms to minimize the makespan. Woo et al. [34] considered unrelated
parallel BLSPs with time-dependent deterioration and RMAs, proposing a GA with a
random key to solve the problem. Abdullah and Süer [35] considered the decision-making
on the selection of a manufacturing strategy between the classical assembly line and seru
according to the skill levels of the operator. Liu et al. [36] proposed exact solutions and
heuristic algorithms to minimize the makespan and balance the worker’s workload of
divisional and rotating seru in the seru production system. Gai et al. [37] presented an
accurate dimensionality reduction algorithm to minimize makespan. It is also compared to
the greedy algorithm to verify it.

As a problem becomes more complex, it becomes increasingly important to decompose
it. The meta-heuristic approaches developed in previous studies generally decompose a
BLSP into sub-problems. Dupont and Dhaenens-Flipo [7] considered unrelated parallel
BPMs with non-identically sized jobs. They developed an approach for decomposing the
BLSP into two sub-problems of forming and scheduling batches to improve performance.
Determining which algorithm to apply to each sub-problem following division is another
important challenge. Dupont and Ghazvini [5] assessed GA, ACO, and greedy adaptive
search heuristic algorithms as methods for addressing the batch scheduling problem and
compared their performances on batch loading situations fixed using the same algorithm.
Similarly, Zhou et al. [19] proposed a GA with a random key for solving the batch schedul-
ing problem. In this paper, the BLSP for processes with time-dependent batch deterioration
for which RMAs are applied between batches is considered. To the best of our knowledge,
this is the first paper to address this problem.

A list of recent studies on BLSPs and scheduling problems under deterioration is pro-
vided in Table 1. The recent studies are categorized by manufacturing system, production
methods, family constraint, job sizes, deterioration constant, recovery process, method,
and objective function. To the best of our knowledge, none of the studies dealt with the
BLSP simultaneously considering parallel BPMs, incompatible job families, non-identical
job sizes, time-dependent deterioration, and RMAs. Among the research, Jia et al. [2] pro-
posed the ACO and MF algorithm for addressing, respectively, the batch loading and batch
scheduling problems for parallel BPMs with incompatible families and arbitrary job sizes.
For our problem, we adopted the ACO by Jia et al. [2] to solve the batch loading problem.
However, the MF algorithm cannot provide the near-optimal makespan during the batch
scheduling because time-dependent deterioration and RMAs increase the complexity of
the problem. Therefore, in this paper, we decompose the batch scheduling problem into
three stages and propose an ACO-based three-stage algorithm for solving the scheduling
problem.
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Table 1. The comparisons between recent studies.

Mfg.
System

Production
Methods Family Constraint Job sizes Deterioration

Constraint
Recovery
Process Method Objective

Woo et al. [34] Parallel Single No family N/A Time-dependent deterioration RMA GA Makespan

Ding et al. [30] Parallel Single No family N/A Sequence-dependent
deterioration No recovery ECA Completion time

Soleimani et al.
[32] Parallel Single No family N/A Time-dependent deterioration No recovery GA, CSO,

IABC
Mean weighted

tardiness

Ozturk et al.
[13] Parallel Batch No family Identical No deterioration No recovery B&B Makespan

Jia et al. [14] Parallel Batch No family Non-identical No deterioration No recovery ACO Makespan

Jia et al. [12] Parallel Batch No family Non-identical No deterioration No recovery ACO Makespan

Arroyo et al.
[17] Parallel Batch No family Non-identical No deterioration No recovery Iterated

greedy Total flow time

Li et al. [26] Parallel Batch Incompatible family Non-identical No deterioration No recovery LB Lateness

Jia et al. [2] Parallel Batch Incompatible family Non-identical No deterioration No recovery ACO Makespan

This paper Parallel Batch Incompatible family Non-identical Time-dependent deterioration RMA ACO Makespan
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3. Mixed-Integer Programming Model

The BLSP is the problem of scheduling jobs to machines. In this problem, we have to
make two decisions. We need to determine which jobs to assign in which batches and then
schedule the assigned batches and RMA to machines. This is called batch loading problem
and batch scheduling problem. In this section, the BLSP for time-dependent deterioration
with rate-modifying activities and incompatible families for minimizing the makespan is
formulated using MIP. The following parameters and decision variables are used in the
mathematical formulation:

Parameters

J set of jobs
F set of families
B set of batches
K set of buckets
M set of machines
Jf set of jobs not belongings to family f ∈ F
Fj family type of job j ∈ J
Fb family type of batch b ∈ B
Sj size of job j ∈ J
Pb processing time of batch b ∈ B
Q processing time of RMA

DR deterioration rate
L large number

SC size of machine
Decision variables

Xjb Equals 1 if job j ∈ J is assigned in batch b ∈ B
Ybkm Equals 1 if batch b ∈ B is assigned to bucket k ∈ K from machine m ∈ M
Zabkm Equals 1 if batch a ∈ B precedes batch b ∈ B in bucket k ∈ K from machine m ∈ M

Dependent variables
MS Makespan
Ck Completion time of bucket k ∈ K
Cm Completion time of machine m ∈ M
Tb Time gap between starting time of batch b ∈ B and completion time of recent RMA

Based on parameters and decision variables, the MIP is formulated as follows:

Minimize MS

Subject to
∑
b∈B

Xjb = 1 , ∀j ∈ J (1)

Xjb = 0, ∀b ∈ B, ∀j ∈ JFb , (2)

∑
j∈J

Sj·Xjb ≤ SC, ∀b ∈ B (3)

∑
j∈J

Xjb ≤ L· ∑
k∈K

∑
m∈M

Ybkm , ∀b ∈ B (4)

∑
k∈K

∑
m∈M

Ybkm ≤ 1, ∀b ∈ B (5)

∑
k∈K

∑
m∈M

Zbbkm ≤ 1, ∀b ∈ B (6)

∑
a∈B

Zabkm = Ybkm, ∀b ∈ B, ∀k ∈ K, ∀m ∈ M (7)
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∑
b ∈ B
b 6= a

Zabkm ≤ Yakm, ∀b ∈ B, ∀a ∈ B, ∀k ∈ K, ∀m ∈ M (8)

∑
b∈B

Zbbkm ≤ 1, ∀k ∈ K, ∀m ∈ M (9)

Ta·(1 + D) + Pa ≤ Tb + L·
(

1− ∑
k∈K

∑
m∈M

Zabkm

)
, ∀a, b ∈ B, a 6= b (10)

Tb·(1 + D) + Pb ≤ Ck + L·(1−Ybkm), ∀b ∈ B, ∀k ∈ K, ∀m ∈ M (11)

∑
k∈K

Ck + Q·(∑
k∈K

∑
b∈B

Zbbkm)−Q ≤ MS, ∀m ∈ M (12)

The first decision we have to make is which job should be assigned to which batch by
Constraint (1), (2) and (3). One job can be assigned to only one batch, and to be assigned
to the same batch, the type of family must be the same and the size must not exceed the
capacity. Constraints (1) and (2) confirm that each job is assigned to only one batch and that
each batch comprises jobs within the same family. Constraint (3) ensures that the total job
sizes assigned to each batch do not exceed the capacity of the batch. After all, once batches
have been assigned, the assigned batches should be scheduled to the machine considering
the RMA by constraint (4) to constraint (9). There are two ways to consider RMAs, i.e.,
considering scheduling between all batches, and assuming that RMAs are scheduled only
between buckets. The bucket means a set of batches between buckets; hence the RMA
does not exist between batches in the same bucket. In the batch scheduling problem, we
determine which batch should be assigned to which bucket and the order of the batches
in the bucket by constraint (4) to constraint (9). Constraints (4) and (5) ensure that each
assigned batch is sequenced in one bucket. Constraints (6) and (8) ensure that there cannot
be two first-sequence batches in a given bucket. Constraint (7) ensures that, except for the
first batch in each bucket, any batches assigned to a bucket must be immediately preceded.
Similarly, constraint (8) ensures that if a batch is assigned to a bucket, at most one batch can
be performed immediately afterward. When all batches are scheduled, the makespan can
be calculated by constraint (10) to constraint (12). Constraint (10) ensures the precedence
relation among assigned batches in a bucket and calculates the starting time for each
batch. Constraint (11) calculates the completion time of each bucket by computing the
maximum time needed to complete each batch in the bucket. Constraint (12) determines
the completion times of the machines needed to calculate the makespan.

4. Multi-Fit Batch Scheduling Algorithm with the RMA Scheduling Rule

The MF algorithm has demonstrated good performance in solving the batch scheduling
problem with no deterioration [2]. Unlike previous approaches, however, the scheduling
of RMAs must be considered in our problem. One of the ways to do so is to consider the
scheduling between all batches. Whenever a batch is scheduled one by one, scheduling
the RMA should be considered. To determine whether an RMA should be scheduled, an
RMA scheduling rule is used. The RMA scheduling rule is that an RMA is scheduled if
the deterioration is longer than the RMA processing time. The MF algorithm using this
RMA scheduling rule is proposed in Algorithm 1 and the initial lower and upper bounds
on completion time, LBct and UBct, can be calculated as

LBct = max

{
max
b∈B

Pb,

⌊
∑
b∈B

Pb
M

⌋
}, (13)

UBct = max

{
max
b∈B

Pb,

⌈
∑
b∈B

Pb + Q
M

⌉
}. (14)
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Algorithm 1. Multi-fit algorithm with the RMA scheduling rule for the batch scheduling problem

Input: The set of assigned batches B.
Output: The makespan.

Begin:

Sort B in non-increasing order of processing times and obtain a batch set B′.
Compute LBct and UBct, respectively.
Let iteration h = 1.
While (h < 8)

A = (UBct + LBct)/2
Let batch index b = 1.
While (b ≤ |B′|)

Select a batch with a sequence b in B′.
Schedule the batch to the machine according to the first-fit rule if the
completion time does not exceed A.
If (Completion time of machine when the batch is scheduled > Completion time
of machine when additionally scheduled RMA precedes the batch) then

Schedule the RMA to precede the batch.
b = b + 1.

End While
If (All batches in B′ are scheduled) then

UBct = A.
Else

LBct = A.
h = h + 1.

End While
Output the makespan of the global best solution.

Because the positioning of the RMAs and batches has a significant influence on the
makespan, the MF algorithm does not perform well in solving this problem; therefore,
we divide the batch scheduling problem into three stages and propose an ACO-based
three-stage batch scheduling algorithm for solving it.

5. Ant Colony Optimization-Based Three-Stage Algorithm for Batch Scheduling
Problem

The batch loading part of the BLSP referred to the solution of Jia et al. [2], and this
section deals with the batch scheduling part. Determining the positioning of RMAs be-
tween all batches requires lots of calculations. If the number of buckets is pre-determined,
however, the RMA positioning will be fixed between buckets. To reduce the computational
complexity, we divide the batch scheduling problem into three stages, in which (1) the
number of buckets is determined, (2) batches are assigned to the respective buckets, and
(3) the buckets are dispatched to the machines.

5.1. Determining the Number of Buckets

In stage 1, the number of buckets is determined. Determining it fixes the positions of
the RMAs between the buckets and it can range from zero to |B| − 1 in each machine. To
reduce the range of this number, we calculate LBk and UBk, the lower and upper bounds,
respectively, for the number of buckets during batch scheduling with the dispatching rule.
The dispatching rule is the rule that selects the bucket with the shortest tentative completion
time. Tentative completion time in each machine means the completion time if the current
batch is assigned to the machine. The dispatching rule helps to search for the solution with
good quality. A detailed explanation of the dispatching rule is given in Algorithm 2.
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Algorithm 2. The dispatching rule

Input:
The processing time of batch Pb.
The current completion time of buckets Ck.

Output: Selected bucket k′, which must be assigned by batch b
Begin: Let bucket index k = 1

While (k ≤ |K| )
Calculate the tentative completion time using the RMA rule
k = k + 1

End While
Select the bucket k′ with the smallest tentative completion time

To calculate the LBk and UBk in subsequent algorithm, we must calculate the minimum
and the maximum numbers of batches that can be scheduled on one machine. We assume
that the batch processing time can be determined between Pmin and Pmax during batch
scheduling with the dispatching rule, then the minimum number of batches on a machine
is calculated in Algorithm 3. Pmin and Pmax are the longest and shortest processing time
of the given batches, respectively. In determining the minimum number of batches that
can be scheduled to the first machine, the first machine should be assigned a minimum
number of batches and the rest of the machines should be assigned as many batches as
possible. To assign a small number of batches to the machine under the dispatching rule,
the completion time of the machine should be tentatively set to a large value. Since the
dispatching rule schedules a batch on a machine with a small tentatively completion time,
the allocated batches in the first machine must be given the longest processing time as Pmax.
The lower bound on the number of batches input to the first machine is calculated using
the dispatching rule in Algorithm 3.

Algorithm 3. Calculating the lower bound on the number of batches input to a machine

Input: Pmin; Pmax; The number of batches; The number of machines.
Output: Lower bound on the number of batches input to a machine.

Begin:
Let batch index b = 1
While(b ≤ |B|)

Select a machine m′ using the dispatching rule.
If(m′ = 1) then

Assign a batch assuming the processing time is Pmax.
Else

Assign a batch assuming the processing time is Pmin.
b = b + 1.

End While
Output the number of batches in machine 1

Before calculating the LBk using Algorithm 4, the batch deteriorations must be repre-
sented in order. A time-dependent batch deterioration can be represented as the product of
DR and Pi. In this section, Pk and Dk represent the processing time and deterioration of a
batch in sequence k, respectively. Dk and Dk−1 can be represented by the processing time
and the deterioration of previous batches as

Dk = DR×
(

k−1

∑
i=1

Pi +
k−1

∑
i=1

Di

)
, (15)

Dk−1 = DR×
(

k−2

∑
i=1

Pi +
k−2

∑
i=1

Di

)
. (16)

By subtracting Dk−1 from Dk, Dk can be given in terms of the processing time and the
deterioration of the preceding batch as

Dk − Dk−1 = DR× (Pk−1 + Dk−1), (17)
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and then Dk can be represented as

Dk = (1 + DR)× Dk−1 + DR× Pk−1. (18)

Using the above equations, the situation in which an RMA must be scheduled is
defined through Proposition 1.

Proposition 1. If the deterioration portion of a batch exceeds the processing time of an RMA,
scheduling an RMA before the batch will reduce the completion time of the bucket.

Proof. Let B̃ be a set of scheduled batches with no RMAs, which comprises B1, B2 . . . , Bn.
Let B̃′ be a set of the same scheduled batches with one RMA, comprising
B′1, B′2 . . . , B′ l−1, RMA, B′ l , . . .,B′n. Deterioration of B′ i can be represented as D′ i. Ex-
cept for the RMA in B̃′, the processing time of batches in the same sequence as B̃ are equal.
Thus, the sums of the deteriorations up to l − 1 will be equal in both B̃ and B̃′ as follows:

l−1

∑
i=1

Di =
l−1

∑
i=1

D′ i. (19)

As we assume that Dl is greater than Q, the sum of D′ l and Q is less than Dl :

Dl > D′ l + Q. (20)

From Equation (19), the deteriorations of Dl+1 and D′ l+1 can be obtained as, respec-
tively,

Dl+1 = (1 + DR)× Dl + DR× Pl , (21)

D′ l+1 = (1 + DR)× D′ l + DR× Pl (22)

Because the processing time of each batch is the same and D′ l = 0, D′ l+1 is larger than
Dl+1, repeating the above reasoning, D′ l+2 is larger than Dl+2, D′ l+3 is larger than Dl+3,
. . . , and D′n is larger than Dn. Adding these deteriorations, we obtain

n

∑
i=l+1

Di >
n

∑
i=l+1

D′ i. (23)

From Equations (20), (21) and (24), D1 + D2 + . . . + Dl + . . . + Dn is larger than
D′1 + D′2 + . . . + Q + D′ l + . . . + D′n. Hence, the deterioration period of B̃ is longer than
that of B̃′. �

The above proof gives the condition under which scheduling an RMA reduces the
makespan. This can be used to find the minimum number of RMAs. If we set the processing
time of each scheduled batch as Pmin, then we can use Proposition 1 to schedule the RMAs
starting from the first batch. The lower bound on the number of buckets can then be
calculated based on the number of RMAs scheduled per machine using Algorithm 4.

Using these algorithms and propositions, we can obtain the LBk for a machine. In a
similar manner, UBk can be calculated. Assuming a batch processing time of Pmin for the
first machine and Pmax for the remaining machines in Algorithm 3, the upper bound on the
number of batches per machine can be applied in Algorithm 4.



Mathematics 2022, 10, 657 12 of 26

Algorithm 4. Calculating the lower bound on the number of buckets (LBk)

Input: Pmax; the lower bound on the number of batches in a machine;
Output: the lower bound on the number of RMAs required by a machine

Begin:
Let batch index b = 1
Let RMA index r = 0
While (b ≤ The lower bound on the number o f batches in a machine)

Calculate a tentative deterioration proportional to the gap between the
preceding RMA and Cb−1
If (Tentative deterioration > Processing time of RMA) then

Schedule RMA after Cb−1.
r = r + 1.

Else
Cb = (DR + 1)× Cb−1 + Pmax
b = b + 1.

End While
Output (r + 1)× |M|

5.2. Assigning Batches to Buckets

In stage 2, an ACO algorithm is used to assign batches to each bucket and then a rule
is applied to determine the sequencing of the batches. Unlike the problem of assigning
batches, the individual buckets do not have size capacities, and the objective function is the
makespan. In this case, the batch deterioration has a significant influence on the makespan.
Based on the number of buckets determined from stage 1, the batches must be scheduled
using a load balancing among buckets.

To assign batches, an ACO algorithm called the min-max ant system (MMAS) is used.
MMAS is a constructive meta-heuristic algorithm that builds solutions sequentially, i.e.,
to solve the batch assignment problem, the batches are assigned one by one. During the
batch assignment, we make a probabilistic choice based on pheromone trails and heuristic
information until no further batches are available. After assigning the batches, the minimum
completion time of each bucket can be calculated using Proposition 2 (Section 5.2.5).

5.2.1. Pheromone Trails

The desirability of unscheduled batches can be calculated using a pheromone trail
that gives the relationship between assigned batches. There is a pheromone trail value
between all batches and a higher pheromone trail value indicates a higher probability that
two batches will be allocated to the same bucket. Defining τil(t) as the pheromone trail
between Bi and Bl in iteration t, τil(1) is initialized as

τil(1) = ((1− ρ)× LBτ)
−1, (24)

where ρ means evaporation rate and LBτ is the lower bound given by

LBτ = ∑
bεB

Pb
|M| (25)

The desirability of a given batch is calculated using the pheromone trails between the
given batch and batches, Bk(t), that have already been assigned to the selected bucket in
iteration t. The desirability of assigning batch i into the current bucket k during iteration t
can be represented as

θik(t) = ∑
Bl εBk(t)

τil(t)
|Bk(t)|

. (26)
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5.2.2. Heuristic Information

The load balance of each bucket is important because the deterioration increases
rapidly when many batches are allocated per bucket. The heuristic information between
batch i and bucket k during iteration t can be represented by

ηik(t) =
1

|max{ck(t)} − ck+i(t)|+ pmax
, (27)

where ck+i(h) is the completion time of bucket k calculated after assigning batch i to it
during iteration t.

5.2.3. Forming the Buckets

The pheromone trails and heuristic information are used together to calculate the
probability that each batch can be formed. The probability that batch i can be assigned to
bucket k during iteration t is expressed as Pik(t), which represents the desirability of the
batches assigned to bucket k as follows:

Pik(t) =


θik(t)×ηik(t)

β

∑Bl εUk
θik(t)×ηik(t)

β , i f BiεUk

0, otherwise
, (28)

where β represents the relative importance of heuristic information and Uk represents the
set of unscheduled batches.

5.2.4. Updating the Pheromone Trails

In MMAS, the use of pheromone trails leads to solutions based on experience. Thus,
updating the pheromone trails has a significant effect on the performance of the algorithm.
Global- and iteration-best solutions are used to update the pheromone trails. Representing
the frequency with which jobs i and l are placed in the same batch as mil , the pheromone
trail updating process can be defined as follows:

τil(t + 1) = (1− ρ)× τil(t) + mil × ∆τil(t), (29)

∆τil(t) =
Q

Makespaniteration best(t)
. (30)

The solutions corresponding to pheromone trails that are too extreme cannot be
found easily. Under MMAS, pheromone trail lower and upper bounds are defined as
τmin and τmax, respectively, and when the trails are updated, they are modulated as follows:

τil(t + 1) =


τmin, τil(t + 1) < τmin

τil(t + 1), τmin ≤ τil(t + 1) ≤ τmax
τmax, τil(t + 1) > τmax

, (31)

τmax =
(
(1− ρ)×Makespanglobal best(t)

)−1
, (32)

τmin =
τmax ×

(
1− |B|√0.05

)
( |B|2 − 1)× |B|√0.05

. (33)

5.2.5. Rule-Based Batch Sequencing

After assigning the batches to the buckets, the completion time of each bucket can be
minimized using Proposition 2.

Proposition 2. Let B be the set of batches in one bucket. Then, scheduling B in ascending order of
processing time minimizes the completion time of each bucket.
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Proof. As the starting time of the first batch is zero, we have

D1 = 0. (34)

By applying the previous deterioration to Equation (16), we obtain

D2 = DR× P1 + (1 + DR)× D1
= DR× P1,

(35)

D3 = DR× P2 + (1 + DR)× D2
= DR× P2 + (1 + DR)× DR× P1,

(36)

D4 = DR× P3 + (1 + DR)× D3

= DR× P3 + (1 + DR)× DR× P2 + (1 + DR)2 × DR× P1,
(37)

Dn = DR× Pn−1 + (1 + DR)× DR× Pn−2 + . . . + (1 + DR)n−2 × DR× P1

=
n−1
∑

i=1
(1 + DR)n−1−i × DR× Pi.

(38)

By using the generalized formula above, Dn, the sum of the deteriorations, can be
represented as

n
∑

i=1
Di = D2 + D3 + D4 + . . . + Dn

= [DR× P1] + [DR× P2 + (1 + DR)× DR× P1] + . . .

+
n−1
∑

i=1
(1 + DR)n−1−i × DR× Pi

=
[
1 + (1 + DR) + (1 + DR)2 + . . . + (1 + DR)n−2

]
× DR× P1

+
[
1 + (1 + DR) + (1 + DR)2 + . . . + (1 + DR)n−3

]
× DR× P2

+ . . . + [1 + (1 + DR)]× DR× Pn−2 + DR× Pn−1

=
n−2
∑

i=0
(1 + DR)i × DR× P1 +

n−3
∑

i=0
(1 + DR)i × DR× P2 + . . .

+
1
∑

i=0
(1 + DR)i × DR× Pn−2 + DR× Pn−1

(39)

In Equation (39), Pk, the processing time of a batch in sequence k, is multiplied by
∑n−1−k

i=0 (1 + DR)i. ∑n−1−k
i=0 (1 + DR)i increases as the sequence become slower. As the batch

we have to schedule is fixed, the total deterioration can be minimized by scheduling the
batches with longer processing times in faster sequences. �

Using the above proof, we can obtain the shortest completion for each bucket. After
all, once the shortest completion time of buckets is calculated, buckets must be scheduled
to the machines.

5.3. Scheduling Buckets to Machines

In stage 3, buckets are scheduled to machines using the dispatching rule. Tentative
timings are used to determine the completion time at which the current batch is scheduled
using the RMA rule as Algorithm 2 (Section 5.1). To balance the load among the machines,
therefore, the current batch should be scheduled to the machine with the shortest tentative
completion time.

5.4. Overall Algorithm

Using the algorithms defined for the three stages in the preceding sections, the ACO-
based three-stage algorithm can be defined as Algorithm 5.
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Algorithm 5. ACO-based three-stage algorithm for batch scheduling problem

Input: The set of assigned batches.
Output: The makespan

Begin:

Compute the LBK and UBK , respectively.
Compute the LBτ and τil(1), respectively.
Initialize pheromone trails.
Let index of iteration t = 1
While(t ≤ tmax)

Let index of iteration a = 1
While (a ≤ amax)

Select the number of buckets between LBK and UBK .
While(UB 6= ∅)

Select bucket k using the dispatching rule.
If (Bucket k has no assigned batches) then

Select a batch b randomly.
Assigned the batch b to bucket k.

Else
Select a batch b using pheromone trail and heuristic
information.
Assign the batch b to bucket k.

End While
Minimize the completion time of the buckets by sequencing the batches.
Dispatch the buckets to machines.
Calculate the makespan.
Update the iteration and global best solutions
a = a + 1

End While
Compute τmax and τmin.
Update ∆τil(h) and τil(h).
t = t + 1

End While
Output the makespan of the global best solution

The algorithm divides the batch scheduling problem into three-stage. In stage 1,
LBK and UBK are used for fast convergence. To demonstrate that LBK and UBK affect the
performance of the algorithm, an ACO with no bound (ACO_NB) is proposed.

6. Genetic Algorithm- and Particle Swarm Optimization-Based Batch Scheduling
Algorithms

In this section, two population-based meta-heuristic algorithms for solving the batch
scheduling problem—a GA-based three-stage algorithm and a PSO-based three-stage
algorithm—are proposed. Unlike constructively generated ACO solutions, these two
algorithms search solutions to develop an encoded solution that is represented using a
random key. The two proposed population-based meta-heuristic algorithms (Algorithms 6
and 7) are defined as follows.
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Algorithm 6. GA-based three-stage algorithm for batch scheduling problem

Input: The set of assigned batches from the batch loading problem
Output: The makespan

Begin:

Compute the LBK and UBK respectively.
Set the initial decoded solution.
Let index of generation t = 1
While (t ≤ tmax)

Let index of chromosome c = 1
While (c ≤ cmax)

Select the number of buckets between LBK and UBK .
Let random value r1 = Uni f (0, 1).
Let random value r2 = Uni f (0, 1).
Select two parent chromosomes, c, and c + 1, in sequence.
If (r1 < Crossover rate) then

Do one-point crossover operations.
If (r2 < Mutation rate) then

Do swap mutation operation.
Decode the offspring chromosome c and calculate the makespan.
c = c + 1

End While
Reproduce the next generation parents from current-generation offspring
Update the iteration and global best solutions
t = t + 1

End While
Output the makespan of the global best solution

Algorithm 7. PSO-based three-stage algorithm for batch scheduling problem

Input: The set of assigned batches from the batch loading problem
Output: The makespan

Begin:

Compute the LBK and UBK , respectively.
Set the initial solution.
Let index of iteration t = 1
While (t ≤ tmax)

Let index of particle p = 1
While (p ≤ pmax)

Select the number of buckets between LBK and UBK
Update the factor velocity
Update the factor position
Decode the particle p.
p = p + 1

End While
Decode the particles.
Update the iteration and global best solutions;
t = t + 1

End While
Output the makespan of global best solution

7. Computational Experiments

To evaluate the performance of the ACO-based three-stage batch scheduling algorithm,
extensive computational experiments were conducted using the solutions obtained by an
ACO-based batch loading algorithm presented in Jia et al. [2]. In the first experiment, the
absolute differences between the optimal solutions produced by CPLEX and the solutions
produced by the ACO, ACO_NB, GA, PSO, and MF algorithms were compared for small-
sized problems. In the second experiment, ACO and ACO_NB were compared to validate
the LBk and UBk used in the proposed algorithm. In the third experiment, the relative
differences between the solutions obtained by ACO and other meta-heuristic algorithms,
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GA and PSO, were compared for large-sized problems. All meta-heuristic algorithms are
implemented in C#.

7.1. Problem Parameter Settings

In the experiments, BLSPs corresponding to the batch scheduling problem with vary-
ing complexity were randomly generated. The complexity of a batch scheduling problem
with batch deterioration and RMAs is highly dependent on |M|, |K|, |B|, and |F| [24–26].
Therefore, four problem parameters, |M|, |K|/|M|, |B|/|K|, and |F|, were used to generate
problems with different complexities, where |K|/|M| is the average number of buckets
per machine and |B|/|K| is the average number of batches per bucket. The machines and
families were generated as |M| and |F|, respectively, and the batches were generated using
|M| × |K|/|M| × |B|/|K|. To assign |B|/|K| batches to each bucket, Q was generated as
Qmin+Qmax

2 . As Q decreases, RMAs will occur more frequently and the number of batches per
bucket will be reduced. To assign |B|/|K| batches to each bucket, Q should be adjusted so
that it falls between Qmin and Qmax, where those values mean the minimum and maximum
sums of deteriorations that occur when there are |B|/|K| batches, respectively. The sums
can be calculated by assuming the processing time of batches as Pmin and Pmax, respectively.
Pf is randomly generated in [Pmin, Pmax] with Pmin and Pmax fixed at 40 and 60, respectively.
D and Sj are fixed at 0.2 and 0.4, respectively. Using the four problem parameters defined
above, two groups of problems (small-sized problems with fewer than 10 batches and
large-sized problems with more than 10 batches) were randomly generated.

7.2. Algorithm Parameter Settings

To find the major parameters that affect the performance of algorithms, the Taguchi
method was applied in this section. The method can be used to conduct experiments more
rapidly than a full factorial experiment because the method can carry out experiments using
fewer scenarios. Using the Taguchi method, five control factors for the ACO-based batch
scheduling algorithm were analyzed. The levels of each control factor are listed in Table 2.
The first factor, A, is the number of ants (Antmax). When a problem becomes more compli-
cated, more ants are needed to solve it. Therefore, we set Antmax to increase according to the
complexity of the problem; as the complexity was proportional to |B|, Antmax is varied over
the range {1.0× |B|, 1.5× |B|, 2.0× |B|, 2.5× |B|, 3.0× |B|}. The second factor, B, is the
evaporation rate (ρ), which is used to calculate the initial pheromone trails and update later
trails. Because the evaporation must be a real value between [0, 1] and values lower than 0.5
are relatively insignificant to the parameter settings, ρ is varied over {0.5, 0.6, 0.7, 0.8, 0.9}.
The third factor, C, is the iteration limit (G), which indicates how many iterations are needed
to reset a pheromone trail in the ACO. If there is no change in the global solution over G
iterations, the trail must be reset and, therefore, smaller values of G mean that trails must be
more often reset. In this paper, G is varied over {10, 30, 50, 70, 90}. The fourth factor, D,
is the updating parameter (δ), which is used to update the pheromone trails. In a previous
paper [2], δ performs better when it is based on LBτ rather than a constant parameter.
Therefore, δ is varied over {0.5× LBτ , 1.0× LBτ , 1.5× LBτ , 2.0× LBτ , 2.5× LBτ}. The
final factor, E, is the relative importance of heuristic information (β), which is used in
calculating desirability. β is varied over {4, 6, 8, 10, 12}.
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Table 2. Factors levels for MMAS based three-stage batch scheduling algorithm.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Number of Ants Evaporation Rate Iteration Limit Updating Parameter Relative Importance of Heuristic
Information

Antmax (A) ρ (B) G (C) δ (D) β (E)

A (1): 1.0× |B| B (1): 0.5 C (1): 10 D (1): 0.5× LBτ E (1): 4
A (2): 1.5× |B| B (2): 0.6 C (2): 30 D (2): 1.0× LBτ E (2): 6
A (3): 2.0× |B| B (3): 0.7 C (3): 50 D (3): 1.5× LBτ E (3): 8
A (4): 2.5× |B| B (4): 0.8 C (4): 70 D (4): 2.0× LBτ E (4): 10
A (5): 3.0× |B| B (5): 0.9 C (5): 90 D (5): 2.5× LBτ E (5): 12

Using the control factors described above, an experiment involving 25 scenarios was
conducted. The number of scenarios was chosen so that the best-fit design for five factors
with five levels. Table 3 shows L25

(
55) orthogonal array. In each scenario, 12 test problems

were solved three times each for a total of 900 runs for the experiment. Under the Taguchi
method, variation in performance is measured using the mean signal-to-noise (S/N) ratio.
Generally, the S/N ratio is expressed as −10 log(objective f unction)2, but this formula was
not directly applicable to this case because the experimental tests had varying objective
functions and sizes. Therefore, we adopted the relative percentage deviation (RPD) of the
objective function as follows:

RPD(%) =
OBJsol −OBJbest

OBJbest
× 100, (40)

where OBJsol is the objective function given by an algorithm and OBJbest is the objective
function of the best solution. Using the RPD, the S/N ratio can be computed as follows:

S/N ratiok = −10 log

(
1

12

4

∑
i=1

3

∑
j=1

RPD2
ijk

)
∀k ∈ 1, 2, . . . , 2, D h the 12525. (41)

Table 3. Factor levels of array L25.

Scenario No.
Factor Levels

A B C D E

1 A (1) B (1) C (1) D (1) E (1)
2 A (1) B (2) C (2) D (2) E (2)
3 A (1) B (3) C (3) D (3) E (3)
4 A (1) B (4) C (4) D (4) E (4)
5 A (1) B (5) C (5) D (5) E (5)
6 A (2) B (1) C (2) D (3) E (4)
7 A (2) B (2) C (3) D (4) E (5)
8 A (2) B (3) C (4) D (5) E (1)
9 A (2) B (4) C (5) D (1) E (2)
10 A (2) B (5) C (1) D (2) E (3)
11 A (3) B (1) C (3) D (5) E (2)
12 A (3) B (2) C (4) D (1) E (3)
13 A (3) B (3) C (5) D (2) E (4)
14 A (3) B (4) C (1) D (3) E (5)
15 A (3) B (5) C (2) D (4) E (1)
16 A (4) B (1) C (4) D (2) E (5)
17 A (4) B (2) C (5) D (3) E (1)
18 A (4) B (3) C (1) D (4) E (2)
19 A (4) B (4) C (2) D (5) E (3)



Mathematics 2022, 10, 657 19 of 26

Table 3. Cont.

Scenario No.
Factor Levels

A B C D E

20 A (4) B (5) C (3) D (1) E (4)
21 A (5) B (1) C (5) D (4) E (3)
22 A (5) B (2) C (1) D (5) E (4)
23 A (5) B (3) C (2) D (1) E (5)
24 A (5) B (4) C (3) D (2) E (1)
25 A (5) B (5) C (4) D (3) E (2)

To analyze statistically significant factors, analysis of variance (ANOVA) was per-
formed using the S/N ratio data. The factor D, which had the smallest sum squares (SS),
was selected as the error term. After pooling this factor, ANOVA was performed, the results
of which are listed in Table 4. Factors B and E exceeded the significance level, indicating
that they had a large effect on the algorithm performance. The levels of these factors with
the highest S/N ratios—B (5) and E (5)—were identified based on an examination of the
S/N results in Figure 2. The factors and levels A (4), C (3), and D (1) had the least effect on
the performance, as reflected by the RPD values shown in Figure 3. From these results, we
identified an optimal combination of A (4), B (5), C (3), D (1), and E (5).

Table 4. Analysis of variance for the S/N ratio.

Factor SS df V F0 p-Value

A 0.2593 4 0.0648 2.6456 0.1844
B 1.4578 4 0.3644 14.8721 0.0114
C 0.1809 4 0.0452 1.8459 0.2836

D(Error) 0.0980 0.0245

E 0.2144 4 0.5360 21.8756 0.0055
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The GA and PSO parameters were also set using the Taguchi method. For the GA, the
parameters population size = 3× |B|, crossover rate = 0.9, and mutation rate = 0.2 were
set. For the PSO, the parameters population size = 3× |B|, inertia weight = 0.9, social
cognitive 1= 1.0, and social cognitive 2 = 0.5 were set.

7.3. Experimental Results

Three experiments were conducted to validate the ACO-based three-stage batch
scheduling algorithm. All of the experiments were carried out on a PC with an Intel Core
i7-7700 CPU running at 3.6 GHz with 16 GB of memory. In each experiment, the batch
scheduling problem with the same problem instance was solved using the same given
solution obtained from the ACO-based batch loading algorithm. All the algorithms were
run until iteration reached 1500 or performance did not increase for 100 iterations.

In the first experiment, the ACO, ACO_NB, GA, PSO, and MF algorithms were
validated by comparing their solutions with optimal solutions produced by ILOG CPLEX.
The experiment was conducted on eight small-sized problems with 30 replications, with the
results summarized in Table 5. To compare the performance of the respective algorithms,
the RPD values were calculated using the optimal solution obtained from CPLEX. In the
table, “N/A” denotes cases in which CPLEX was unable to obtain the optimal solution
before 7200s. The problems with more than eight batches could not be solved by ILOG
CPLEX. For problems with fewer than eight batches, the average RPD values of ACO,
ACO_NB, GA, and PSO were zero whereas the average for the MF algorithm was 2.16. The
result indicates that the meta-heuristic algorithms provided optimal solutions to small-sized
problems. However, the MF algorithm performed poorly even on small-sized problems.

In the second experiment, the relative performances of ACO and ACO_NB in solving
large-sized problems were compared to validate the LBk and UBk values obtained in stage 1.
The experiment was conducted on 36 large-sized problems with 30 replications. The results
are summarized in Table 6. To validate the results, a paired t-test (α = 0.05) was conducted
to statistically evaluate the differences in performance between ACO and ACO_NB. The
results of the paired t-tests are listed in Table 7. ACO significantly outperformed ACO_NB
because it is seen from the table that all of the p-values are less than 0.05. The differences
between the results obtained by ACO and ACO_NB are dependent upon the calculated
values of LBk and UBk, respectively. To demonstrate that the use of LBk and UBk quickly
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converge |K| and the makespan, the performance improvements obtained at different
levels of |F| are shown in Figure 4, in which the average makespan and |K| are presented
for five iterations of ACO and ACO_NB, respectively. The results demonstrate that the
makespan converges faster under ACO than under ACO_NB because the |K| from ACO
rapidly converges to an optimal value between LBk and UBk.

Table 5. The test results of small-sized problems.

|M| |K|
|M|

|B|
|K|

CPLEX ACO ACO_NB GA PSO MF

Opt. Time RPD Time RPD Time RPD Time RPD Time RPD

1 1 1 65 0.02 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.00
1 1 2 217.2 0.24 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.73
1 2 1 149 0.14 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.00
1 2 2 423 5.93 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 3.30
2 1 1 136 0.12 0.00 0.01 0.00 0.01 0.00 0.03 0.00 0.01 0.73
2 1 2 246 8.85 0.00 0.01 0.00 0.01 0.00 0.03 0.00 0.01 9.75
2 2 1 219 9.412 0.00 0.01 0.00 0.01 0.00 0.03 0.00 0.01 2.73
2 2 2 N/A 7200+ N/A N/A N/A N/A N/A

Avg. 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 2.16

Table 6. The test results of large-sized problems.

|F| |M| |K|
|M|

|B|
|K|

Best
ACO ACO_NB GA PSO

RPD Time RPD Time RPD Time RPD Time

4 3 3 3 964.68 0.08 0.50 0.08 0.48 0.59 0.22 2.16 0.15
4 3 3 4 1458.448 0.00 1.09 0.00 1.10 0.96 0.42 1.10 0.28
4 3 4 3 1402.04 0.29 1.19 0.29 1.17 0.07 0.55 1.55 0.39
4 3 4 4 1776.96 1.36 2.62 1.39 3.37 0.15 1.03 1.89 0.56
4 4 3 3 859.28 0.00 0.65 0.00 0.69 0.43 0.38 0.47 0.27
4 4 3 4 1498.52 0.22 3.49 0.30 3.23 0.48 1.21 2.73 0.60
4 4 4 3 1218.04 0.00 1.40 0.00 1.48 1.54 0.53 1.28 0.54
4 4 4 4 1806.64 0.51 7.96 0.53 6.81 0.14 2.34 1.80 1.28
4 5 3 3 953.6 0.00 1.00 0.00 1.14 0.39 0.72 0.39 0.46
4 5 3 4 1383.896 0.00 3.50 0.00 3.19 1.08 1.01 1.07 0.92
4 5 4 3 1324.6 0.64 3.72 0.67 3.74 0.10 1.97 1.96 0.94
4 5 4 4 1924.68 0.00 7.12 0.00 6.75 0.73 2.62 0.82 1.76
5 3 3 3 944 0.00 0.28 0.00 0.31 0.79 0.22 0.91 0.14
5 3 3 4 1347.904 0.08 1.28 0.09 1.30 0.32 0.53 2.29 0.25
5 3 4 3 1168.44 0.12 1.12 0.14 1.08 0.27 0.54 1.58 0.29
5 3 4 4 1922.64 0.00 3.32 0.01 2.91 0.86 1.17 1.03 0.58
5 4 3 3 966 0.00 0.64 0.00 0.78 0.56 0.43 0.59 0.27
5 4 3 4 1583.16 0.61 3.52 0.60 3.26 0.27 1.31 1.27 0.53
5 4 4 3 1206.48 0.00 1.86 0.00 1.94 1.42 0.56 1.13 0.55
5 4 4 4 1733.96 0.00 5.08 0.00 4.52 1.54 1.68 1.67 1.03
5 5 3 3 977.6 0.73 1.80 0.78 2.18 0.22 0.89 3.51 0.52
5 5 3 4 1360.248 0.06 5.22 0.10 5.39 1.05 2.51 2.31 0.97
5 5 4 3 1152 0.00 2.76 0.00 2.98 1.06 0.89 0.73 0.90
5 5 4 4 1827.6 0.11 15.07 0.16 14.06 0.10 4.65 1.64 2.09
6 3 3 3 990.92 0.72 0.55 0.73 0.57 0.36 0.31 2.20 0.16
6 3 3 4 1449.64 0.06 1.47 0.07 1.52 0.31 0.66 0.92 0.27
6 3 4 3 1300.6 0.00 0.62 0.00 0.71 0.45 0.39 0.52 0.28
6 3 4 4 1932.56 0.02 3.25 0.02 2.99 0.80 1.43 0.95 0.53
6 4 3 3 915.04 0.08 1.14 0.11 0.95 0.25 0.54 1.72 0.26
6 4 3 4 1382.528 0.26 3.27 0.27 3.73 1.48 1.35 2.98 0.52
6 4 4 3 1286.6 0.00 1.52 0.00 1.67 0.35 0.93 0.41 0.66
6 4 4 4 1959.84 0.06 8.84 0.08 7.50 1.33 3.27 2.65 1.33
6 5 3 3 962.8 0.00 1.35 0.01 1.66 0.64 0.73 0.67 0.47
6 5 3 4 1437.832 0.32 5.16 0.38 5.81 1.74 1.83 2.33 0.90
6 5 4 3 1306.64 0.06 4.24 0.06 4.35 0.21 1.90 1.19 1.02
6 5 4 4 1919.76 0.08 13.48 0.09 12.55 0.40 4.64 1.88 1.91

Avg. 0.18 3.36 0.19 3.27 0.65 1.29 1.51 0.68
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Table 7. Paired t-test between ACO_NB-ACO.

. N Mean St.
Dev.

St. e.
Mean Lower t-Value p-Value

Paired t-test
for

ACO_NB-ACO
0.16 3.75 0.001

ACO_NB 36 1386.2 337.0 56.2
ACO 36 1385.8 336.8 56.1

Difference 36 0.35 0.56 0.09

In the third experiment, the results produced by ACO, GA, and PSO in solving large-
sized problems were relatively compared. The experiment was conducted on the same
large-sized problems used in the second experiment, and the average RPD values obtained
by ACO, GA, and PSO were 0.18, 0.65, and1.51 in Table 6, respectively. These results indicate
that ACO obtained better RPD values than GA and PSO. However, it took more computing
time for it to obtain the best feasible solutions because, despite the fact that the algorithm
generally converges quickly to the best solution, ACO requires a considerable amount of
computing time to execute the proposed MMAS algorithm within one pheromone search
iteration. In our batch scheduling problem, the calculation of desirability under the MMAS
algorithm exponentially increases the algorithm running time when |B|/|K| increases.

To determine whether the application of GA or PSO could result in an improved
solution, an additional experiment in which the computing times for GA and PSO were
extended until the ACO solution converged was conducted. Using the input data from the
large-sized problem, GA and PSO were retested, with the results summarized in Table 8.
The average RPD values produced by ACO, GA, and PSO were 0.33, 0.48, 1.55, respectively,
indicating that applying GA and PSO could not improve the ACO solution quality even if
they were provided with additional computing time. To statistically validate the results in
Table 8, t-tests were conducted to verify the differences in performance between ACO and
the other meta-heuristics. As the same instance of the problem was used in each case, a
paired t-test (α = 0.05) was conducted. The results of paired t-testing between PSO-ACO
and GA-ACO are shown in Table 9. In both cases, the p-values are less than 0.05, suggesting
that ACO performed significantly better than either PSO or GA.

Table 8. The mean RPD of large-sized problems with an equal running time.

|F| ACO GA PSO

4 0.35 0.51 1.36
5 0.40 0.42 1.66
6 0.23 0.51 1.63

Average 0.33 0.48 1.55
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Table 9. Paired t-test between PSO-ACO and GA-ACO.

N Mean St.
Dev.

St. e.
Mean Lower t-Value p-Value

Paired t-test for
PSO-ACO 15.577 18.04 0.000

PSO 180 1403.6 339.0 25.3
ACO 180 1386.1 332.6 24.8

Difference 180 17.490 13.009 0.970

Paired t-test for
GA-ACO 0.209 2.21 0.029

GA 180 1388.1 332.5 24.8
ACO 180 1386.1 332.6 24.8

Difference 180 1.987 12.090 0.901

8. Conclusions

In this paper, we considered a BLSP for parallel BPMs with batch deterioration and
applied RMAs. In the proposed BLSP, the time-dependent deterioration occurring during
batch processing and the need to schedule RMAs between all batches increases the complex-
ity of the batch scheduling problem. As an MF algorithm from a previous paper could not
find an optimal solution to even small-sized versions of this problem, we solved the batch
scheduling problem by dividing it into three stages, determining the number of buckets,
assigning the batches to buckets, and scheduling the buckets to machines. Determining the
number of buckets fixes the position of the RMAs and reduces the complexity of the batch
scheduling problem. The lower and upper bounds of the number of buckets, LBk and UBk,
respectively, are calculated to improve the solution performance and increase the speed of
convergence. To schedule batches into a fixed number of buckets, an ACO is used to assign
batches and a derived rule is used to sequence the batches. In solving the batch assignment
problem, the ACO outperformed both GA and PSO. Finally, a dispatching rule is used to
schedule buckets to the machines. Using this three-stage ACO-based batch scheduling
algorithm, the proposed method finds optimal solutions for small-sized problems and
provides better-quality solutions for large-size problems than can be obtained using other
meta-heuristics.
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