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Abstract: A Yamabe soliton is defined on an arbitrary almost-contact B-metric manifold, which is
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In both cases, explicit five-dimensional examples are given, which are characterized in relation to the
results obtained.

Keywords: Yamabe soliton; almost contact B-metric manifold; almost contact complex Riemannian
manifold; Sasaki-like manifold

MSC: 53C25; 53D15; 53C50; 53C44; 53D35; 70G45

1. Introduction

Richard Hamilton introduced the notion of the Yamabe flow in 1988 (see [1]) as an
apparatus for constructing metrics with constant scalar curvature. The significance of this
problem from the point of view of mathematical physics is that Yamabe flow corresponds
to the case of fast diffusion of the porous medium [2].

It is said that a time-dependent metric g(t) on a (pseudo-)Riemannian manifold (M, g)
is deformed by Yamabe flow if g satisfies the following equation:

∂

∂t
g(t) = −τ(t)g(t), g(0) = g0,

where τ(t) is the scalar curvature of g(t). Yamabe flow can be interpreted as a process
that deforms the metric of M to a conformal metric of constant scalar curvature as this
flow converges. The latter metric is one of the fixed points of the Yamabe flow in the given
conformal class.

If M is 2-dimensional, the Yamabe flow is equivalent to Ricci flow [3], defined by
∂
∂t g(t) = −2ρ(t), where ρ(t) denotes the Ricci tensor of g(t). In contrast, when M has a
dimension greater than 2, these two types of flows do not match because Yamabe flow
preserves the conformal class of g(t), but the Ricci flow generally does not.

A self-similar solution of the Yamabe flow, defined on a Riemannian manifold or
a pseudo-Riemannian manifold, is called a Yamabe soliton and is determined by the
following ([4]):

1
2
Lvg = (τ − σ)g,

where Lvg stands for the Lie derivative of the metric g along the vector field v, called the
soliton potential, τ denotes the scalar curvature of g and σ is a constant known as the
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soliton constant. The properties of the Yamabe soliton depend on the additional tensor
structure of the studied manifold.

Many authors have studied Yamabe solitons on different types of manifolds since the
introduction of this concept (see, e.g., [5–9]).

In the present paper, we begin the study of the mentioned Yamabe solitons on almost
contact B-metric manifolds. The geometry of these manifolds is significantly influenced by
the presence of two B-metrics, which are interconnected by the almost contact structure.

It is a well-known fact that the Yamabe flow preserves the conformal class of the metric.
Thus, this gives us a reason to study Yamabe solitons and conformal transformations
together. Contact conformal transformations were studied in [10], which transform not
only the metric but also the Reeb vector field and its associated contact 1-form through the
pair of B-metrics. According to this work, the class of almost contact B-metric manifolds,
which are closed under the action of contact conformal transformations, is the direct sum
of the four main classes among the eleven basic classes of these manifolds known from
the classification of Ganchev–Mihova–Gribachev in [11]. Main classes are called those for
which their manifolds are characterized by the fact that the covariant derivative of the
structure tensors with respect to the Levi–Civita connection of some of the B-metrics is
expressed only by a pair of B-metrics and the corresponding traces.

We study Yamabe solitons on two of the simplest types of manifolds among those
studied, namely cosymplectic and Sasaki-like. The former have parallel structure tensors
with respect to the Levi–Civita connections of the B-metrics. The latter are those for which
their complex cone is a Kähler manifold with a pair of Norden metrics, i.e., again with
parallel structure tensors with respect to the Levi–Civita connections of the metrics. Note
that the class of Sasaki-like manifolds does not contain cosymplectic manifolds, although
they are in each of the eleven basic classes of the classification used.

We find that the manifolds thus constructed in both cases belong to one of the main
classes. This class is the only one that contains the conformally equivalent manifolds of the
cosymplectic ones by the usual conformal transformations on contact distribution.

The present paper is organized as follows. After the present introductory words,
Section 2 is devoted to the basic concepts of almost contact B-metric manifolds, contact
conformal transformations of the structure tensors on them, and the introduction of the
notion of a Yamabe soliton on a transformed almost contact B-metric manifold. In Section 3
and Section 4, we study the constructed manifolds when the initial manifold is cosymplectic
and Sasaki-like, respectively. In Section 5, we provide two explicit examples for each of
considered two cases as five-dimensional manifolds equipped with the structures studied.

2. Almost Contact B-Metric Manifolds, Contact Conformal Transformations, and
Yamabe Solitons

Let (M, ϕ, ξ, η, g) be an almost contact manifold with B-metric or an almost contact
B-metric manifold, i.e., M is a (2n + 1)-dimensional differentiable pseudo-Riemannian
manifold with metric g of signature (n + 1, n), endowed with an almost contact structure
(ϕ, ξ, η) consisting of an endomorphism ϕ of the tangent bundle, a vector field ξ, its dual
1-form η such that the following algebraic relations are satisfied [11]:

ϕξ = 0, ϕ2 = −ι + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1, (1)

g(X, Y) = −g(ϕX, ϕY) + η(X)η(Y) (2)

for arbitrary X and Y of the algebra X(M) on the smooth vector fields on M, where ι stands
for the identity transformation on X(M).

The manifolds (M, ϕ, ξ, η, g) are also known as almost contact complex Riemannian
manifolds (see, e.g., [12]).

Furthermore, X, Y, and Z will stand for arbitrary elements of X(M) or vectors in the
tangent space Tp M of M at an arbitrary point p in M.
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The associated B-metric g̃ of g on M is defined by the following:

g̃(X, Y) = g(X, ϕY) + η(X)η(Y)

and it is also of signature (n + 1, n) as its counterpart g.
The fundamental tensor F of type (0,3) on (M, ϕ, ξ, η, g) is defined by the following:

F(X, Y, Z) = g
(
(∇X ϕ)Y, Z

)
,

where∇ is the Levi–Civita connection of g. The following properties of F are consequences
of (1) and (2):

F(X, Y, Z) = F(X, Z, Y)

= F(X, ϕY, ϕZ) + η(Y)F(X, ξ, Z) + η(Z)F(X, Y, ξ)

and the relations of F with ∇ξ and ∇η are as follows.

(∇Xη)Y = g(∇Xξ, Y) = F(X, ϕY, ξ). (3)

The following 1-forms, known as Lee forms of the manifold, are associated with F:

θ = gijF(Ei, Ej, ·), θ∗ = gijF(Ei, ϕEj, ·), ω = F(ξ, ξ, ·),

where gij are the components of the inverse matrix of g with respect to a basis {Ei; ξ}
(i = 1, 2, . . . , 2n) of Tp M. The following general identities for the Lee forms of (M, ϕ, ξ, η,
g) are known from the following [13].

θ∗ ◦ ϕ = −θ ◦ ϕ2, ω(ξ) = 0. (4)

A classification of the almost contact B-metric manifolds in terms of F is given in [11].
This classification includes eleven basic classes Fi, i ∈ {1, 2, . . . , 11}. Their intersection is
the special class F0 defined by condition for the vanishing of F. Hence, F0 is the class of
cosymplectic B-metric manifolds, where structures ϕ, ξ, η, g, and g̃ are ∇-parallel.

In the present work, we obtain manifolds from class F1 defined by the following [11].

F(X, Y, Z) =
1

2n

{
θ(ϕ2Z)g(ϕX, ϕY) + θ(ϕZ)g(X, ϕY)

+ θ(ϕ2Y)g(ϕX, ϕZ) + θ(ϕY)g(X, ϕZ)
}

.

This class contains the conformally equivalent manifolds of the cosymplectic B-metric
manifolds by usual conformal transformations of the B-metric ḡ = e2ug, where u is a
differentiable function on M with du(ξ) = 0 [13].

Using the pair of B-metrics g and g̃ as well as η⊗ η, in [13], the author and K. Gribachev
introduced the so-called contact conformal transformation of the B-metric g into a new
B-metric ḡ for (M, ϕ, ξ, η, g). Later, in [10], this transformation is generalized as a contact
conformal transformation that provides an almost contact B-metric structure (ϕ, ξ̄, η̄, ḡ)
as follows:

ξ̄ = e−wξ, η̄ = ewη,

ḡ = e2u cos 2v g + e2u sin 2v g̃ +
(
e2w − e2u cos 2v− e2u sin 2v

)
η ⊗ η,

(5)

where u, v, and w are differentiable functions on M.
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The corresponding tensors F̄ and F are related by [10] (see also ([14], (22))):

2F̄(X, Y, Z) = 2e2u cos 2v F(X, Y, Z)

+ e2u sin 2v[F(ϕY, Z, X)− F(Y, ϕZ, X) + F(X, ϕY, ξ)η(Z)]

+ e2u sin 2v[F(ϕZ, Y, X)− F(Z, ϕY, X) + F(X, ϕZ, ξ)η(Y)]

+ (e2w − e2u cos 2v)[F(X, Y, ξ) + F(ϕY, ϕX, ξ)]η(Z)

+ (e2w − e2u cos 2v)[F(X, Z, ξ) + F(ϕZ, ϕX, ξ)]η(Y)

+ (e2w − e2u cos 2v)[F(Y, Z, ξ) + F(ϕZ, ϕY, ξ)]η(X)

+ (e2w − e2u cos 2v)[F(Z, Y, ξ) + F(ϕY, ϕZ, ξ)]η(X)

− 2e2u[cos 2v α(Z) + sin 2v β(Z)]g(ϕX, ϕY)

− 2e2u[cos 2v α(Y) + sin 2v β(Y)]g(ϕX, ϕZ)

− 2e2u[cos 2v β(Z)− sin 2v α(Z)]g(X, ϕY)

− 2e2u[cos 2v β(Y)− sin 2v α(Y)]g(X, ϕZ)

+ 2e2wη(X)[η(Y)dw(ϕZ) + η(Z)dw(ϕY)],

(6)

where we use the following notations for brevity.

α = du ◦ ϕ + dv, β = du− dv ◦ ϕ. (7)

In the general case, the relations between the Lee forms of the manifolds (M, ϕ, ξ, η, g)
and (M, ϕ, ξ̄, η̄, ḡ) are the following (see [10]).

θ̄ = θ + 2n α, θ̄∗ = θ∗ + 2n β, ω̄ = ω + dw ◦ ϕ. (8)

Definition 1. We say that B-metric ḡ generates a Yamabe soliton with the potential Reeb vector
field ξ̄ and soliton constant σ̄ on a conformal almost contact B-metric manifold (M, ϕ, ξ̄, η̄, ḡ), if
the following condition is satisfied:

1
2
Lξ̄ ḡ = (τ̄ − σ̄)ḡ, (9)

where τ̄ is the scalar curvature of ḡ.

As is well known (e.g., [15]), a Yamabe soliton is called shrinking, steady, or expanding
depending on whether its soliton constant is positive, zero, or negative, respectively.

It is well known the following expression of the Lie derivative in terms of the covariant
derivative with respect to the Levi–Civita connection ∇̄ of ḡ.(

Lξ̄ ḡ
)
(X, Y) = ḡ

(
∇̄X ξ̄, Y

)
+ ḡ
(
X, ∇̄Y ξ̄

)
. (10)

3. The Case When the Given Manifold Is Cosymplectic

In this section, we consider (M, ϕ, ξ, η, g) to be a cosymplectic manifold with almost
contact B-metric structure, i.e., an F0-manifold, defined by covariant constant structure
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tensor ϕ (and, consequently, the same condition for ξ, η, and g̃ is valid) with respect to ∇
of g. Therefore, F = 0 and Equation (6) takes the following form.

F̄(X, Y, Z) =− e2u[cos 2v α(Z) + sin 2v β(Z)]g(ϕX, ϕY)

− e2u[cos 2v α(Y) + sin 2v β(Y)]g(ϕX, ϕZ)

− e2u[cos 2v β(Z)− sin 2v α(Z)]g(X, ϕY)

− e2u[cos 2v β(Y)− sin 2v α(Y)]g(X, ϕZ)

+ e2wη(X)[η(Y)dw(ϕZ) + η(Z)dw(ϕY)].

(11)

From the latter equality, bearing in mind the general identity Equation (3) for the
manifolds under consideration, we obtain the following.

ḡ
(
∇̄X ξ̄, Y

)
=− e2u−w[cos 2v β(ξ)− sin 2v α(ξ)]g(ϕX, ϕY)

+ e2u−w[cos 2v α(ξ) + sin 2v β(ξ)]g(X, ϕY)

+ ewη(X)dw(ϕ2Y).

Combining the last expression with (7) and (10) produces the following.(
Lξ̄ ḡ

)
(X, Y) =− 2e2u−w[cos 2v du(ξ)− sin 2v dv(ξ)]g(ϕX, ϕY)

+ 2e2u−w[cos 2v dv(ξ) + sin 2v du(ξ)]g(X, ϕY)

+ ew
[
η(X)dw(ϕ2Y) + η(Y)dw(ϕ2X)

]
.

(12)

Theorem 2. An almost contact B-metric manifold that is cosymplectic can be transformed by a
contact conformal transformation of type (5) so that the transformed B-metric is a Yamabe soliton
with potential the transformed Reeb vector field and a soliton constant σ̄ if and only if the functions
(u, v, w) of the used transformation satisfy the following conditions.

du(ξ) = 0, dv(ξ) = 0, dw = dw(ξ)η. (13)

Moreover, the obtained Yamabe soliton has a constant scalar curvature with value τ̄ = σ̄
and the obtained almost contact B-metric manifold belongs to the subclass of the main class F1
determined by the following conditions.

θ̄ = 2n
{

du ◦ ϕ− dv ◦ ϕ2
}

, θ̄∗ = −2n
{

du ◦ ϕ2 + dv ◦ ϕ
}

. (14)

Proof. If we assume that ḡ generates a Yamabe soliton with potential ξ̄ and a soliton
constant σ̄ on (M, ϕ, ξ̄, η̄, ḡ), then due to (9) and (12), we have the following.

− e2u−w{[cos 2v du(ξ)− sin 2v dv(ξ)]g(ϕX, ϕY)

−[sin 2v du(ξ) + cos 2v dv(ξ)]g(X, ϕY)}

+
1
2

ew
{

dw(ϕ2X)η(Y) + dw(ϕ2Y)η(X)
}

= (τ̄ − σ̄)
{
−e2u[cos 2v g(ϕX, ϕY)− sin 2v g(X, ϕY)]

+e2wη(X)η(Y)
}

.

(15)
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The substitution ξ for Y in the latter equality gives the following:

dw(ϕ2X) = 2ew(τ̄ − σ̄)η(X), (16)

which is valid if and only if
τ̄ = σ̄. (17)

Therefore, (16) implies condition dw ◦ ϕ = 0. In this case, because of (15), we obtain
du(ξ) = dv(ξ) = 0, which completes (13).

Let us remark that Lξ̄ ḡ vanishes because of (17) and (9), i.e., ξ̄ is a Killing vector field
in the considered case.

After that, we apply the following relations to (11), which are equivalent to the last
formula in (5).

ḡ(ϕX, ϕY) = e2u cos 2v g(ϕX, ϕY)− e2u sin 2v g(X, ϕY),

ḡ(X, ϕY) = e2u cos 2v g(X, ϕY) + e2u sin 2v g(ϕX, ϕY).
(18)

Then, we use (13) and the formula η̄ = ewη from (5) to obtain the following expression.

F̄(X, Y, Z) = ḡ(ϕX, ϕY) α(ϕ2Z) + ḡ(X, ϕY) β(ϕ2Z)

+ ḡ(ϕX, ϕZ) α(ϕ2Y) + ḡ(X, ϕZ) β(ϕ2Y).
(19)

Now, we substitute the Lee forms of F̄ from (8) in (19) and obtain the following.

F̄(X, Y, Z) =
1

2n

{
ḡ(ϕX, ϕY) θ̄(ϕ2Z) + ḡ(X, ϕY) θ̄∗(ϕ2Z)

+ ḡ(ϕX, ϕZ) θ̄(ϕ2Y) + ḡ(X, ϕZ) θ̄∗(ϕ2Y)
}

.

The last expression of F̄ means that the obtained manifold belongs to the main class F1,
according to the classification in [11], and the corresponding Lee forms have the following
properties.

θ̄ = −θ̄ ◦ ϕ2, θ̄∗ = −θ̄∗ ◦ ϕ2, ω̄ = 0.

Finally, taking into account (8), (13), and the vanishing θ, θ∗, and ω for any cosymplec-
tic B-metric manifold, we find the expressions of the Lee forms of the transformed manifold
as in (14).

As a result from (13), we obtain the result that the case in the present section is possible
when functions (u, v, w) of the contact conformal transformation in (5) satisfy the following
conditions:

• u and v are constants on the vertical distribution V = span ξ = ker ϕ;
• w is a constant on the horizontal (contact) distribution H = ker η = im ϕ.

4. The Case When the Given Manifold Is Sasaki-like

In the present section, we suppose that the given almost contact B-metric manifold (M,
ϕ, ξ, η, g) is Sasaki-like, i.e., the complex cone M×R− is a Kähler manifold with Norden
metric also known as a holomorphic complex Riemannian manifold [12].

If (M, ϕ, ξ, η, g) is Sasaki-like, then the following condition is met.

∇Xξ = −ϕX.

The Sasaki-like condition in terms of F given in [12] is the following.

F(X, Y, Z) = g(ϕX, ϕY)η(Z) + g(ϕX, ϕZ)η(Y). (20)
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Then, by virtue of (3), (6), and (10) for (M, ϕ, ξ̄, η̄, ḡ) and (20), we obtain the following.(
Lξ̄ ḡ

)
(X, Y) = 2e2u−w{〈sin 2v du(ξ)− cos 2v [1− dv(ξ)]〉g(X, ϕY)

−〈cos 2v du(ξ) + sin 2v[1− dv(ξ)]〉g(ϕX, ϕY)}

+ ew
{

dw(ϕ2X)η(Y) + dw(ϕ2Y)η(X)
}

.

(21)

Theorem 3. An almost contact B-metric manifold that is Sasaki-like can be transformed by a
contact conformal transformation of type (5) so that the transformed B-metric is a Yamabe soliton
with potential the transformed Reeb vector field and a soliton constant σ̄ if and only if the functions
(u, v, w) of the used transformation satisfy the following conditions.

du(ξ) = 0, dv(ξ) = 1, dw = dw(ξ)η. (22)

Moreover, the obtained Yamabe soliton has a constant scalar curvature with a value τ̄ = σ̄
and the transformed almost contact B-metric manifold belongs to a subclass of the main class F1
determined by the following.

θ̄ = 2n
{

du ◦ ϕ− dv ◦ ϕ2
}

, θ̄∗ = 2n{du− dv ◦ ϕ}. (23)

Proof. The expression in (21) and the assumption that ḡ generates a Yamabe soliton with
potential ξ̄ and a soliton constant σ̄ on (M, ϕ, ξ̄, η̄, ḡ) imply the following.

e2u−w{〈sin 2v du(ξ)− cos 2v [1− dv(ξ)]〉g(X, ϕY)

−〈cos 2v du(ξ) + sin 2v[1− dv(ξ)]〉g(ϕX, ϕY)}

+
1
2

ew
{

dw(ϕ2X)η(Y) + dw(ϕ2Y)η(X)
}

= (τ̄ − σ̄)
{

e2u[sin 2v g(X, ϕY)− cos 2v g(ϕX, ϕY)]

+e2wη(X)η(Y)
}

.

(24)

An obvious consequence for Y = ξ is the following:

dw(ϕ2X) = 2ew(τ̄ − σ̄)η(X),

which is satisfied if and only it the following conditions are fulfilled.

τ̄ = σ̄, (25)

dw = dw(ξ)η. (26)

Due to (25) and (9), we have a vanishing Lξ̄ ḡ, which means that ξ̄ is a Killing vector
field in this case as well.

Applying (25) and (26) in (24), we obtain the following.

e2u−w{〈sin 2v du(ξ)− cos 2v [1− dv(ξ)]〉g(X, ϕY)

−〈cos 2v du(ξ) + sin 2v[1− dv(ξ)]〉g(ϕX, ϕY)} = 0.

The latter equality is valid for arbitrary vector fields if and only if the following
conditions are satisfied.

du(ξ) = 0, dv(ξ) = 1.
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Substitute (20) and (22) into (6) to obtain the following.

F̄(X, Y, Z) =
e2u

2n

{
[cos 2v{α(Z)− η(Z)}+ sin 2v β(Z)]g(ϕX, ϕY)

+ [cos 2v β(Z)− sin 2v{α(Z)− η(Z)}]g(X, ϕY)

+ [cos 2v{α(Y)− η(Y)}+ sin 2v β(Y)]g(ϕX, ϕZ)

+ [cos 2v β(Y)− sin 2v{α(Y)− η(Y)}]g(X, ϕZ)
}

.

(27)

Using our assumption that (M, ϕ, ξ, η, g) is Sasaki-like, we have the following [12].

θ = −2n η, θ∗ = ω = 0.

Then, by notations (7) and conditions (22), formulae (8) yield the the following.

θ̄ = 2n[α− η], θ̄∗ = 2n β, ω̄ = 0. (28)

Equalities (7) and (22) imply the following relation: β = −α ◦ ϕ, which, together with
the first identity in (4), helps to obtain the following expressions.

α = − θ̄ ◦ ϕ2

2n
+ η, β = − θ̄ ◦ ϕ

2n
. (29)

Substitute (29) into (27) and obtain the following formula.

F̄(X, Y, Z) =
e2u

2n

{[
cos 2v θ̄(ϕ2Z) + sin 2v θ̄(ϕZ)

]
g(ϕX, ϕY)

+
[
cos 2v θ̄(ϕZ)− sin 2v θ̄(ϕ2Z)

]
g(X, ϕY)

+
[
cos 2v θ̄(ϕ2Y) + sin 2v θ̄(ϕY)

]
g(ϕX, ϕZ)

+
[
cos 2v θ̄(ϕY)− sin 2v θ̄(ϕ2Y)

]
g(X, ϕZ)

}
.

Then, we apply (18) in the last equality and obtain the following expression.

F̄(X, Y, Z) =
1

2n

{
θ̄(ϕ2Z)ḡ(ϕX, ϕY) + θ̄(ϕZ)ḡ(X, ϕY)

+ θ̄(ϕ2Y)ḡ(ϕX, ϕZ) + θ̄(ϕY)ḡ(X, ϕZ)
}

.

The obtained form of F̄ coincides with definition (M, ϕ, ξ̄, η̄, ḡ) to belong to the basic
class F1, according to the classification of Ganchev–Mihova–Gribachev in [11].

Finally, the expression of the Lee forms of the transformed manifold given in (23)
follows from (28) and (7).

5. Examples
5.1. Example in the Case of Cosymplectic Manifold

Let us consider a real space R5 =
{
(x0, x1, x2, x3, x4) | xi ∈ R

}
equipped with an

almost contact B-metric structure defined with respect to the local basis as follows:

ϕ
∂

∂x1 =
∂

∂x3 , ϕ
∂

∂x2 =
∂

∂x4 , ϕ
∂

∂x3 = − ∂

∂x1 , ϕ
∂

∂x4 = − ∂

∂x2 , ϕ
∂

∂x0 = 0,

ξ =
∂

∂x0 , η = dx0, g(X, Y) = X0Y0 + X1Y1 + X2Y2 − X3Y3 − X4Y4
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for X = Xi ∂

∂xi and Y = Yi ∂

∂xi , i ∈ {0, 1, 2, 3, 4}. Then, (R5, ϕ, ξ, η, g) is a cosymplectic

B-metric manifold according to [11].
Suppose that a contact conformal transformation of the form in (5) is determined by

the following functions u, v, and w on the manifold under consideration:

u = − ln
{(

x1 + x4
)2

+
(

x2 − x3
)2
}

, v = const, w = 0, (30)

where x1 6= −x4 or x2 6= x3. A more general form of u is given in [16]. As a consequence
of (30), we obtain the result that such a function u has the property du(ξ) = 0, i.e., du =
−du ◦ ϕ2. Furthermore, given (7) and (8), the Lee forms of the transformed manifold take
the following form.

θ̄ = 2n du ◦ ϕ, θ̄∗ = −2n du ◦ ϕ2, ω̄ = 0. (31)

The first two are not zero due to the following calculations starting from (30).

∂u
∂x1 =

∂u
∂x4 = −

2
(
x1 + x4)

(x1 + x4)
2
+ (x2 − x3)

2 ,

∂u
∂x2 = − ∂u

∂x3 = −
2
(
x2 − x3)

(x1 + x4)
2
+ (x2 − x3)

2 ,
(32)

du(ϕX) = −2

(
x1 + x4)(X2 − X3)− (x2 − x3)(X1 + X4)

(x1 + x4)
2
+ (x2 − x3)

2 ,

du(ϕ2X) = 2

(
x1 + x4)(X1 + X4)+ (x2 − x3)(X2 − X3)

(x1 + x4)
2
+ (x2 − x3)

2 .

Therefore, following [16], the transformed manifold (R5, ϕ, ξ, η, ḡ) belongs to the class
F1, but not to its subclass F0. According to Theorem 2, (R5, ϕ, ξ, η, ḡ) admits a Yamabe
soliton with potential ξ̄ = ξ and a scalar curvature τ̄ = σ̄.

In [16], the expression of the curvature tensor R̄ for ḡ is given in the following form:

R̄ = −(ψ̄1 + ψ̄2 − ψ̄4)(du⊗ du), (33)

where ψ̄1(S), ψ̄2(S), and ψ̄4(S) are the following tensors for the B-metric ḡ and an arbitrary
tensor S of type (0,2), which has form S = du⊗ du in (33).

ψ̄1(X, Y, Z, W) = ḡ(Y, Z)S(X, W)− ḡ(X, Z)S(Y, W)

+ g(X, W)S(Y, Z)− g(Y, W)S(X, Z),

ψ̄2(X, Y, Z, W) = ḡ(Y, ϕZ)S(X, ϕW)− ḡ(X, ϕZ)S(Y, ϕW)

+ ḡ(X, ϕW)S(Y, ϕZ)− ḡ(Y, ϕW)S(X, ϕZ),

ψ̄4(X, Y, Z, W) = η̄(Y)η̄(Z)S(X, W)− η̄(X)η̄(Z)S(Y, W)

+ η̄(X)η̄(W)S(Y, Z)− η̄(Y)η̄(W)S(X, Z).

(34)

By calculating the scalar curvature τ̄ using (33) and (34), we obtain the following:
τ̄ = −8 du(grad u) and due to (32), we find that (R5, ϕ, ξ, η, ḡ) is scalar flat. τ̄ = 0.

Hence, because of (17), the Yamabe soliton constant is also zero, i.e., σ̄ = 0, and then
the obtained Yamabe soliton for ḡ is steady. The constructed example in this subsection
supports Theorem 2.
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5.2. Example in the Case of Sasaki-like Manifold

We recall a known example of a Sasaki-like manifold given in [12] as Example 2. A
Lie group G of dimension 5 is considered to have a basis of left-invariant vector fields
{E0, . . . , E4} defined by the following commutators for λ, µ ∈ R.

[E0, E1] = λE2 + E3 + µE4, [E0, E2] = −λE1 − µE3 + E4,

[E0, E3] = −E1 − µE2 + λE4, [E0, E4] = µE1 − E2 − λE3.

An invariant almost contact B-metric structure is then defined on G by the following.

g(E0, E0) = g(E1, E1) = g(E2, E2) = 1

g(E3, E3) = g(E4, E4) = −1,

g(Ei, Ej) = 0, i, j ∈ {0, 1, 2, 3, 4}, i 6= j,

ξ = E0, ϕE1 = E3, ϕE2 = E4.

It is verified that the constructed manifold (G, ϕ, ξ, η, g) is an almost contact B-metric
manifold that is Sasaki-like.

In [17], the components Rijkl = R(ei, ej, ek, el) of its curvature tensor are calculated and
the type of the corresponding Ricci tensor ρ is found. Namely, it is ρ = 4 η ⊗ η and the
scalar curvature is τ = 4.

Using the non-zero ones of Rijkl determined by the following equalities:

R0110 = R0220 = −R0330 = −R0440 = 1,

R1234 = R1432 = R2341 = R3412 = 1, R1331 = R2442 = 1

and the properties Rijkl = −Rjikl = −Rijlk, we compute that the associated quantity τ∗ of τ
is zero.

τ∗ = gijρ(Ei, ϕEj) = 0.

Now, we define the following functions on R5 =
{
(x0, x1, x2, x3, x4)

}
.

u =
1
2

ln
{[

(x1)2 + (x3)2
][
(x2)2 + (x4)2

]}
,

v = arctan
x1x4 + x2x3

x3x4 − x1x2 + x0,

w = x0.

(35)

The non-zero ones between their partial derivatives are the following.

∂u
∂x1 = − ∂v

∂x3 =
x1

(x1)2 + (x3)2 ,
∂u
∂x2 = − ∂v

∂x4 =
x2

(x2)2 + (x4)2 ,

∂u
∂x3 =

∂v
∂x1 =

x3

(x1)2 + (x3)2 ,
∂u
∂x4 =

∂v
∂x2 =

x4

(x2)2 + (x4)2 ,

∂v
∂x0 =

∂w
∂x0 = 1.

Then, for an arbitrary vector field X = Xi ∂
∂xi , i ∈ {0, 1, 2, 3, 4}, we have the following.

ϕX = −X3 ∂

∂x1 − X4 ∂

∂x2 + X1 ∂

∂x3 + X2 ∂

∂x4 , X0 = η(X), ξ =
∂

∂x0 .

We verify immediately that the functions defined by (35) satisfy the following proper-
ties.

du = −dv ◦ ϕ, du(ξ) = 0, dv(ξ) = 1, dw = η.
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Let us consider a contact conformal transformation defined by (5), where functions
(u, v, w) are determined as in (35).

Then, the transformed manifold (G, ϕ, ξ̄, η̄, ḡ) is an F1-manifold with a Yamabe soliton
with potential ξ̄ and a constant scalar curvature τ̄ = σ̄, according to Theorem 3. Moreover,
taking into account (23), we obtain the corresponding Lee forms as follows.

θ̄ = 4n du ◦ ϕ, θ̄∗ = 4n du, ω̄ = 0.

According to Proposition 8 in [12], the Ricci tensor of an almost contact B-metric
manifold is invariant under a contact homothetic transformation (i.e., when u, v, and w are
constants); therefore, for the corresponding scalar curvatures, we have the following.

τ̄ = e−2u cos 2v τ − e−2u sin 2v τ∗ +
{

e−2w − e−2u cos 2v
}

ρ(ξ, ξ),

τ̄∗ = e−2u sin 2v τ + e−2u cos 2v τ∗ − e−2u sin 2v ρ(ξ, ξ).

Then, bearing in mind the last results, we obtain, for our example, the following.

τ̄ = 4 e−2w, τ̄∗ = 0.

Hence, (G, ϕ, ξ̄, η̄, ḡ) is scalar flat and the Yamabe soliton constant for ḡ is σ̄ = 4; thus,
the obtained Yamabe soliton is shrinking.
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