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Abstract: In this paper, we introduce a unified fractional derivative, defined by two parameters (order
and asymmetry). From this, all the interesting derivatives can be obtained. We study the one-sided
derivatives and show that most known derivatives are particular cases. We consider also some myths
of Fractional Calculus and false fractional derivatives. The results are expected to contribute to limit
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1. Introduction

Four centuries after the first reference to the possibility of non integer order derivatives,
the presently termed Fractional Calculus (FC) has reached a crossroads where multiple
definitions are mixed, causing a huge confusion that makes life very difficult for those who
only intend to make applications in Science and Engineering. In fact, the first reference
was found in a letter from Leibniz to J. Bernoulli [1]. Although Euler (1730), Fourier (1822),
and Abel (1823) touched on the problem, the true father of FC was Liouville (1832) [2,3],
in spite of their many difficulties to impose their vision, due to a main obstacle: At that
time, the inverse Laplace integral was unknown. Therefore, Liouville could not find
a simple way of expressing a function in terms of exponentials that were the basis for
his findings. Anyway, the main definitions we find today are based on the formulæ
presented by Liouville, mainly the Riemann–Liouville [4], (Dzherbashian)-Caputo [5,6],
and Grünwald-Letnikov [4] definitions. However, and based on these derivatives, new
ones have been proposed alongside these, such as Hadamard’s [6] or Marchaud’s [4].
Consequently, the number of currently existing fractional derivatives (FDs) is so high,
which became the biggest obstacle to the diffusion of FC in Science and Engineering.

If we also consider the pseudo-derivatives and the disguised integer order derivatives,
we conclude that the situation is really confused and confusing. Trying to introduce some
order in the field, Oliveira and Machado, first, and Teodoro et al., more recently [7,8],
listed such derivatives and introduced a classification according to some specified criteria.
However, these papers included some operators that can hardly be classified as FDs. On the
other hand, in recent years a great discussion took place in forums, conferences and articles,
where there is a great confusion between the concepts of system and derivative. In a
sequence of papers, Ortigueira and Machado tried to clarify the situation by proposing a
coherent definition of FD [9], a description of FD suitable for applications in Science and
Engineering [10], and introducing the FD in the context of fractional linear systems [11].
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In this text, we make another step to clarify the situation, by introducing a step-down
procedure. We recover the unified fractional derivative (UFD) obtained in [11] after a four step
unification, and proceed as if this UFD were a mother derivative, defined by two parameters
(order and dissymmetry), from which all the derivatives listed in [7,8] emerge as particular
cases [12]. We will work in the context of Laplace and Fourier transforms. This includes
most of the interesting functions and distributions used in practical applications.

We could go further by considering the tempered FDs [13,14], but we will not do so, in or-
der to keep ourselves in the context of the derivatives introduced in [7,8]. On the other hand,
we directed our attention to what we can call shift invariant derivatives, without considering the
scale invariant ones such as the Hadamard [6] and the quantum [15] derivatives, as well as
the discrete-time derivatives [16–18]. We will also not consider variable order derivatives [17].
Some operators, sometimes called FDs, are analyzed and put in the correct framework.

The paper is outlined as follows. In Section 2, we define fractional derivative. The UFD
and its main properties is introduced in Section 3. The derivatives to referred in [7,8] are
then obtained sequentially as particular cases through suitable choice of the parameters
and working domain (Section 4). The other operators that, according to our framework,
cannot be considered as FD will be treated in Section 5. Section 6 concludes the paper with
a reflection on which definitions ought to be chosen.

Remark 1. We adopt here the following assumptions:

• We work on R.
• We use the two-sided Laplace transform (LT):

F(s) = L[ f (t)] =
∫
R

f (t)e−st dt, (1)

where f (t) is any function defined on R and F(s) is its transform, provided that it has a non
empty region of convergence (ROC).

• The Fourier transform (FT), F [ f (t)], is obtained from the LT through the substitution s = iκ,
with κ ∈ R.

2. What Is a Fractional Derivative?

In Signal Processing, independently of the applications to Electrical, Mechanical,
Biomedical or any other Engineering field, there is a very simple way of defining a FD: a
FD is a linear operator described by Bode diagrams that are straight lines [11]. In terms of the FT
we can write

F
[
Dγ

θ f (t)
]
= |ω|γeiθ π

2 sgn(ω)F [ f (t)] t, ω ∈ R, (2)

where γ, θ ∈ R, and Dγ
θ represents the derivative. The operator

Ψγ
θ (ω) = |ω|γeiθ π

2 sgn(ω) ω ∈ R (3)

is the frequency response of the derivative. Functions A(ω) (amplitude) and φ(ω) (phase),
when represented in a logscale for ω > 0, are expressed by straight lines. These can be
used to define a FD.

However, we need a criterion independent of any transform. As in [9], we define as
FD an operator that verifies the following (wide sense) criterion.

Definition 1. An operator is considered a FD in wide sense if it enjoys properties P defined as:

P1 Linearity
The operator is linear.

P2 Identity
The zero order derivative of a function returns the function itself.
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P3 Backward compatibility
When the order is integer, FD gives the same result as the ordinary derivative.

P4 The index law
DαDβ f (t) = Dα+β f (t) (4)

holds for α < 0 and β < 0.

P5 The generalized Leibniz rule

Dα[ f (t)g(t)] =
∞

∑
i=0

(
α

i

)
Di f (t)Dα−ig(t) (5)

holds. As is clear, when α = N ∈ Z+, we obtain the classical Leibniz rule.

The index law property can be modified to include positive orders. This leads to the
strict sense criterion. This criterion has the same five conditions, but P4 is modified to:

P’4 The generalized index law

DαDβ f (t) = Dα+β f (t) (6)

holds for any α and β.

This is very important because it allows the existence of the inverse derivative: the anti-
derivative. It is convenient to state the differences between anti-derivative and “primitive”:

• The anti-derivative is unique.
• The anti-derivative is a left and right inverse, while any primitive is only right inverse.

These criteria allow us to clarify the situation of some “disguised” order one deriva-
tives and put out some frauds.

3. Unified Fractional Derivative

In [11], a UFD incorporating most of the useful derivatives was presented and its
properties studied. It is described as follows.

Definition 2. Let f (t) be a function defined on R (C), and let α > −1 if θ 6= ±α, or α ∈ R if
θ = ±α. We define a UFD of GL type by

Dα
θ f (t) := lim

h→0+
h−α

+∞

∑
n=−∞

(−1)n Γ(α + 1)

Γ
(

α+θ
2 − n + 1

)
Γ
(

α−θ
2 + n + 1

) f (t− nh), (7)

where α is the derivative order and θ the asymmetry parameter. We define also a general integral
formulation for the unified anti-derivative through

D−α
θ f (t) =

1
sin(απ)Γ(α)

∫
R

f (t− τ) sin
[(

α + θ · sgn(τ)
)π

2

]
|τ|α−1 dτ, (8)

where sgn(.) denotes the signum function.
The integral in (8) can be regularized in order to become valid for positive orders [12]. This is

done with the substitution

f (t− τ) → f (t− τ)−
N−1

∑
0

(−1)m f (m)(t)
m!

τm, (9)

with N = bγc+ 1.

Some known properties of this derivative can be drawn [12,15]. The main ones are:
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1. Fourier transformation
It was introduced above in (2). It permits obtaining (8) from (7), using the convolution
theorem. It has another consequence:

Dα
θ f (t) = cos

(
θ

π

2

)
Dα

0 f (t) + sin
(

θ
π

2

)
Dα

1 f (t). (10)

2. Eigenfunctions
Let f (x) = eiκx, κ, x ∈ R. Then,

Dβ
θ eiκx = |κ|βei π

2 θ·sgn(κ)eiκx, (11)

meaning that the sisoids are the eigenfunctions of the UFD with eigenvalue Ψβ
θ (κ) =

|κ|βei π
2 θ·sgn(κ).

3. Periodicity in θ
The UFD is periodic in θ with period 4

Dβ
θ f (x) = (−1)nDβ

θ+2n f (x), n ∈ Z, (12)

as we observe from (2).
4. Additivity and commutativity of the orders

Dβ1
θ1

Dβ2
θ2

f (x) = Dβ1+β2
θ1+θ2

f (x). (13)

In particular, conjugating (13) with (12),

Dβ1
0 Dβ2

0 f (x) = Dβ1+β2
0 f (x), (14)

Dβ1
1 Dβ2

1 f (x) = −Dβ1+β2
0 f (x), (15)

Dβ1
0 Dβ2

1 f (x) = Dβ1+β2
1 f (x), (16)

Dβ1
β1

Dβ2
β2

f (x) = Dβ1+β2
β1+β2

f (x), (17)

D
β
2
θ D

β
2
−θ f (x) = Dβ

0 f (x), (18)

D
β
2
θ D

β
2
1−θ f (x) = Dβ

1 f (x). (19)

5. Existence of inverse derivative
From (13), the anti-derivative exists when β2 = −β1 and θ1 = −θ2. Therefore,

Dβ
θ D−β
−θ f (x) = D−β

−θ Dβ
θ f (x) = f (x). (20)

6. Identity operator
According to (13) and (20), the identity operator is defined by

D0
0 f (x) = f (x). (21)

Suitable choices of these parameters allow us to recover the causal, anti-causal, and
bilateral (acausal) derivatives. The particular, most interesting, cases are obtained from (7)
and (8). In terms of the frequency response, we have

• forward derivative, θ = α

Ψα
α(ω) = |ω|αeiα π

2 sgn(ω) = (iω)α (22)

• backward derivative, θ = −α

Ψα
−α(ω) = |ω|αe−iα π

2 sgn(ω) = (−iω)α (23)
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• Riesz derivative and potential, θ = 0

Ψα
0(ω) = |ω|α (24)

• Feller derivative and potential, θ = 1

Ψα
1(ω) = i|ω|αsgn(ω) (25)

• Hilbert transform, α = 0, θ = 1

Ψ0
1(ω) = ei π

2 sgn(ω) = isgn(ω). (26)

From these expressions and using (7) it is possible to devise numerous derivatives by:

1. choosing particular values of the parameters α and θ,
2. restricting the domain of the function at hand.

4. One-Sided Derivatives
4.1. The GL Derivatives

The great importance of one-sided derivatives in applications leads us to study them
in detail. Taking (7) with γ = α and θ = ±α we obtain the forward (left) and backward
(right) GL derivatives that with some manipulation can be written as

Dα
± f (t) := lim

h→0+
h−α

+∞

∑
n=0

(−α)n
n!

f (t∓ nh). (27)

As it is easy to verify, the forward derivative + is causal, while the backward − is anti-
causal. This kind of derivatives was proposed first by Liouville [2].
For functions with LT (or FT), we can write

L[Dα
θ f (t)] = (±s)αF(s), ±<(s) ≥ 0, (28)

where F(s) = L[ f (t)]. As is known from the study of the LT, the LT of a right (left) function,
f (t) = 0, t < a(t > a), a ∈ R has a ROC defined by <(s) > 0 (<(s) < 0). If f (t) is
absolutely of square integrable, then it has FT and we can write

Ψα
±(s) = (±s)α, ±<(s) ≥ 0. (29)

Function Ψα
±(s) = (±s)α with suitable ROC is the transfer function (TF) of the derivative

(also called differintegrator).

4.2. The Impulse Response

The relations (28) and (29) suggest the existence of two operators that, convolved with
suitable functions, give their FDs. For α > 0 the LT inverse of sα does not exist as regular
function. However, it has a generalized inverse represented by the pseudo-function

ψα
±(t) = ±

t−α−1

Γ(−α)
u(±t), (30)

where + (−) corresponds to the causal (anti-causal) case. The pseudo-function (30) is called
impulse response (IR) of the differintegrator. The use of the convolution resulting from (28)
would allow us to obtain the derivative Dα

± f (t). For α < 0, there is no particular difficulty
and we obtain from (8)

D−α
± f (t) =

1
Γ(α)

∫ ∞

0
f (t∓ τ)τα−1 dτ. (31)
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The expression corresponding to the anti-causal case was proposed almost with the above
form by Liouville [3]. The causal case was deduced from the anti-causal by Serret [1,19].
Liouville’s formula included a factor (±1)−α to ensure that

LD−α
± f (t) = s−αF(s) (32)

for both expressions, although the ROC will be defined by ±Re(s) > 0. In most texts, such
factor is removed. In time problems it must be kept, but, in space applications, it plays no
relevant role. Therefore, we will omit it in the following. The finite domain versions of (31)
are called RL integrals:

D−α
a+ f (t) =

1
Γ(α)

∫ t

a+
f (t− τ)τα−1 dτ (33)

and

D−α
b− f (t) =

1
Γ(α)

∫ b−

t
f (t− τ)τα−1 dτ. (34)

We will assume these forms in the following.

4.3. Liouville’s Derivatives

Liouville [2] noted that (31) becomes singular when the order is positive (i.e., when it
corresponds to a derivative). This problem can be solved with the regularization [15,17]

Dα
f f (t) =

1
Γ(−α)

∞∫
0

τ−α−1

[
f (t− τ)−

N−1

∑
0

(−)m f (m)(t)
m!

τm

]
dτ, (35)

that we will call regularized Liouville (L) derivative. The first regularization of the Liouville
integral (31) was done by Marchaud [4]. However, their regularization only verifies the
derivative property of the LT if the order is less than 1.

Instead of a regularization, Liouville devised a trick for solving the singularity problem
that we can describe as

sα = sNsα−N = sα−NsN , (36)

where N > 0 verifies N > α. The most usual choice is N = dαe. Basically, it consists of
transferring the singular behavior to an integer order derivative. The first approach leads
to the so-called Liouville derivatives [4],

Dα
+ f (t) =

1
Γ(N − α)

dN

dtN

∫ ∞

0
f (t− τ)τN−α−1 dτ (37)

and

Dα
− f (t) =

(−1)N

Γ(N − α)

dN

dtN

∫ ∞

0
f (t + τ)τN−α−1 dτ, (38)

that can be rewritten as

Dα
+ f (t) =

1
Γ(N − α)

dN

dtN

∫ t

−∞
f (τ)(t− τ)N−α−1 dτ (39)

and

Dα
− f (t) =

(−1)N

Γ(N − α)

dN

dtN

∫ ∞

t
f (τ)(t− τ)N−α−1 dτ. (40)

This one is sometimes called “Weyl derivative” [8].
Liouville’s second procedure leads to what can be called Liouville–Caputo (LC) deriva-

tives [20]:

Dα
+ f (t) =

1
Γ(N − α)

∫ t

−∞
f (N)(τ)(t− τ)N−α−1 dτ (41)
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and

Dα
− f (t) =

(−1)N

Γ(N − α)

∫ ∞

t
f (N)(τ)(t− τ)N−α−1 dτ. (42)

Remark 2. We must remark that:

1. These derivative definitions are equivalent for functions with LT or FT.
2. For some particular classes of functions this may not be correct, e.g. the L derivatives are better

than the LC. Possible causes for this are:

• The convolution makes the functions smoother;
• The derivative may introduce roughness or spikes.

3. These 2 + 2 formulations lead to most derivatives described in [7,8]. We must reinforce
something very important: all the above defined derivatives are valid for functions defined in
any interval of R. This means that we do not need to change the definitions to accommodate
them to the domain of the function at hand. One thing is the definition, another one is the
computation of the derivative. It is a situation similar to the one we find in the LT or FT. We
do not need to change the definitions to agree with the domain of the function. Therefore, most
derivative definitions in [7,8] have no reason to be considered as autonomous derivatives.

4. These derivatives do not introduce any initial conditions.
5. For a given derivative, there is always an anti-derivative.

These derivative formulations using (28) and the convolution are related as Figure 1
illustrates, and collected in Table 1, where

(
a
b

)
=



Γ(a + 1)
Γ(b + 1)Γ(a− b + 1) , if a, b, a− b /∈ Z−

(−1)bΓ(b− a)
Γ(b + 1)Γ(−a) , if a ∈ Z− ∧ b ∈ Z+

0

0, if [(b ∈ Z− ∨ b− a ∈ N) ∧ a /∈ Z−] ∨ (a, b ∈ Z− ∧ |a| > |b|)

(43)

Figure 1. Hierarchical relation of FDs.
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Table 1. Derivatives defined on R.

Name Definition Parameters Domain

Dα
−∞ f (x) =

1
Γ(N − α)

dN

dxN

∫ x

−∞
(x− ξ)−α+N−1 f (ξ)dξ γ = α θ = α x ∈ R

L

Dα
∞ f (x) =

(−1)N

Γ(N − α)

dN

dxN

∫ +∞

x
(ξ − x)−α+N−1 f (ξ)dξ γ = α θ = −α x ∈ R

Dα
−∞ f (x) =

1
Γ(N − α)

∫ x

−∞
(x− ξ)−α+N−1 dN f (ξ)

dξN dξ γ = α θ = α x ∈ R

LC

Dα
+∞ f (x) =

(−1)N

Γ(N − α)

∫ ∞

x
(x− ξ)−α+N−1 dN f (ξ)

dξN dξ γ = α θ = −α x ∈ R

Dα
−∞ f (x) = lim

h→0+
h−α

∞

∑
k=0

(−1)k
(

α
k

)
f (x− kh) γ = α θ = α x ∈ R

GL

Dα
∞ f (x) = lim

h→0+
h−α

∞

∑
k=0

(−1)k
(

α
k

)
f (x + kh) γ = α θ = −α x ∈ R

4.4. RL and C Derivatives

Despite the high degree of generality exhibited by the above derivatives, they are not
used in most papers. In fact, such papers use derivatives specialized for functions that are
defined on intervals [a, b], −∞ < a < b < ∞ [4,6]. Usually a ≥ 0 so that right functions
are assumed. When a = 0 we use frequently the designation “causal function”. The GL
derivatives assume the form

GLDα
a+[ f (x)] = lim

h→0

1
hα

bnc

∑
k=0

(−1)k Γ(α + 1) f (x− kh)
Γ(k + 1)Γ(α− k + 1)

, nh = x− a (44)

and

GLDα
b− [ f (x)] = lim

h→0

1
hα

bnc

∑
k=0

(−1)k Γ(α + 1) f (x + kh)
Γ(k + 1)Γ(α− k + 1)

, nh = b− x. (45)

This was the procedure of Grünwald [21] and Letnikov [22]. Therefore, they are nothing else
than the application of (27) to bounded support functions and so they are not new derivatives.
For the integral formulations, the contributions of Liouville and Riemann [23] were joined
to obtain the Riemann–Liouville (RL) derivative [4,6]; likewise, from the Liouville–Caputo
derivative, the (Dzherbashian-)Caputo (C) derivative [5,6] is obtained. We have:

• Riemann–Liouville (RL) derivatives

RLDα
a+ f (t) =

1
Γ(N − α)

dN

dtN

∫ t

a
f (τ)(t− τ)N−α−1 dτ, t > a (46)

and
RLDα

b− f (t) =
(−1)N

Γ(N − α)

dN

dtN

∫ b

t
f (τ)(t− τ)N−α−1 dτ, t > a. (47)

• (Dzherbashian-)Caputo (C) derivatives

CDα
a+ f (t) =

1
Γ(N − α)

∫ t

a
f (N)(τ)(t− τ)N−α−1 dτ, t > a (48)

and
CDα

b− f (t) =
(−1)N

Γ(N − α)

∫ b

t
f (N)(τ)(t− τ)N−α−1 dτ, t < b. (49)
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These formulations, collected in Table 2, are the ones most used, although they have several
inconveniences, mainly the initial conditions problem they introduce [17]. However, they
form the basis for many applications.

Table 2. Classical derivatives.

Name Definition Parameters Domain

Dα
a+ f (x) =

1
Γ(N − α)

dN

dxN

∫ x

a
(x− ξ)−α+N−1 f (ξ)dξ γ = α θ = α x ∈ [a, b]

RL

Dα
b− f (x) =

(−1)N

Γ(N − α)

dN

dxN

∫ b

x
(ξ − x)−α+N−1 f (ξ)dξ γ = α θ = −α x ∈ [a, b]

Dα
a+ f (x) =

1
Γ(N − α)

∫ x

a
(x− ξ)−α+N−1 dN f (ξ)

dξN dξ γ = α θ = α x ∈ [a, b]

C

Dα
b− f (x) =

(−1)N

Γ(N − α)

∫ b

x
(x− ξ)−α+N−1 dN f (ξ)

dξN dξ γ = α θ = −α x ∈ [a, b]

Dα
a+ f (x) = lim

h→0+

b x−a
h c

∑
k=0

(−1)k
(

α
k

)
f (x− kh)

hα

γ = α θ = α x ∈ [a, b]

GL

Dα
a− f (x) = lim

h→0+

b a−x
h c

∑
k=0

(−1)k
(

α
k

)
f (x + kh)

hα

γ = α θ = −α x ∈ [a, b]

4.5. Multistep Derivatives

The procedure introduced in (36) can be generalized. For example,

sα = sN−ksα−Nsk, α ∈ R+, N ∈ Z+
0 , (50)

with k < N and N > α. Then,

Dα f (t) = DN−k 1
Γ(N − α)

∫ t

a
f (k)(τ)(t− τ)N−α−1 dτ. (51)

This procedure was proposed by Davidson and Essex [8]. However, the derivative they
proposed is valid only for functions which are null for t < 0. Cavanati [8] introduced an
algorithm that is a particular case obtained with k = N − 1.

Another similar algorithm was presented by Hilfer [24], also for causal functions. It
can be stated as

sα = sµ(1−α)ss(1−µ)(1−α), (52)

where 0 < α, µ < 1. It reads

Dα f (t) = Dµ(1−α) 1
Γ((1− µ)(1− α))

d
dx

∫ t

a
f (τ)(t− τ)(1−µ)(1−α) dτ. (53)

This approach can be generalized. For example, if 1 < α < 2, then we can set

sα = sµ(2−α)s2s(1−µ)(2−α) (54)

or
sα = ssµ(2−α)ss(1−µ)(2−α). (55)
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This kind of reasoning shows that, following this method, we can invent billions of “deriva-
tives”. However, it is not clear how this is interesting in real life applications. Indeed, we
are not introducing a new derivative, but using repeatedly one basic derivative. Some of the
such derivatives were proposed because they introduced more favorable initial conditions.
However, this is in general incorrect, since the initial conditions do not depend on the
derivatives, but on the physical structure of the system at hand [17,25].

4.6. Second Generation Operators

The derivatives we introduced above are “shift invariant”. However, there are other
derivatives that do not enjoy such properties, and therefore cannot be obtained from the
UFD introduced above. It is the case of the Hadamard derivatives [6] that are “scale
invariant”. Other examples are the “quantum derivatives” [15]. It is important to refer
also the Marchaud derivatives [4] that exhibit a kind of regularization. On the other hand,
some modifications and variable changes can be made in the above derivatives, leading to
interesting operators that may not necessarily be considered to be derivatives when seen in
the light of the above criterion [7,8]. They are introduced in Table 3.

Table 3. Operators (not necessarily derivatives) obtained from modified derivatives.

Name Definition Domain

Hadamard
Dα

0+ f (x) =
1

Γ(−α)

∫ x

0
ξ

(
log

ξ

x

)−α−1
f (ξ)dξ α < 0, x ≥ 0

Dα
0+ f (x) =

1
Γ(1− α)

∫ x

0
ξ

(
log

x
ξ

)−α−1

( f (x)− f (ξ))dξ α > 0, x ≥ 0

Dα
q f (x) = x−α lim

q→1

+∞

∑
j=0

[
α
j

]
q
(−1)jq

j(j+1)
2 q−jα f

(
qjx
)

(1− q)α

Quantum
Dα

q−1 f (x) = x−α lim
q→1

+∞

∑
j=0

[
α
j

]
q
(−1)jq

j(j−1)
2 q−jα f

(
q−jx

)
(1− q−1)

α

[
α
j

]
q
=

j−1

∏
i=0

(
1− qα+i

)
1− qj

1− q

Marchaud
Dα

0+ f (x) =
α

Γ(1− α)

∫ +∞

0
ξ−α−1( f (x)− f (x− ξ))dξ α > 0

Dα
0− f (x) =

α

Γ(1− α)

∫ +∞

0
ξ−α−1( f (x)− f (x + ξ))dξ α < 0

Jumarie Dα
0+ f (x) =

1
Γ(N − α)

dN

dxN

∫ x

0
(x− ξ)−α+N−1( f (ξ)− f (0))dξ α > 0, x ≥ 0

Dα
a+ ,σ,η f (x) =

σxσ(η−α)

Γ(−α)

∫ x

a
(xσ − ξσ)−α−1ξσ(1+η)−1 f (ξ)dξ α < 0, x ≥ a

Erdélyi-Kober
Dα

a− ,σ,η f (x) =
σx−σα

Γ(−α)

∫ a

x
(ξσ − xσ)−α−1ξσ(1+α−η)−1 f (ξ)dξ α < 0, x ≤ a

Dα
a+ ,σ,η f (x) = x−σ(η+α)

(
1

σxσ−1
d

dx

)N
xσ(α+N+η)D−N−α

a+ ,σ,η f (x) α > 0, x ≥ a

Dα
a− ,σ,η f (x) = xση

(
1

σxσ−1
d

dx

)N
xσ(N−η)D−N−α

a− ,σ,η f (x) α > 0, x ≤ a
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Table 3. Cont.

Name Definition Domain

k-Hilfer

Dα
k,a+ f (x) =

1

k−
α
k Γ(−α)

∫ x

a
(x− ξ)−

α
k−1 f (ξ)dξ α < 0, x ≥ a

Dµ,ν
k,a+ f (x) = Dν(µ−1)

k,a+
d

dx
D(1−ν)(µ−1)

k,a+ f (x) 0 ≤ µ ≤ 1, 0 < ν < 1,
x ≥ a

Dα
ρ,a+ f (x) =

ρ1+α

Γ(−α)

∫ x

a
(xρ − ξρ)−α−1 f (ξ)dξ ρ > 0, α < 0, x ≥ a

Hilfer-Katugampola Dα
ρ,a− f (x) =

ρ1+α

Γ(−α)

∫ a

x
(xρ − ξρ)−α−1 f (ξ)dξ ρ > 0, α < 0, x ≤ a

Dα,β
ρ,a± f (x) = ±Dβ(α−1)

ρ,a±

(
x1−ρ d

dx
D(1−β)(α−1)

ρ,a± f (x)
)

ρ > 0, 1 > α > 0,
0 ≥ β ≥ 0

ψ-Hilfer, with Dα,ψ(x)
a+ f (x) =

1
Γ(−α)

∫ x

a
ψ′(x)(ψ(x)− ψ(ξ))−α−1 f (ξ)dξ α < 0, I = [a, x]

ψ(x) ∈ CN(I,R) Dα,ψ(x)
a− f (x) =

1
Γ(−α)

∫ a

x
ψ′(x)(ψ(ξ)− ψ(x))−α−1 f (ξ)dξ α < 0, I = [x, a]

ψ′(x) 6= 0, ∀x ∈ I Dα,β,ψ(x)
a+ f (x) = Dβ(α−N),ψ(x)

a+

(
1

ψ′(x)
d

dx

)N
D(1−β)(α−N),ψ(x)

a+ f (x)
α > 0, 0 ≤ β ≤ 1,

I = [a, x]
x2 > x1 ⇒
⇒ ψ(x2) > ψ(x1)

Dα,β,ψ(x)
a− f (x) = Dβ(α−N),ψ(x)

a−

(
1

ψ′(x)
d

dx

)N
D(1−β)(α−N),ψ(x)

a+ f (x)
α > 0, 0 ≤ β ≤ 1,

I = [x, a]

5. Pseudo-Fractional-Derivatives
5.1. Some Comments

In many quarters, the treatment of FDs and systems was taken to be a quite difficult
task. Therefore, simplified versions thereof were welcomed, even if some important features
that characterize most systems were lost in the process — for example, in modeling natural
or human-made systems that are essentially low-pass or bandpass systems. However, some
proposed systems are high-pass, and then have limited usefulness; in the following, we
describe some of them. We must remark that sometimes the word “fractional” is used as
a “trade mark” that helps to “sell a product”. It is the case of the “Memory-dependent
derivative” [26], that is nothing else than a running average.

5.2. “Derivatives” That Are High-Pass Filters

Consider a simple differential equation:

a1y′(t) + a0y(t) = b1x′(t). (56)

This equation is recognized easily as the model of the classic high-pass filter [27]. Its transfer
function is

H(s) =
b1s

a1s + a0
=

b1

a1

s
s + σ

, <(s) > −σ = −a0/a1. (57)

One way of relating the input and output is:

y(t) =
b1

a1

∫ t

0
e−σ(t−τ)x′(τ)dτ. (58)

This expression was chosen with this form to remember the Caputo derivative (41). Now set:

a0 = α, a1 = 1− α, b1 = M(α), σ =
α

1− α
(59)

to obtain

y(t) =
M(α)

1− α

∫ t

0
e−

α
1−α (t−τ)x′(τ)dτ. (60)
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This is the expression of the “famous” fractional Caputo-Fabrizio “derivative”. As is clear, it
is neither a derivative, nor fractional.

Let us continue and substitute the exponential in (60) by the Mittag–Leffler function.
We obtain also a fractional high-pass filter with TF given by

H(s) =
M(α)

1− α

sα

sα + σ
, <(s) > 0, (61)

that is called Atangana-Baleanu “derivative”. Attending to its FT, it is a system, but not a
derivative. There are many variations of this operator, but they remain high-pass filters,
not derivatives [8].

For a list of these and similar operators, see Table 4.

Table 4. “Derivatives” with non-singular kernel; in all cases, the order verifies 0 < α < 1, and M(α)

verifies M(0) = M(1) = 1.

Name Definition Domain

Caputo-Fabrizio Dα
a+ f (x) =

M(α)

1− α

∫ x

a
e−

α(x−ξ)
1−α

d f (ξ)
dξ

dξ x ≥ a

Yang et al. Dα
a+ f (x) =

M(α)

1− α

d
dx

∫ x

a
e−

α(x−ξ)
1−α f (ξ)dξ x ≥ a

Atangana-Baleanu-Caputo Dα
a+ f (x) =

M(α)

1− α

∫ x

a
Eα

(
−α(x− ξ)α

1− α

)
d f (ξ)

dξ
dξ x ≥ a

Atangana-Baleanu-Riemann–Liouville Dα
a+ f (x) =

M(α)

1− α

d
dx

∫ x

a
Eα

(
−α(x− ξ)α

1− α

)
f (ξ)dξ x ≥ a

Generalized Caputo Dα,β
a+ f (x) =

M(α)

1− α

∫ x

a
Eβ

(
−α(x− ξ)β

1− α

)
d f (ξ)

dξ
dξ 0 ≤ β ≤ 1, x ≥ a

Generalized Riemann–Liouville Dα,β
a+ f (x) =

M(α)

1− α

d
dx

∫ x

a
Eβ

(
−α(x− ξ)β

1− α

)
f (ξ)dξ 0 ≤ β ≤ 1, x ≥ a

Caputo-Fabrizio, Gaussian kernel Dα
a+ f (x) =

1 + α2√
πα(1− α)

∫ x

a
e−

α(x−ξ)2
1−α

d f (ξ)
dξ

dξ f (a) = 0, x ≥ a

Sun-Hao-Zhang-Baleanu Dα
a+ f (x) =

M(α)

(1− α)
1
α

∫ x

a
e−

α(x−ξ)α

1−α
d f (ξ)

dξ
dξ x ≥ a

5.3. “Disguised” Order 1 Derivatives

The “local fractional derivative” introduced by Kolwankar reads [28]

Dα f (t) = lim
τ→t

Dα
t [ f (τ)− f (t)], (62)

where Dα
t is the RL derivative. V. Tarasov [29] showed that, if α < 1, this derivative is

equivalent to the order 1 derivative, therefore not fractional.
A similar result can be found for the “conformable” derivative [30]

Dα f (t) = lim
ε→0

f
(
t + εt1−α

)
− f (t)

ε
(63)

and

Dα f (t) = lim
ε→0

f
(

teεt−α
)
− f (t)

ε
. (64)
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For differentiable functions and for both derivatives, this results in

Dα f (t) = t1−α d f
dt

(t). (65)

Several modified versions of these derivatives were proposed [8].
The so-called “fractal derivative” was introduced in [31] and reads

∂ f (t)
∂tα

= lim
s→t

f (t)− f (s)
tα − sα

. (66)

It is a strange derivative that gives ∞ for differentiable functions, unless α = 1.
For a list of these and similar operators, see Table 5.

Table 5. Local formulations of derivatives (α > 0).

Name Definition Domain

Kolwankar Dα f (x) = lim
ξ→x

Dα
x( f (ξ)− f (x)) where Dα

x is the RL derivative x ∈ R+

Chen Dα f (x) = lim
ξ→x

f (x)− f (ξ)
xα − ξα

x ∈ R+

Conformable Dα f (x) = lim
ε→0

f (x + εx1−α)− f (x)
ε

x ∈ R+

Katugampola Dα f (x) = lim
ε→0

f (x eεx−α
)− f (x)

ε
x ∈ R+

M Dα,β f (x) = lim
ε→0

f (x Eβ(εx−α))− f (x)
ε

x ∈ R+, β > 0

Deformable Dα f (x) = lim
ε→0

(1 + ε− εα) f (x + εα)− f (x)
ε

x ∈ R+

Beta
Dα f (x) = lim

ε→0

f
(

x + ε
(

x + 1
Γ(α)

)1−α
)
− f (x)

ε

0 < α ≤ 1, x ∈ R+

AGO Dα f (x) = lim
ε→0

f
(

x + ε(ψ(x))1−α
)
− f (x)

ε

0 < α < 1, x ∈ R+

ψ(x) ∈ C(R+), ψ′(x) 6= 0

Generalized Dα f (x) = lim
ε→0

f

(
x− ψ(x) + ψ(x) e

ε(ψ(x))−α

ψ′(x)

)
− f (x)

ε

0 < α < 1, x ∈ R+

ψ(x) ∈ C(R+), ψ′(x) 6= 0

General conformable Dα
ψ f (x) = lim

ε→0

f (x + ε ψ(x, α))− f (x)
ε

α > 0, x ∈ R+

Lazopoulos’s Lambda Dα
Λ f (x) =

1
Γ(N − α)

dN

dxN

∫ x

a
(x− ξ)−α+N−1 f (ξ)dξ

1
Γ(N − α)

dN

dxN

∫ x

a
(x− ξ)−α+N−1ξ dξ

x ∈ R+

Figures 2–4 illustrate the results obtained with different FD formulations, when ap-
plied to compute the α = 0.5 order derivative of the function f (x) = cos(ωx), for ω =
{0.01π, 0.1π, 100π}, respectively. The derivatives are compared with the one obtained with
the GL operator, which serves as baseline. In all cases we adopt a = 0, while FD specific
parameters are as presented in the legends of the graphs. We verify that some formulations
fail to compute the derivatives accurately, while others diverge.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. The α = 0.5 order derivative of function f (x) = cos(0.01πx) with different FD formulations.
See Tables 2 to 5.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. The α = 0.5 order derivative of function f (x) = cos(0.1πx) with different FD formulations.
See Tables 2 to 5.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. The α = 0.5 order derivative of function f (x) = cos(100πx) with different FD formulations.
See Tables 2 to 5.

As is well known, the classic order 1 derivative of a sinusoidal is the same sinusoidal
multiplied by the angular frequency and with a change of phase equal to π/2. Therefore,
we expect something similar in the fractional case, at least after passing some time corre-
sponding to the transient regime. This happens with those operators that we classified
as derivatives. For the others, we have amplifications/attenuations and, in some cases,
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modulations, confirming that they are systems (filters), but not derivatives. Some have a
non-acceptable behavior: they are unstable.

6. Which Derivatives?

After this journey into the world of FDs, it is important to answer the question: “Do
we need such different formulations?”

In previous papers [10–12], some answers to this question were given.

1. In problems involving time, we have almost always to use causal derivatives. There-
fore, the GL or one of the integral versions (37), (39), or (41) should be used.

2. In space problems, we can use the above formulæor the corresponding right-side
versions, if there is any privileged direction. If this does not happen, we must use a
two-sided derivative, preferably (2).

However, most derivatives described in [7,8] are particular cases, and the particularity is
introduced by the domain. Therefore, do we need to define a new derivative each time the
domain changes? This creates a big difficulty: we cannot keep increasing the number of
derivatives, differing only because they are defined on different domains, which constrains
the application fields.
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