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Abstract: Four different types of convolutions of aggregation functions (the upper, the lower, the
super-, and the sub-convolution) are examined in the setting of both sub- and super-decomposition
integrals defined on a finite space. Examples of the results of the paper are provided. As a by-
product, the super-additive transformation of sub-decomposition integrals and the sub-additive
transformation of super-decomposition integrals are fully characterized. Possible applications
are indicated.

Keywords: convolution; collection integral; decomposition integral; aggregation functions

MSC: 28B15; 28E10; 91B06

1. Introduction

One may notice that the concept of aggregation functions plays an important role in the
decision theory, and the concept of convolution is important in the classical analysis, but also
in probability, acoustics, image processing, computer vision, etc. Recall that convolution is
a binary operation acting on functions, mostly on n-dimensional real functions. Note that
aggregation functions are special n-dimensional functions, and thus, it is no surprise that
these two concepts were combined and convolution was introduced for the framework of
aggregation functions; for further reference, see, [1]. The mentioned paper introduced four
different types of convolutions, namely, the upper convolution, the lower convolution, the
super-convolution, and the sub-convolution.

Standard convolutions usually deal with Riemann (or Lebesgue) integral. Inspired
by convolutions of aggregation functions proposed in [1], in this paper, we apply these
convolutions in the setting of sub-decomposition integrals [2] and super-decomposition
integrals [3], a special class of aggregation functions that includes many well-known
non-linear integrals, such as the Choquet integral [4], the Shilkret integral [5], the PAN
integral [6,7], the concave integral [8], or the convex integral [3]. Note that these integrals
contribute to the basics of set-valued analysis, see also, e.g., [9,10]. As a by-product, we
obtain the super- and sub-additive transformations [11] of sub-decomposition and super-
decomposition integrals, respectively.

The rest of the paper is organized as follows. Section 2 contains some preliminaries
and definitions used in the paper. Section 3 examines the upper convolution and super-
convolution of sub-decomposition integrals. This section also solves the problem of super-
additive transformation of sub-decomposition integrals. Section 4 examines other convo-
lutions for sub-decomposition integrals and analogous results for super-decomposition
integrals. The last section, Section 5, concludes the paper with some remarks.

Recall that the upper convolution of sub-collection integrals was examined in the
conference paper [12], and this paper extends these results.
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2. Preliminaries

Let X be a finite non-empty set referred to as a space. Without loss of generality, we
may assume that the space X is of the form {1, 2, . . . , n} for some natural number n ∈ N that
is fixed throughout the paper.

A (non-negative) function is a map X → [0,∞[. Any function f is in one-to-one corre-
spondence with a vector of its values ( f (1), f (2), . . . , f (n)). Thus, vectors from F = [0,∞[n

are referred to as functions and are denoted by bold lower-case letters x, y, z, etc. The ith
coordinate of the vector x is denoted by the symbol xi, for i = 1, 2, . . . , n. An indicator function
of a set A ⊆ X is denoted by 1A.

A monotone measure is a map µ∶ 2X → [0,∞[ such that µ is grounded, i.e., µ(∅) = 0, and
µ is non-decreasing with respect to set inclusion, i.e., the inequality µ(A) ≤ µ(B) holds for
A ⊆ B ⊆ X. The set of all monotone measures is denoted by M. A monotone measure µ is
called an additive measure if, and only if, µ is additive, i.e., µ(A ∪ B) = µ(A)+ µ(B) for any
disjoint sets A, B ∈ 2X . The set of all additive measures is denoted by M+.

The monograph [6] revisited and revised the terminology used in the generalized
measure theory. Note that the term ‘monotone measure’ is sometimes replaced in the
literature with the term ‘fuzzy measure’. As remarked in the Preface of the mentioned
monograph, monotone measures may not be continuous as in the case of fuzzy measures,
and their primary characteristic is the monotonicity, hence the name.

A non-empty set D ⊆ 2X ∖ {∅} is called a collection. A non-empty set of collections is
called a decomposition system. The set of all collections is denoted by D, and the set of all
decomposition systems by H.

Definition 1. A sub-collection integral [13] with respect to a collection D ∈ D and monotone
measure µ ∈M is an operator colµD ∶F→ [0,∞[ given by

col
µ
D(x) =⋁{ ∑

A∈D
αAµ(A)∶ ∑

A∈D
αA1A ≤ x where αA ≥ 0}

for any function x ∈ F. A super-collection integral [13] with respect to a collection D ∈ D and
monotone measure µ ∈M is an operator scolµD ∶F→ [0,∞] given by

scol
µ
D(x) =⋀{ ∑

A∈D
αAµ(A)∶ ∑

A∈D
αA1A ≥ x where αA ≥ 0}

for any function x ∈ F (if necessary, the standard convention inf∅ =∞ is considered).

Definition 2. A sub-decomposition integral [2] with respect to a decomposition systemH ∈ H and
a monotone measure µ ∈M is an operator decµ

H∶F→ [0,∞[ given by

dec
µ
D(x) = ⋁

D∈H
⋁{ ∑

A∈D
αAµ(A)∶ ∑

A∈D
αA1A ≤ x where αA ≥ 0} = ⋁

D∈H
col

µ
D(x)

for any function x ∈ F. A super-decomposition integral [3] with respect to a decomposition system
H ∈ H and a monotone measure µ ∈M is an operator decµ

H∶F→ [0,∞] given by

sdec
µ
D(x) = ⋀

D∈H
⋀{ ∑

A∈D
αAµ(A)∶ ∑

A∈D
αA1A ≤ x where αA ≥ 0} = ⋀

D∈H
scol

µ
D(x)

for any function x ∈ F.

Note that sub-collection and sub-decomposition integrals are aggregation functions.
An aggregation function A is an operator F → [0,∞[ such that A(0) = 0 and A(x) ≤ A(y)
for all x, y ∈ F such that x ≤ y. In this setting, super-collection and super-decomposition
integrals are not aggregation functions, in general, because the value of ∞ can be attained
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for some inputs. As an example, take the space X = {1, 2}, a collection D = {{1}} (or the
decomposition systemH = {D}), and compute the value of the corresponding integral of
the function x = (0, 1).

Definition 3. Let A,B ∈ A be two aggregation functions. Their upper convolution is an aggregation
function A

△
B given by

(A△B)(x) = ⋁
0≤t≤x

(A(t)+B(x − t))

for all x ∈ F; their lower convolution is an aggregation function A△B given by

(A△B)(x) = ⋀
0≤t≤x

(A(t)+B(x − t))

for all x ∈ F; their super convolution is an aggregation function A
d
B given by

(AdB)(x) =⋁
⎧⎪⎪⎨⎪⎪⎩

k1

∑
i=1

A(xi)+
k2

∑
j=1

B(yj)∶ xi, yj ≥ 0,
k1

∑
i=1

xi +
k2

∑
j=1

yj = x, k1, k2 ∈ N
⎫⎪⎪⎬⎪⎪⎭

for all x ∈ F (if defined); and their sub-convolution is an aggregation function AdB given by

(AdB)(x) =⋀
⎧⎪⎪⎨⎪⎪⎩

k1

∑
i=1

A(xi)+
k2

∑
j=1

B(yj)∶ xi, yj ≥ 0,
k1

∑
i=1

xi +
k2

∑
j=1

yj = x, k1, k2 ∈ N
⎫⎪⎪⎬⎪⎪⎭

for all x ∈ F. These definitions are introduced and examined in [1].

Notice that the super convolution may not be well defined for some aggregation
functions. Consider, for example, one-dimensional aggregation functions A(x) =

√
x and

B(x) = 0 for all x ∈ [0,∞[, in which case

(AdB)(x) =
⎧⎪⎪⎨⎪⎪⎩

0, if x = 0,
∞, otherwise,

i.e., AdB is not an aggregation function.

3. Upper Convolution and Super-Convolution of Sub-Decomposition Integrals

In the conference paper [12], the upper convolution of collection integrals were ex-
amined. The following results were obtained: Let D,D1,D2 ∈ D be collections and let
µ, µ1, µ2 ∈M be monotone measures. Then

col
µ
D1

△
col

µ
D2

= col
µ
D1∪D2

and col
µ1
D
△
col

µ2
D = col

µ1∨µ2
D .

In the spirit of the first equality, we obtain the following result for decomposition
integrals.

Proposition 1. Let H1,H2 ∈ H be two decomposition systems and let µ ∈ M be a monotone
measure. Then

dec
µ
H1

△
dec

µ
H2

= dec
µ
H′ ,

whereH′ is a decomposition system {D1 ∪D2∶D1 ∈H1,D2 ∈H2}.

Proof. Let x ∈ F be a function. Then

(decµ
H1

△
dec

µ
H2

)(x) = ⋁
0≤t≤x

(decµ
H1

(t)+ decµ
H2

(x − t)),
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i.e., there exists t ∈ F such that t ≤ x and

(decµ
H1

△
dec

µ
H2

)(x) = dec
µ
H1

(t)+ decµ
H2

(x − t).

Now, there exist collections D1 ∈H1 and D2 ∈H2 such that

(decµ
H1

△
dec

µ
H2

)(x) = col
µ

D1
(t)+ colµD2

(x − t)

and thus, a sub-decomposition ∑A∈D1
αA1A of t and a sub-decomposition ∑B∈D2

βB1B of
x − t such that

(decµ
H1

△
dec

µ
H2

)(x) = ∑
A∈D1

αAµ(A)+ ∑
B∈D2

βBµ(B).

Note that by summing these two sub-decompositions, we obtain a sub-decomposition
of x from the collection D1 ∪D2, i.e.,

(decµ
H1

△
dec

µ
H2

)(x) ≤ col
µ

D1∪D2
(x) ≤ dec

µ
H′(x).

Thus, following that x ∈ F is arbitrary, decµ
H1

△
dec

µ
H2

≤ dec
µ
H′ . Now, we prove the same

inequalities, but with a reversed inequality sign. Let x ∈ F. Note that there exists a collection
D′ ∈H′ (and thus, collections D1 ∈H1, D2 ∈H2) such that

dec
µ
H′(x) = col

µ
D1∪D2

(x).

From this, the existence of coefficients αA ≥ 0 for A ∈ D1 ∪D2 such that∑A∈D1∪D2
αA1A

is a sub-decomposition of x with

dec
µ
H′(x) = ∑

A∈D1∪D2

αAµ(A)

is guaranteed. Now, set βA = αA for A ∈ D1 and

γA =
⎧⎪⎪⎨⎪⎪⎩

αA, if A ∈ D2 ∖D1,
0, otherwise,

from which
dec

µ
H′(x) = ∑

A∈D1

βAµ(A)+ ∑
A∈D2

γAµ(A).

Then, consider t = ∑A∈D1
βA1A, and therefore ∑A∈D2

γA1A is a sub-decomposition of
x − t. Thus

dec
µ
H′(x) ≤ col

µ
D1

(t)+ colµD2
(x − t)

≤ ⋁
0≤t≤x

(colµD1
(t)+ colµD2

(x − t)) = (decµ
H1

△
dec

µ
H2

)(x).

Because, again, x was arbitrary, decµ
H′ ≤ dec

µ
H1

△
dec

µ
H2

. Combining both proved in-
equalities, we obtain the desired result.

Remark 1. The decomposition system H′ from the previous proposition is denoted by H1 ⊎H2.
Note that the set of all decomposition systems H with the operation ⊎ forms an Abelian semigroup
with annihilatorH∗ = {2X ∖ {∅}}.

Example 1. Let µ ∈M be a monotone measure. Choose a decomposition system H1 = {{A}∶A ∈
2X ∖ {∅}}, i.e., decµ

H1
is the Shilkret integral. Then choose H2 = {{{x}∶ x ∈ X}}, i.e., decµ

H2
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is equivalent to the Lebesgue integral for additive measures µ ∈ M+. Then, for example, when
X = {1, 2, 3}, one obtains

H1 ⊎H2 = {{{1},{2},{3}},{{1},{2},{3},{1, 2}},{{1},{2},{3},{1, 3}}

{{1},{2},{3},{2, 3}},{{1},{2},{3},{1, 2, 3}}}.

After some algebraic manipulations, one can find that

dec
µ
H1⊎H2

(x) =
n
∑
i=1

xiµ({i})+max
A⊆X
A/=∅

[min
i∈A

xi ⋅ (µ(A)−∑
i∈A

µ({i}))].

Note that this equality is true for an arbitrary space X.

Following the result [1] of Theorem 5.2, we obtain the following corollary.

Corollary 1. A sub-decomposition integral decµ
H is super additive for all monotone measures

µ ∈M if and only ifH ⊎H =H.

Example 2. It is easy to notice that singleton decomposition systems H, i.e., all sub-collections
integrals, are such that H ⊎H = H. In fact, if we consider only minimal decomposition systems,
then these are the only ones that generate a super-additive sub-decomposition integral (with the
monotone measure not being fixed).

Now, we can examine the super-convolution of sub-decomposition integrals. Let us
start with the super self-convolution.

Proposition 2. LetH ∈ H be a decomposition system and let µ ∈M be a monotone measure. Then

dec
µ
H
d
dec

µ
H = col

µ
D′ ,

where D′ is a collection given by
D′ = ⋃

D∈H
D.

Proof. From the definition of super self-convolution, it can be noted that it is the same as
the limit of the upper self-convolutions applied consecutively over and over. The ‘greatest’
collection that will appear is the collection D′. All other collections in the decomposition
system are subsets of D′. From the properties of sub-decomposition integrals, the smaller
collections can be ignored, leaving only the collection D′ in the decomposition system, i.e.,
it will be the same as the sub-collection integral with respect to the collection D′.

Note that the corollary of this result, based on the proof of [1] Theorem 5.4, is as follows.

Corollary 2. Let H ∈ H be a decomposition system and let µ ∈ M be a monotone measure. The
super-additive transformation of a sub-decomposition integral decµ

H is the sub-collection integral
col

µ
D′ , where D′ is a collection given by

D′ = ⋃
D∈H
D.

Now we examine the super convolution of two different sub-decomposition integrals
with respect to the same monotone measure.

Proposition 3. Let H1,H2 ∈ H be two decomposition systems and let µ ∈ M be a monotone
measure. Then

dec
µ
H1

d
dec

µ
H2

= col
µ
D′ ,
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where D′ is a collection given by
D′ = ⋃

D∈H1∪H2

D.

Proof. This follows directly from [1] Theorem 4.4.

Example 3. If we consider decomposition systemsH1 andH2 from Example 1 of this paper, we can
compute super-additive transformations of sub-decomposition integrals decµ

H1
and dec

µ
H2

(where
µ ∈M is an arbitrary monotone measure). In the first case, we obtain the concave integral (i.e., the
sub-collection integral with respect to a collection 2X ∖ {∅}), and the second one stays unchanged.
Additionally, decµ

H1

d
dec

µ
H2

is the concave integral [8].

4. Other Convolutions of Decomposition Integrals

The situation with the lower convolution and sub-decomposition integrals is not so easy.
The upper convolution (and also the super-convolution) is closed for sub-decomposition
integrals (i.e., the result is again a sub-decomposition integral). In the case of the lower
convolution, this is no longer the case. See the following example, where we consider two
collections integrals (i.e., decomposition integrals with respect to a singleton decomposi-
tion system).

Example 4. Consider two sub-collection integrals on the space X = {1, 2} with respect to collections
D1 = {{1},{1, 2}} and D2 = {{2},{1, 2}} (both of these integrals are so-called chain integrals, see,
e.g., [13]). Let µ ∈M be a monotone measure and, for the sake of simplification, we use the following
notation: µ1 = µ({1}), µ2 = µ({2}), and µ12 = µ({1, 2}). The value of these integrals is given by

col
µ
D1

(x1, x2) =
⎧⎪⎪⎨⎪⎪⎩

x1µ12, if x1 ≤ x2,
x2µ12 + (x1 − x2)µ1, otherwise,

for the first one, and

col
µ
D2

(x1, x2) =
⎧⎪⎪⎨⎪⎪⎩

x1µ12 + (x2 − x1)µ2, if x1 ≤ x2,
x2µ12, otherwise,

for the second one. For the lower convolution of these two integrals we obtain that

(colµD1
△ col

µ
D2

)(x1, x2) = ⋁
0≤t1≤x1
0≤t2≤x2

(colµD1
(t1, t2)+ col

µ
D2

(x1 − t1, x2 − t2))

≤ col
µ
D1

(0, x2)+ col
µ
D2

(x1, 0) = 0,

which implies that colµD1
△ col

µ
D2

≡ 0. There is no decomposition integral decµ
H ≡ 0 (with µ being

an arbitrary monotone measure).

Remark 2. Note that the previous example (in the setting of the example) also implies that colµD1
d

col
µ
D2

≡ 0.

Similar results, as in the case of the lower convolution and the super convolution
for sub-decomposition integrals, can be obtained for the upper convolution and the sub-
convolution for super-decomposition integrals. We just need to make sure that we work
with those super-decomposition integrals that are aggregation functions, and we refer to
those as the well-defined super-decomposition integrals.
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Definition 4. LetH ∈ H be a decomposition system. A super-decomposition integral with respect
to the decomposition systemH is called well-defined if and only if

sdec
µ
H(x) <∞

for all functions x ∈ F and all monotone measures µ ∈M.

We assume that the super-decomposition integrals are well defined for the rest of the
paper. Because the proofs of the following statements are completely analogous to proofs
in the previous section, we omit them.

Proposition 4. Let H1,H2 ∈ H be two decomposition systems and let µ ∈ M be a monotone
measure. Then

sdec
µ
H1

△ sdec
µ
H2

= sdec
µ
H1⊎H2

.

Corollary 3. A super-decomposition integral sdecµ
H is sub-additive for all monotone measures

µ ∈M if and only ifH ⊎H =H.

Remark 3. Note that the same decomposition systems generating super-additive sub-decomposition
integrals generate sub-additive super-additive integrals and vice versa.

Proposition 5. LetH ∈ H be a decomposition system and let µ ∈M be a monotone measure. Then

sdec
µ
H d sdec

µ
H = scol

µ
D′ ,

where D′ is a collection given by
D′ = ⋃

D∈H
D.

Corollary 4. Let H ∈ H be a decomposition system, and let µ ∈ M be a monotone measure. The
sub-additive transformation of a super-decomposition integral decµ

H is the super-collection integral
col

µ
D′ , where D′ is a collection given by

D′ = ⋃
D∈H
D.

Proposition 6. Let H1,H2 ∈ H be two decomposition systems, and let µ ∈ M be a monotone
measure. Then

sdec
µ
H1

d sdec
µ
H2

= scol
µ
D′ ,

where D′ is a collection given by
D′ = ⋃

D∈H1∪H2

D.

5. Concluding Remarks

In the paper, four different types of convolution of aggregation functions in the setting
of decomposition integrals, i.e., both the sub-decomposition and super-decomposition
integrals, were examined. We solved the problem of the upper convolution and super
convolution of sub-decomposition integrals with respect to the same monotone measure
and, analogously, the lower convolution and sub-convolution of super-decomposition
integrals with respect to the same monotone measure.

Some questions still remain open, both theoretical and practical. For example, is it
possible to obtain a result similar to

col
µ1
D
△
col

µ2
D = col

µ1∨µ2
D
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but replacing the sub-collection integrals with sub-decomposition integrals? Or, is it
possible to characterize those decomposition systems for which the lower convolution
of sub-decomposition integrals is again a sub-decomposition integral (in the spirit of
Example 4)? Another interesting question is related to the fact that some decomposition
integrals are extensions of the Lebesgue integral (i.e., for additive monotone measures, they
coincide with the Lebesgue integral); for more details, see [14]. Now, we have the problem
of how our proposed convolutions are related to the standard convolution based on the
Lebesgue integral.

Though our work is purely theoretical, we expect several applications of our results
in all domains, where particular decomposition integrals and their generalizations were
successfully applied. Here, we recall, among others, multi-criteria decision support, image
processing, fuzzy ruler-based classification, etc., where generalizations of the Choquet
integral were considered; see, for example, [15–18]. In our further research, we will focus
on these mentioned problems and possible applications. More, we will aim to focus on
algorithms for faster processing of our theoretical results. Observe that we have already
proposed some algorithms for the computation of decomposition integrals in [13], where
we have also shown that this is not an easy task.
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