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Abstract: In the paper, we consider a ring structure on the Cartesian product of two sets of integer
multisets. In this way, we introduce a ring of integer multinumbers as a quotient of the Cartesian prod-
uct with respect to a natural equivalence. We examine the properties of this ring and construct some
isomorphisms to subrings of polynomials and Dirichlet series with integer coefficients. In addition,
we introduce finite rings of multinumbers “modulo (p, q)” and propose an algorithm for construction
of invertible elements in these rings that may be applicable in Public-key Cryptography. An analog
of the Little Fermat Theorem for integer multinumbers is proved.
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1. Introduction

Permutation-invariant objects naturally appear when we work with a large amount
of information that does not depend on the order. Such a situation is typical, for example,
in Quantum Statistical Physics, Data Science, Neural-Network Theory (see e.g., [1,2] and
references cited therein). A multiset, defined as an unordered collection of elements that
may be repeated, is a good tool for modeling such objects. Semiring algebraic structures on
multisets and their applications for neural networks were considered in [3] (see also [4] for
a more general context).

A set of finite multisets can be represented as the quotient set of the linear space Λ of all
finite sequences with respect to the following equivalence: two vectors in Λ are equivalent
if they are equal to each other up to a permutation of coordinates. Thus, we can consider a
finite multiset of nonzero elements x = {x1, . . . , xn} as a class of the equivalence containing
the vector (x1, . . . , xn, 0, . . .) ∈ Λ. It is possible to introduce some algebraic operations on
the set of multisets. We denote by x • z the union of two multisets x and z, and by x � z
their product—that is, a multiset consisting of all products xizj of elements x and z. The
set of finite multisets is a commutative semiring with respect to these operations [5,6]. The
semiring structure is not rich enough. However, since we have a commutative semigroup
with the cancellation law with respect to “•”, we can apply the Grothendieck construction
to embed it to a commutative group and extend the multiplication “�” by the distributivity.
Such a ring of multisetsM0 was constructed in [6] using symmetric and supersymmetric
polynomials on a Banach space (see also [7]). More details about algebras of symmetric
polynomials on Banach spaces can be found in [8–14]. The combinatorial approach to
symmetric polynomials can be found in [15]. Discrete dynamic systems based onM0 were
considered in [16]. Systematic theory of multisets can be found in [17].

In this paper, we consider the subring Z ofM0 comprising multisets with positive
integer elements. The subring Z contains an isomorphic copy of the ring of integers and so
can be considered as a generalization of integer numbers. We call Z the ring of multinumbers.
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We study properties of Z and some finite rings of multinumbers “modulo (p, q)”, and
propose some applications of the finite rings to Cryptography.

In Section 2, we provide some definitions and preliminary results. In Section 3,
we establish basic properties of the ring Z , construct isomorphisms of Z to a ring of
polynomials of infinitely many variables with entire coefficients, and deduce from here
some properties of Z . Further, we show that Z is isomorphic to a ring of Dirichlet series
with entire coefficients. In Section 4, we introduce finite rings of multinumbersZ(p,q), which
are generalizations of Zp. The main result of this section is Theorem 4, where we found
some conditions under which an element in Z(p,q) is invertible. Moreover, an analogue
of the Little Fermat Theorem for multinumbers is proved. In Section 5, we propose an
algorithm of encryption and decryption involving integer multinumbers.

For more details about applications of Number Theory to Cryptography, we refer the
reader to [18–20].

2. Definitions and Preliminaries

Let K be the notation for one of the following sets: the set of complex numbers
C, the set of integers Z, or the set of natural numbers N. Further, we use Z+ for the
set of nonnegative integers. We denote by ΛK the set of infinite-dimensional vectors
(x1, x2, . . . , xn, 0, 0, . . .)—that is, vectors with finitely many nonzero coordinates in K, and
by K∞ the set all vectors (infinity sequences) (x1, x2, . . . , xn, . . .), xj ∈ K, j ∈ N. Let us
consider the Cartesian product

ΛK ×ΛK = {(y|x) = (. . . , 0, ym, . . . , y1|x1, . . . , xn, 0, . . .) : x, y ∈ ΛK}.

For given permutations σ, τ on the set of natural numbers N and

(. . . , 0, ym, . . . , y1|x1, . . . , xn, 0, . . .) ∈ ΛK

we denote(
τ(. . . , 0, ym, . . . , y1)|σ(x1, . . . , xn, 0, . . .)

)
= (. . . , 0, yτ(m), . . . , yτ(1)|xσ(1), . . . , xσ(n), 0, . . .).

We introduce the following relation of equivalence on ΛK × ΛK. Let (y|x) =
(. . . , 0, ym, . . . , y1|x1, . . . , xn, 0, . . .) and (y′|x′) = (. . . , 0, y′m′ , . . . , y′1|x′1, . . . , x′n′ , 0, . . .) in ΛK.
We say that (y|x) ∼ (y′|x′) if and only if there are a = (a1, . . . , ak, 0, . . .) and b =
(b1, . . . , bj, 0, . . .) in ΛK and permutations σ and τ on N such that(

τ(. . . , 0, ym, . . . , y1, a1, . . . , ak)|σ(a1, . . . , ak, x1, . . . , xn, 0, . . .)
)

= (. . . , 0, y′m′ , . . . , y′1, b1, . . . , bj|b1, . . . , bj, x′1, . . . , x′n′ , 0, . . .).

The quotient set with respect to the equivalence, M0 =
(
ΛC × ΛC

)
/∼, and its

completion in the metric of the absolute convergence M were considered in [6]. It is
easy to see that the class [(y|x)] containing (y|x) is invariant with respect to the minimal
semigroup of mappings from ΛC ×ΛC to itself containing operators of permutation of the
bases of ΛC separately on each ΛC and affine operators

(. . . , 0, ym, . . . , y1|x1, . . . , xn, 0, . . .) 7→ (. . . , 0, ym, . . . , y1, a0|a0, x1, . . . , xn, 0, . . .)

for every a0 ∈ K. Let us denote by Z the set
(
ΛN ×ΛN

)
/∼ .

Consider the following mappings on ΛC ×ΛC (so-called supersymmetric polynomials):

Tk(y|x) =
∞

∑
i=1

xk
i −

∞

∑
j=1

yk
j , k ∈ Z+.
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Here, for the case k = 0, we assume that 00 = 0. In other words, T0(y|x) = |supp x| −
|supp y|, where |A| is the cardinality of a given set A and supp x = {i ∈ N : xi 6= 0}.

It is easy to check that if (y|x) ∼ (y′|x′), then Tk(y|x) = Tk(y′|x′) for every k ∈ Z+

because
Tk(. . . , 0, ym, . . . , y1, a1, . . . , aj|a1, . . . , aj, x1, . . . , xn, 0, . . .)

=
n

∑
i=1

xk
n +

j

∑
i=1

ak
i −

j

∑
i=1

ak
i −

m

∑
i=1

yk
i = Tk(. . . , 0, ym, . . . , y1|x1, . . . , xn, 0, . . .).

Next, we will show that the inverse statement is also true.
Using ideas from [6,9,10] introduced algebraic operations of “addition” and “multipli-

cation” onM0. Let z = (y|x), z′ = (y′|x′) ∈ ΛC ×ΛC, and [z], [z′] ∈ M0 be classes that
contain z and z′, respectively. Then, we set

[z] + [z′] = [z • z′] := [(. . . , y′n, yn, . . . , y′1, y1|x1, x′1, . . . , xn, x′n, . . .)].

For every [z] ∈ M0 there is an inverse element −[z], defined by −[(y|x)] = [(x|y)].
Thus, (M0,+) is a commutative group with zero 0 = [(0|0)]. Clearly, the operations “+”
and taking of inverse do not depend on representatives.

In [6] (Theorem 1) it was observed that [z] = 0 if and only if Tk(z) = 0 for every
k ∈ Z+. Since Tk(z • z′) = Tk(z) + Tk(z′), we have the following proposition.

Proposition 1. z ∼ z′ if and only if Tk(z) = Tk(z′) for every k ∈ Z+.

For given x and x′ in ΛC, x � x′ denotes the resulting sequence of ordering the set
{xiyj : i, j ∈ N} with one single index in some fixed order. So, we can define

[z][z′] = [((y � x′) • (x � y′)|(y � y′) • (x � x′))].

To check that the multiplication does not depend on representatives, we observe that

Tk(z � z′) = Tk(z)Tk(z′), k ∈ Z+

(see for the proof [6] (Proposition 5)). Thus, if u ∼ z and u′ ∼ z′, then Tk(z � z′) = Tk(u � u′),
and so, by Proposition 1, z � z′ ∼ u � u′.

Note that elements of the form [(0|x)] may be considered as finite multisets—that is,
unordered collections of numbers with possible repetitions. LetM+

0 = {[(0|x)] : x ∈ ΛC}.
Then, (M+

0 ,+, ·) is a commutative semiring. Since its additive semigroup (M+
0 ,+) is

cancellative—that is, z + u = z + v implies u = v for all u, v, z ∈ (M+
0 )—it follows that it

can be isomorphically embedded into some commutative group (so-called the Grothendieck
group) using a simple Grothendieck idea, which is the starting point of K-theory (see
e.g., [21]). From this point of view, (M0) is the Grothendieck group, associated with (M+

0 ).
Often, we will use notations [(ym, . . . , y1|x1, . . . , xn)] instead of

[(. . . , 0, ym, . . . , y1|x1, . . . , xn, 0, . . .)].

Theorem 1. (See Theorem 4 and Example 1 in [6]). (M0,+, ·) is a commutative ring with zero
0 = [(0|0)] and unity I = [(0|1)]. Functions τk : M0 → C,

τk
(
[z]
)
= Tk(z), k ∈ Z+

are ring homomorphisms.

Example 1. Let [z] = [(2| − 1)], [u] = [(1, 2|3)], and [v] = [(−1|1, 2)]. Then,

[u] + [v] = [(1, 2|3)] + [(−1|1, 2)] = [(1, 2,−1|1, 2, 3)] = [(−1|3)];
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[z]([u] + [v]) = [(2| − 1)][(−1|3)] = [(6, 1| − 2,−3)];

[z][u] + [z][v] = [(2| − 1)][(1, 2|3)] + [(2| − 1)][(−1|1, 2)]

= [(6,−1,−2|2,−3, 4)] + [(1, 2, 4| − 2,−1,−2)] = [(6, 1| − 2,−3)] = [z]([u] + [v]).

We call elements inM0 by complex multinumbers, in Z by integer multinumbers, and in
N := {[0|x] : x ∈ ΛN} by natural multinumbers. Note that N = ΛN/ ∼ and (N ,+, ·) is a
semiring of (Z ,+, ·).

3. Basic Properties of Multinumbers

Proposition 2. Z is a subring of M0 and functions τk, k ∈ Z+, restricted to Z , are ring
homomorphisms from Z to Z.

Proof. Clearly, if [z] and [z′] are in Z , then [z] + [z′] ∈ Z and [z][z′] ∈ Z . So, Z is a subring.
Further, τk

(
[z]
)
∈ Z if [z] ∈ Z and k ∈ Z+.

We will use notations n = (n1, n2, . . .) for a typical element in ΛN and v = [(m|n)]
for a typical element in Z . Let j ∈ Z. We denote by jv = j[(m|n)] = v + · · ·+ v︸ ︷︷ ︸

j

if j > 0

and jv = (−j)(−v) if j < 0, where −v = [(n|m)]. In particular, jI = [(0| 1, . . . , 1︸ ︷︷ ︸
j

)], where

I = (0|1) is the unity in Z . Note that jv 6= [(0|j)]v = [(. . . , jm2, jm1|jn1, jn2, . . .)].

Proposition 3. The map j 7→ jI is an injective homomorphism from Z into Z .

Proof. It is easy to check that (i + j)I = iI+ jI and ijI = iIjI. Further, iI 6= jI if i 6= j.

Thus, we have that Z contains an isomorphic copy of Z—that is, we can consider Z
as a generalization of Z.

Let Z[C∞] be the ring of formal polynomials over Z on the set C∞ of all sequences of
complex numbers—that is, every Q ∈ Z[C∞] is of the form

Q(t) = Q(t1, t2, . . .) = ∑
n1,...,nm

cn1,...,nm tk1
n1 · · · t

km
nm

for some m, ki ∈ Z+, cn1,...,nm ∈ Z and the right side series contains a finite number of
nonzero terms.

Note thatM0 has divisors of zero; for example, [(−1|1)][(0|1,−1)] = 0. We will show
that for Z , it is not so.

Theorem 2. There is a ring isomorphism ν : Z → Z[C∞].

Proof. Let {pn}∞
n=1 = {2, 3, 5, . . .} be the sequence of prime numbers. Let a ∈ N and

a = pk1
1 · · · p

kn
n . We set ν0(a) = tk1

1 · · · t
kn
n ∈ Z[C∞]. Note that ν0(1) = 1. Let us define ν by

ν
(
[(m|n)]

)
(t) := ∑

i
ν0(ni)−∑

j
ν0(mj),

where t = (t1, t2, . . .) ∈ C∞. If (m|n) ∼ (m′|n′), then

(m • a|n • a) = (m′ • b|n′ • b)

for some a, b ∈ ΛN; so, ν
(
[(m|n)]

)
(t) = ν

(
[(m′|n′)]

)
(t). Thus, the definition of ν does not

depend on the representative.
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Clearly, if [(m|n)] 6= 0, then ν
(
[(m|n)]

)
(t) 6= 0 and so ν is injective. It it easy to check

that ν is additive and multiplicative. The preimage of rtk1
1 · · · t

kn
n is equal to r[(0|pk1

1 · · · p
kn
n ]

and ν−1(j) = jI—that is, ν is subjective. So, ν is an isomorphism.

Since Z[C∞] is an integral domain, we have the following corollary.

Corollary 1. The ring Z is an integral domain and every element in Z has a unique representation
by the product of irreducible elements.

Example 2. Let us factor the element [(16|1)] into a product of irreducible elements in Z . By
Theorem 2,

ν
(
[(16|1)]

)
(t) = 1− t4

1 = (1− t1)(1 + t1)(1 + t2
1).

Thus,
[(16|1)] = [(2|1)][(0|1, 2)][(0|1, 4)].

Since polynomials 1 − t1, 1 + t1, and 1 + t2
1 are irreducible in Z[C∞], elements [(2|1)],

[(0|1, 2)], and [(0|1, 4)] are irreducible in Z .

Corollary 2. For every permutation σ on the set of prime numbers σ : (p1, p2, . . .) 7→ (pσ(1),
pσ(2), . . .), there exists a ring isomorphism Φσ : Z → Z such that

Φσ

(
[(0|pk1

1 · · · p
kn
n , 0, . . .)]

)
= [(0|pk1

σ(1) · · · p
kn
σ(n), 0, . . .)].

Proof. For every permutation σ, the mapping ν ◦Φσ ◦ ν−1 is a ring isomorphism of Z[C∞]
to itself, since

ν ◦Φσ ◦ ν−1(Q)(t1, t2, . . .) = Q(tσ(1), tσ(2), . . .), Q ∈ Z[C∞],

and (t1, t2, . . .) 7→ (tσ(1), tσ(2), . . .) is a linear isomorphism of the linear space C∞. Indeed, if
P(t) = ν(u)(t) and Q(t) = ν(v)(t), then

Φσ(uv) = ν ◦Φσ ◦ ν−1(P(t)Q(t)) = P(tσ(1), tσ(2), . . .)Q(tσ(1), tσ(2), . . .) = Φσ(u)Φσ(v).

By the same reason, Φσ(u + v) = Φσ(u) + Φσ(v).

Corollary 3. For every fixed t ∈ C∞ (t ∈ Z∞), there is a ring homomorphism ψt : Z → C (resp.
ψt : Z → Z) defined by

ψt(u) = ν(u)(t). (1)

Conversely, any ring homomorphism from Z to C (from Z to Z) can be defined by (1) for some
t ∈ C∞ (resp. t ∈ Z∞).

Proof. It is clear that ψt is a homomorphism and the range of ψt is in Z if t ∈ Z∞. Let
ψ : Z → C be a homomorphism. Let us define t by

t = (ψ((0|p1)), ψ((0|p2)), . . . , ψ((0|pn)), . . .) ∈ C∞.

Then, ψ(u) = ν(u)(t) = ψt(u) for every u ∈ Z . If ψ is a homomorphism from Z to Z,
then ψ

(
(0|pn)

)
∈ Z for every n; so, t ∈ Z∞.

Corollary 4. Let us suppose that u1, . . . , un ∈ Z and polynomials ν(u1)(t), . . . , ν(un)(t), t ∈
C∞ have no common zeros in C∞. Then, there are v1, . . . , vn ∈ Z and a positive integer j such that

n

∑
k=1

ukvk = jI.
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Proof. Let N be a maximal natural number such that polynomials ν(u1)(t), . . . , ν(un)(t)
depend on t1, . . . , tN . So, ν(u1)(t), . . . , ν(un)(t) have no common zeros in CN . By the Hilbert
Nullstellensatz, there are polynomials Q1(t), . . . , Qn(t) on CN such that

n

∑
k=1

ν(uk)(t)Qk(t) = 1 ∀t ∈ CN .

Since all polynomials ν(uk) ∈ Z[t1, . . . , tN ] ⊂ Q[t1, . . . , tN ], polynomials Qk are in
Q[t1, . . . , tN ] [22] (Ch. VII, Theorem 14)—that is, all coefficients of Qk are rational numbers.
Let j be the common denominator of all coefficients of all Qk, k = 1, . . . , n. Then, we can
write

n

∑
k=1

ν(uk)(t)Pk(t) = j,

where Pk = jQk ∈ Z[t1, . . . , tN ]. Setting vk = ν−1(Pk), k = 1, . . . , N, we have the required
identity.

Example 3. Let u = [(0|1, 1, 2)] and v = [(0|1, 2, 2)]. Then, ν(u)(t) = 2 + t1 and ν(v)(t) =
1 + 2t1 have no common zeros. Clearly, 2ν(u)− ν(v) = 3. Hence,

2u− v = 3I, that is, [(0|1, 1)][(0|1, 1, 2)] + [(1|0)][(0|1, 2, 2)] = [(0|1, 1, 1)].

Note that elements of the form jI, j > 1, are not invertible even in the ring of multisets
M [6] (Proposition 10).

Let us denote
D(u1, . . . , un) = a1uk1

1 + . . . + anukn
n ,

for some fixed a1, . . . , an ∈ Z and k1, . . . , kn ∈ N. We say that the equation

D(u1, . . . , un) = 0

is a Diophantine equation for undetermined multinumbers u1, . . . , un.

Example 4. Let us solve the following equation

[(0|1, 3)]u = [(1, 3|2, 6)].

By Theorem 2,
ν
(
[(0|1, 3)]

)
(t)ν(u)(t) = ν

(
[(1, 3|2, 6)]

)
(t)

and so,
(t2 + 1)ν(u)(t) = t1 + t1t2 − t2 − 1,

ν(u)(t) =
t1 + t1t2 − t2 − 1

t2 + 1
= t1 − 1.

Hence, u = ν−1(t1 − 1) = [(1|2)].

The following proposition is obvious.

Proposition 4. If a Diophantine equation D(u1, . . . , un) = 0 has a solution (v1, . . . , vn), then
(φ(v1), . . . , φ(vn)) is a solution of the following Diophantine equation in integers

φ(a1)φ(u1)
k1 + . . . + φ(an)φ(un)

kn = 0

for every homomorphism φ : Z → Z.

From this proposition, in particular, it follows that if a Diophantine equation has no
solution in Z, then it has no solution in Z .
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Another representation of Z can be given by a ring of finite Dirichlet series. Let us
recall that a formal series of the form

d(s) =
∞

∑
n=1

an

ns , an, s ∈ C,

is a Dirichlet series. We denote byD0(Z) the subset of finite Dirichlet series with coefficients
an ∈ Z. Clearly, D0(Z) is a ring with respect to usual addition and multiplication. The next
proposition follows from direct calculations.

Proposition 5. The following map is a ring isomorphism from Z to D0(Z)

Ψ : [(m|n)] 7→∑
i

1
ns

i
−∑

j

1
ms

j
.

Combining isomorphisms Ψ and ν, we can see that Ψ ◦ ν−1 is a ring isomorphism
from Z[C∞] to D0(Z),

Ψ ◦ ν−1 : mtk1
1 · · · t

kr
r 7→

m(
pk1

1 · · · p
kr
r
)s .

Such an isomorphism is well-known in a more general context and is called the Borh
transform. It can be extended to a map

∑
n

anzk1
1 · · · z

kr
r 7→∑

n

an

ns ,

where n = pk1
1 · · · p

kr
r , an ∈ C, (z1, z2, . . .) ∈ c0, and is an isomorphism from the algebra

H∞(Bc0) of bounded holomorphic functions on the unit ball of the Banach space c0 of

convergent to zero sequences to the Banach algebra H∞ of Dirichlet series d(s) =
∞

∑
n=1

an

ns

such that
‖d‖ = sup

Re(s)>0
|d(s)| < ∞

(see for details [23] (p. 85)). Thus, from Corollary 4, we have the following result.

Corollary 5. Let us suppose that d1, . . . , dn ∈ D0 are such that polynomials ν ◦Ψ−1(d1)(t), . . . , ν ◦
Ψ−1(dn)(t) have no common zeros in C∞. Then, there are b1, . . . , bn ∈ D0 and a positive integer j
such that

n

∑
k=1

bk(s)dk(s) = j.

Example 5. Let u = [(0|1, 1, 2)] and v = [(0|1, 2, 2)] as in Example 3. Then,

2Ψ(u)−Ψ(v) = 2
(

2 +
1
2s

)
−
(

1 +
2
2s

)
= 3.

4. Finite Rings of Multinumbers

Let p, q be natural numbers. Let us consider the following relation of equivalence
“modulo (p, q)” on Z defined by[(

. . . , m•{r}2 , m•{s}1 |n•{k}1 , n•{i}2 , . . .
)]
≈
[(

0|m′1
•{s′}, m′2

•{r′}, . . . , n′1
•{k′}, n′2

•{i′}, . . .
)]

,
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where n•{k} = n, . . . , n︸ ︷︷ ︸
k

, and n′j ≡ nj mod q, m′j ≡ mj mod q, k′ ≡ k mod p, i′ ≡ i

mod p, r′ ≡ −r mod p, s′ ≡ −s mod p. In other words, entries nj and mj are in Zq and
the number of repetitions of any number nj or mj is in Zp. For example, for every 0 < n < q,
we have

[(0| n, . . . , n︸ ︷︷ ︸
k

)] ≈ [(0| n, . . . , n︸ ︷︷ ︸
i

)] ≈ [(n, . . . , n︸ ︷︷ ︸
s

)|0)],

if k ≡ i mod p and k ≡ −s mod p.
Let us denote by Z(p,q) the set of classes of the equivalence. In sequel, we always

assume that p > 1 and q > 1. Since every element in Z(p,q) has a representative of the form

[(0|n)] = [(0|n1, n2, . . .)],

we will use the notation (n1, n2, . . .) for the class containing [(0|n)]. Moreover, to simplify
notation, we will write

(n1, . . . , n1︸ ︷︷ ︸
k

, n2 . . . , n2︸ ︷︷ ︸
i

, . . .) = (n•{k}1 , n•{i}2 , . . .) = k(n1) + i(n2) + · · · .

Proposition 6. Z(p,q) has the following properties:

(i) Z(p,q) is a finite commutative ring with the unity I = (1). The cardinality of Z(p,q) is
|Z(p,q)| = pq−1

(ii) Z(p,2) is isomorphic to Zp.
(iii) The mapping

I(p,q) : Z −→ Z(p,q)

Z 3 [(m|n)] 7→ [(m|n)] ∈ Z(p,q)

is a ring homomorphism.

Proof. (i). From the definition of Z(p,q), one can see that it is closed with respect to the al-
gebraic operations. The properties of these operations (the associativity, the commutativity,
the distributivity low) can be checked by the same way as in the case Z . Every element in
Z(p,q) can be written as(

1•{k1}, 2•{k2}, . . . , (q− 1)•{kq−1}) = k1(1) + k2(2) + · · ·+ kq−1(q− 1), 0 ≤ k j < p,

where m•{0} = 0. Thus, the number of such elements is equal to the number of all multi-
subsets of the multiset (

1•{p−1}, 2•{p−1}, . . . , (q− 1)•{p−1}).
It is well-known in Combinatorics that such a number is equal to pq−1 (e.g., see [24]

for a more general case).
(ii). Every element in Z(p,2) can be represented by

kI =
(
1•{k}

)
=
(

1, . . . , 1︸ ︷︷ ︸
k

, 0, . . .
)
,

0 ≤ k < p, and the correspondence kI 7→ k is the required isomorphism onto Zp.
(iii). It is well-known that the mapping Ip : n 7→ (n mod p) is a ring homomorphism

from Z to Zp.
Let

u =
[(

. . . , m•{r}2 , m•{s}1 |n•{k}1 , n•{i}2 , . . .
)]
∈ Z(p,q),
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then

I(p,q)(u) =
[(

. . . , Ip(m2)
•{Iq(r)}, Ip(m1)

•{Iq(s)}|Ip(n1)
•{Iq(k)}, Ip(n2)

•{Iq(i)}, . . .
)]

.

By the additivity and the multiplicativity of maps Ip(k) and Iq(k), using routine
calculations, we have that I(p,q)(uv) = I(p,q)(u)I(p,q)(v) and I(p,q)(u + v) = I(p,q)(u) +
I(p,q)(v) for all u, v ∈ Z(p,q).

Next, we consider the following question: Under which conditions is an element n ∈ Z(p,q)
invertible in Z(p,q)?

It is easy to find divisors of zero in Z(p,q). For example,

(1, 2)(1, 2) = (1, 2, 2, 1) = 0 in Z(2,3).

Theorem 3. The ring Z(p,q) is a field if and only if q = 2 and p is a prime number. In this case,
the field is isomorphic to Zp.

Proof. The case q = 2 is considered in Proposition 6. If q > 2, then (1, q− 1) 6= (1, 1) and
(1, q− 1) 6= 0. We claim that, in this case, (1, q− 1) is not invertible. Indeed,

(1, q− 1)(1, q− 1) = (1, 1, q− 1, q− 1) = (1, q− 1)(1, 1).

So, if n0 = (1, q− 1)−1, then

n0(1, q− 1)(1, q− 1) = n0(1, q− 1)(1, 1), that is, (1, q− 1) = (1, 1).

This is a contradiction.

Clearly, elements (k) = [(0|k, 0, . . . , 0)], where k is coprime with q, are “trivial” exam-
ples of invertible elements in Z(p,q). Indeed, if kr ≡ 1 mod q, then (k)(r) = (1) = I. Other
“trivial” examples of invertible elements in Z(p,q) are mI = (1•{m}) if m is coprime with p.
Let us show that there are nontrivial invertible elements.

Example 6. In Z(2,4), we have

(2, 3)(2, 3) = (4, 6, 6, 9) = (9) = (1).

That is, (2, 3) is invertible.

Theorem 4. Let p be a prime number. Suppose that m is invertible in Z(p,q) and k is such that
kp = 0 in Z(p,q) for some q ∈ N. Then, m + k is invertible in Z(p,q) and

(
m + k

)−1
=
(
m + k

)p−1(m−1)p.

Proof. (
m + k

)p
=

p

∑
j=0

(
p
j

)
mjkp−j.

Since p is prime, coefficients
(

p
j

)
=

p!
j!(p− j)!

, 0 < j < p are divisible by p and so

(
p
j

)
mjkp−j = 0 in Z(p,q), 0 < j < p.

Hence, (
m + k

)p
= mp + kp = mp
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since kp = 0 in Z(p,q). However, m is invertible. Thus,

(
m + k

)[(
m + k

)p−1(m−1)p
]
= I.

Corollary 6. Let p be a prime number. Suppose that m is invertible in Z(p,q) and k ∈ N is such
that kp ≡ 0 mod q for some q ∈ N. Then, m + (k) is invertible in Z(p,q) and

(
m + (k)

)−1
=
(
m + (k)

)p−1(m−1)p. (2)

The corollary is a partial case of Theorem 4 for k = (k). For given p and k, we can
find q satisfying the condition kp ≡ 0 mod q. It is enough to set q = hr1

1 hr2
2 · · · h

ri
i , where

ch1h2 · · · hi = k < q for some c ∈ N and 0 < rj ≤ p, j = 1, . . . , i. In particular, we have the
following corollary.

Corollary 7. Let n ∈ N, n > 1, and p be a prime number. Suppose that m is invertible in Z(p,np)

and k ∈ N is such that kp ≡ 0 mod np. Then, m + (k) is invertible in Z(p,np) and
(
m + (k)

)−1

can be computed by (2).

Corollary 8. Let n ∈ N, n > 1, and p be a prime number. Then,

1. The multinumber u = (n, np − 1) is invertible in Z(p,np) and up = (−(1))p.
2. If p 6= 2, then v = (n, 1) is invertible in Z(p,np) and vp = (1).

Proof. Clearly, (k) = (n) is such that (k)p = 0 in Z(p,np) and both m = (1) and m =
(np − 1) are invertible.

Since a product of invertible elements is invertible, we have the following corollary.

Corollary 9. Let n ∈ N and p be a prime number. Then, multinumbers (n, np − 1)m(n, 1)k,
m, k < p are invertible in Z(p,np).

Let us recall that according to the Euler Theorem, if n is coprime with p, then

nϕ(p) ≡ 1 mod p,

where ϕ(p) is the Euler totient function counting integers between 0 and p, which are
coprime with p ∈ N. If p is a prime number, then ϕ(p) = p− 1 and we have the Little Fermat
Theorem np−1 ≡ 1 mod p. The following theorem can be considered a generalization of
the Little Fermat Theorem for multinumbers.

Theorem 5. Let p be a prime number and 0 6= n = (n1, n2, . . . , nk) ∈ Z(p,p). Then,

1. np = n.
2. If n is invertible, then np−1 = (1) in Z(p,p).

Proof. Since n = (n1, n2, . . . , nk) = (n1) + (n2) + · · ·+ (nk), we can write

np =
(
(n1) + (n2) + · · ·+ (nk)

)p
= ∑

r1+···+rk=p

p!
r1! · · · rk!

(n1)
r1 · · · (nk)

rk

= (np
1 ) + (np

2 ) + · · ·+ (np
k ) + ∑

r1+···+rk=p, rj 6=p

p!
r1! · · · rk!

(n1)
r1 · · · (nk)

rk .
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Since p is prime,
p!

r1! · · · rk!
(n1)

r1 · · · (nk)
rk is divisible by p for rj < p, j = 1, . . . , k and

so it is equal to zero in Z(p,p). Moreover, by the Little Fermat Theorem, np
j ≡ nj mod p.

Thus,
np = (n1) + (n2) + · · ·+ (nk) = n.

If n is invertible, then np−1 = nn−1 = (1).

Note that (n1, n2, . . . , nk) is not necessarily invertible. For example, (1, 2) is not in-
vertible in Z3,3 because (1, 1, 2)(1, 2) = 0 but (1, 2)3 = (1, 2). So,it is naturally to ask the
following: Under which conditions is (n1, n2, . . . , nk) invertible in Z(p,p)? From Theorem 5, we
have a criterium of invertibility of (n1, n2, . . . , nk) in Z(p,p).

Corollary 10. Let p be a prime number and n = (n1, n2, . . . , nk) ∈ Z(p,p). Then, n is invertible
if and only if np−1 = (1) in Z(p,p).

Proof. Indeed, if np−1 = (1), then np−2 = n−1.

Example 7. The multinumber (1, 2) is not invertible in Z(5,5) because

(1, 2)4 =
(
1•{2}, 2•{4}, 3•{4}, 4

)
6= (1),

but (1, 2, 3) is invertible in Z(5,5) because (1, 2, 3)4 = (1), and so, (1, 2, 3)−1 = (1, 2, 3)3.

The question about possible extension of the Euler Theorem looks more complicated.

Example 8. Let n = (1, 5) ∈ Z(6,6). Then n2 = (1•{2}, 5•{2}) and n3 = (1•{4}, 5•{4}) 6= (1, 5).
Thus, nϕ(6)+1 = n3 6= n in this case while both pairs 1, 6 and 5, 6 are coprime numbers. On the
other hand, (1•{3}, 5•{2})3 = (1•{3}, 5•{2}), (1•{2}, 5•{2})3 = (1•{2}, 5•{2}), (1•{3}, 5•{3})3 =
(1•{3}, 5•{3}), (1•{4}, 5•{5})3 = (1•{4}, 5•{5}).

Conditions of Theorem 4 show that it is important to know nilpotent elements in
Z(p,q). Moreover, structures of nilpotent ideals in a given ring are important for studying of
the ring (see e.g., [25,26]). Next, the corollary shows that there are no nilpotent elements in
Z(p,p) if p is prime.

Corollary 11. Let p be a prime number. Then, Z(p,p) has no nonzero nilpotent elements.

Proof. Let nk = 0 for some k. Since by Theorem 5, np = n without loss of generality, we
can assume that k ≤ p. Then,

n = np = nk+p−k = 0np−k = 0.

Hence, n = 0.

Note that even if both p and q are primes, Z(p,q) still may have nilpotent elements. For
example, as we already observed, (1, 2)2 = 0 in Z(2,3).

5. Possible Applications to Cryptography

The idea of open encryption in Cryptography is based on the fact that some operations
are difficult for computing. For example, for an integer a, it is difficult to compute a−1

modulo p if a and p are big enough. In the case where a and p are multinumbers, the
algorithm for finding the inverse could be more complicated because integer numbers are
partial cases of integer multinumbers. Thus, we can consider the following protocol of
encryption and decryption involving integer multinumbers.
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1. Let n = (n1, n2, . . . , nl) be a natural multinumber, coding a secret message a =
(a1, a2, . . . , as) by an open code.

2. Randomly choose a prime number p and a number q such that p > l and q > max
j≤l

nj.

3. We consider three possible cases:

a. both numbers p and q are secret;
b. both numbers p and q are public;
c. either p or q is secret.

4. Generate two random keys: a public key u and private key v = u−1 in Z(p,q) using
Theorem 4 and corollaries after the theorem.

5. To encrypt, find w := nu and reduce each component of w modulo q if q is public,
and the number of repetitions of each component of w modulo p if p is public.

6. To decrypt, find wv and reduce it modulo (p, q)—that is, n = I(p,q)(wv).

Let us explain some steps. We suppose that the secret message a in (1) is a vector with
nonnegative integer coordinates. Let us construct the multinumber n = (n1, n2, . . . , nl)
coding a by the following way:

Zs
+ 3 (a1, a2, . . . , as) 7→ (1, . . . , 1︸ ︷︷ ︸

a1

, 2 . . . , 2︸ ︷︷ ︸
a2

, . . . , s, . . . , s︸ ︷︷ ︸
as

) ∈ N .

For example, if a = (1, 0, 0, 1, 1), then n = (1, 4, 5); if a = (0, 1, 1, 2, 0, 1, 2), then
n = (2, 3, 4, 4, 6, 7, 7).

Formally, n belongs to N ⊂ Z and we will use the operator I(p,q) as in Proposition 6
to reduce it modulo (p, q). Further, we need operations of partial reductions. Define

I(p,·)
(
n•{i1}1 , n•{i2}2 , . . . , n•{il}l

)
=
(
n
•{Ip(i1)}
1 , n

•{Ip(i2)}
2 , . . . , n

•{Ip(il)}
l

)
and

I(·,q)
(
n•{i1}1 , n•{i2}2 , . . . , n•{il}l

)
=
(
Iq(n1)

•{i1}, Iq(n2)
•{i2}, . . . , Iq(nl)

•{il}
)
.

Here, Ip is the homomorphism from Z to Zp, Ip(n) = n mod p. Clearly,

I(p,q) = I(p,·) ◦ I(·,q).

Let us consider step (2). Firstly, we randomly choose a big enough prime number p
taking into account that p > l. To choose q, let us randomly select finite sequences of natural
numbers h1, h2, . . . , hi; r1, r2, . . . , ri; and c1, c2, . . . , cs such that rj ≤ p, q := hr1

1 hr2
2 · · · h

ri
i > nj

for every 1 ≤ j ≤ l, and kt := cth1h2 · · · hi < q, 1 ≤ t ≤ s. Moreover, we randomly select a
natural number m < p and set m := mI = (1, . . . , 1). Since p is prime, m is invertible and,
according to the Little Fermat Theorem, m−1 = mp−2I. As q divides kp

1 , kp
1 ≡ 0 mod q,

and by Theorem 4, m + (k1) is invertible. By the same reason, kp
2 ≡ 0 mod q, and so,

m + (k1) + (k2) is invertible. Thus, applying Theorem 4 s times, we will obtain that

u = m + (k1) + (k2) + · · ·+ (ks)

is invertible. In each step, we have the inverses
(
m + (k1) + (k2) + · · ·+ (kt)

)−1, and at
step t = s, we will obtain v = u−1.

Note that we can repeat this process for the same p and q but with different constants
m, ri, and cj to obtain another invertible element in Z(p,q). The product of two invertible
elements is invertible; so, the final key may be obtained as a product of several invertible
multinumbers obtained by the algorithm above.
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If both p and q are secret, then the encrypted code is of the form w = nu ∈ N . Using
Theorem 2, we can represent it as a product of polynomials of many variables

ν(w)(t) = ν(n)(t)ν(u)(t).

Since ν(u)(t) is known, one can recover the secret information by dividing

ν(n)(t) =
ν(w)(t)
ν(u)(t)

using known division algorithms for multivariable polynomials. Thus, case 3a is not secure.
Suppose that both p and q are public. Then, the encrypted code is I(p,q)

(
w
)
=

I(p,q)
(
n
)
I(p,q)

(
u
)
∈ Z(p,q). The operator I(p,q) is not invertible, so the previous method of

attack is not effective. However, one can consider the sequence I(p,q)
(
n
)[
I(p,q)

(
u
)]j

for j
big enough. It is well-known in Ring Theory that there is j = N such that

I(p,q)
(
n
)[
I(p,q)

(
u
)]N

= I(p,q)
(
n
)
I(p,q)

(
u
)
.

Then, for the step j = N − 1, we have the secret information n = I(p,q)
(
n
)
. So, case 3b

is also not secure.
Before we turn to case 3c, let us consider what happens in the classical situation in Zp.

If p is prime, then
a 7→ a mod p = Ip(a)

is a one-way function that is injective for a < p. Thus, the encryption a 7→ au mod p
cannot be broken if p is secret. However, in this case, we have no public key and so the
public-key cryptography system cannot be realized. If p is public, then the system may be
attacked, as in case 3b.

In the well-known RSA algorithm [20] (p. 185), the encryption function is defined by

a 7→ ab mod p,

where b and ϕ(p) are coprime and p is not a prime number. To obtain the inverse function,
it is necessary to compute the Euler function ϕ(p), which is equivalent to factoring p into
prime numbers. The proposed algorithm is not a precise analog of the RSA algorithm
because we do not have a good multinumber version of the Euler Theorem. However,
case 3c allows us to use one-way functions

n 7→ I(p,·)(nu) or n 7→ I(·,q)(nu)

having either p or q as a public key. As we can see in the following example, one must take
care that nu is big enough in some sense.

Example 9. Let a secret information be coded by the vector a = (0, 1, 1, 2, 0, 1, 2). Then, the
corresponding multinumber n is (2, 3, 4, 4, 6, 7, 7) ∈ N . We can take p = 3 and q = 9. It is easy
to check that u = (1, 3) is invertible in Z(3,9) and so we can choose it as a public key. The inverse
element v = u−1 = (1, 3, 3) is the private key.

Case 1. Let us consider the case when p is secret and q is public. Then, actually, the private
key is the pair v, p. For encoding, we have to make the multiplication w = nu ∈ N and reduce
each component of the multinumber w modulo q = 9. That is,

w = nu = (2, 3, 4, 4, 6, 6, 7, 7, 9, 12, 12, 18, 21, 21);

I(·,9)(w) = (2, 3, 3, 3, 3, 3, 4, 4, 6, 6, 7).
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Thus, I(·,9)(w) is the encoded message. To decode it, one must reduce the number of repetitions
of each component modulo p = 3 and to multiply the result by v = (1, 3, 3) in Z(3,9). So,

I(3,·)
(
(2, 3, 3, 3, 3, 3, 4, 4, 6, 6, 7)

)
= (2, 3, 3, 4, 4, 6, 6, 7);

(2, 3, 3, 4, 4, 6, 6, 7)(1, 3, 3) = (2, 3, 4, 4, 6, 7, 7) = n.

Case 2. Now, let q be secret and p be public. Then, having w as above, we reduce the repetition
of each component of w modulo p. We have

I(3,·)(w) = (2, 3, 4, 4, 6, 6, 7, 7, 9, 12, 12, 18, 21, 21).

To decode, we have multiply w by v in Z(3,9).
Note that in Case 1, w cannot be recovered from I(·,9)(w) without information about p

because w has components that are greater than or equal to q. However, in Case 2 of this example,
w = I(3,·)(w); so, it is possible to find n dividing w by u. It happens because the number of
repetitions of each component of w is less than 3.

In the general case, to guarantee that w cannot be recovered from I(·,q)(w), we have
to make sure that w contains elements that are greater than or equal to q; to guarantee that
w cannot be recovered from I(p,·)(w), we have to make sure that w contains elements that
repeat p or more times. This can be achieved if we add to the secret code a piece of random
code with empty information containing components greater than q and repeated more
than p times.

6. Conclusions

In the paper, we introduce and study the ring of integer multinumbers Z and finite
rings of multinumbers Z(p,q). We can see that Z is isomorphic as a ring to known objects
such as the ring of polynomials Z[C∞] or the ring of Dirichlet series D0(Z). However, the
representation in the form of multinumbers gives us a different point of view and suggests
some new questions and directions of investigation. In particular, we can ask about
solutions of Diophantine equations over multinumbers. In addition, using the concept
of multinumbers, we introduced the multinumbers modulo (p, q). Such kinds of objects
may be applicable in Cryptography for the creation of new algorithms with open keys,
and we proposed one of them. We did not examine in detail the complexities of encoding,
decoding, and the resistance of the algorithm against other basic attacks—this may be a
subject of further investigations. However, the comparison with RSA and Example 9 gives
arguments that the proposed algorithm is applicable. This paper is an invitation to study
multinumbers of different natures and their applications to Cryptography.

Finally, we note that the idea of multinumbers appeared from investigations of sym-
metric and supersymmetric analytic functions on Banach spaces. This is a good argument
for the conceptual unity of different branches of Mathematics.
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