
����������
�������

Citation: Levendorskiĭ, S. Operators
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Abstract: The price V of a contingent claim in finance, insurance and economics is defined as an
expectation of a stochastic expression. If the underlying uncertainty is modeled as a strong Markov
process X, the Feynman–Kac theorem suggests that V is the unique solution of a boundary problem
for a parabolic equation. In the case of PDO with constant symbols, simple probabilistic tools
explained in this paper can be used to explicitly calculate expectations under very weak conditions on
the process and study the regularity of the solution. Assuming that the Feynman–Kac theorem holds,
and a more general boundary problem can be localized, the local results can be used to study the
existence and regularity of solutions, and derive efficient numerical methods. In the paper, difficulties
for the realization of this program are analyzed, several outstanding problems are listed, and several
closely efficient methods are outlined.
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1. Introduction
1.1. Expectations and Boundary Problems

The prices (values) of contingent claims in finance, insurance and economics are
defined as expectations of certain stochastic expressions. In many cases, the underlying
uncertainty is modeled as a strong Markov process X (with killing) on Rn or its subset
D, with the infinitesimal generator L. Let V(t, x) denote the price of an option or other
contingent claim in the market at time t and Xt = x. The Feynman–Kac theorem suggests
that V is the unique solution of a boundary problem for the parabolic equation:

(∂t + L)V(t, x) + g(t, x) = 0. (1)

In the case of diffusion models, L is a differential operator of order 2; in jump-diffusion
models, L is an integro-differential operator, and hence, a pseudo-differential operator
(PDO). We use the representation of L as a PDO because this facilitates the study of
the regularity of solutions, and naturally leads to the construction of efficient numerical
methods for option pricing. The function g represents the stream of payoffs {g(t, Xt)}t≥0
that the owner of the contingent claim is entitled to. The value function V satisfies (1) in the
open region U in the time-state space, where the derivative security remains alive. As the
process (t, Xt) leaves U, the owner of the contingent claim is entitled to an instantaneous
payoff G(τUc , XτUc ), where τUc is the hitting time of Uc =: D \U by {(t, Xt)}.
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The solution of the boundary problem can be used to calculate the expectation, and
the properties of the expectation can be used to formulate appropriate boundary and
regularity conditions. Unfortunately, this scheme is very difficult to realize in almost
all cases, including many popular diffusion models, and the majority of the results in
the literature are obtained assuming (without proof) that the boundary problem for the
expectation has the unique solution. Furthermore, it is assumed (also without proof) that
the expectation defines a sufficiently regular function so that Ito’s formula can be applied;
then, the solution of the boundary problem is the expectation. The necessity of proving
these crucial assumptions is brushed under the carpet. Even in many diffusion models,
the proof of the Feynman–Kac theorem is lacking. See [1,2] for details; one of the main
reason is a complicated degeneration of L at the boundary of the state space, which makes
it difficult to apply standard tools for the analysis of degenerate elliptic operators. If
L degenerates at the boundary of a half-space, then general tools [3–5] can be applied,
with some modifications, but in the case of degeneration at two and more transversal
hyperplanes, the study of the regularity of solutions is more difficult. Furthermore, even
if a weak regularity of the solution of the boundary problem is established, the proof of
the Feynman–Kac theorem remains quite non-trivial. In the case of jump-diffusion models,
additional subtleties emerge, even in the simplest case of Lévy models (the infinitesimal
generator is a PDO with the constant symbol). In the majority of empirical studies, when
Lévy models are calibrated to the real data, L is of the form ∂t + 〈µ, ∂x〉 − a(Dx), where a(D)
is an elliptic PDO of order ν ∈ (0, 1), with the symbol analytic in a tube domain. Hence,
the operator of the boundary problem (1) becomes a parabolic operator of the standard
form, with an elliptic stationary part, only after an appropriate change of variables in the
(t, x)-space. This peculiarity leads to several non-standard properties of solutions, which
we analyze in this paper. If one has in view applications of the general theory of fractional
differential equations to finance, the class of operators of this kind deserves to be regarded
as a model class rather than standard fractional differential operators ∂t − |∆|ν, where
|∆|ν is the fractional Laplacian. (Note that |∆|ν, ν 6= 2, cannot be used in the standard
popular models in finance, economics and insurance.) An additional important feature
of the infinitesimal generators of Lévy models used in finance is the existence of analytic
continuation not only to tube domains but to conesas well. This observation is the basis of
efficient numerical methods that evaluate integrals in pricing formulas, which we outline in
this paper. These methods can be used in other situations, for instance, to evaluate special
functions and stable distributions [6–9].

1.2. Black–Scholes Model and Diffusion Models

In the Black–Scholes model, the only source of uncertainty is the stock price St = eXt ,
where Xt is the Brownian motion (BM) on R, with drift. The infinitesimal generator L is the
second-order elliptic differential operator. If the market with several stocks and/or several
sources of uncertainty is considered, e.g., volatility and/or stochastic interest rate, then the
underlying process X is of a more complicated nature.

Typically, the region U where (1) holds is of the form {(t, x) | t ∈ (0, T), x ∈ U(t)},
where U(t) are open subsets of D. If X is a diffusion, XτUc is at the boundary of U, and
then V satisfies the terminal condition:

V(T, x) = G(T, x), x ∈ U(T), (2)

and the boundary condition:

V(t, x) = G(t, x), x ∈ ∂U(t). (3)

If U is unbounded, appropriate restrictions on the rate of growth of V at infinity are
imposed. Boundary problems of this sort arise for the majority of contingent claims in
finance and insurance, and for numerous value functions in economics, e.g., real options
and stochastic games. In some important cases such as lookback or Asian options, the
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underlying process is not Markovian; hence, pricing is more involved. In this paper, we
consider boundary problems of the form (1), (2), (3), including free boundary problems.
In applications, the approximate pricing of contingent claims of a complicated structure
is reduced to a sequence of embedded options, equivalently, to a sequence of boundary
problems of the form (1), (2), (3). Hence, this study of the regularity of the solutions of the
latter is important for studying other types of contingent claims as well. Efficient numerical
procedures for the solutions of standard boundary problems can be (and are) used as
building blocks to solve more complicated problems.

In the Black–Scholes model, a simple affine change of variables reduces (1) to the
backward parabolic equation Vt + Vxx − rV = 0; hence, the host of standard well-known
methods can be used to price numerous contingent claims. Black and Scholes informally
derived (1), constructing the perfect continuously changing hedging portfolio; later, Merton
gave essentially equivalent proof constructing the perfect continuously changing replicating
portfolio. Both proofs contain fundamental mathematical errors but can be made accurate
for wide classes of diffusion models. Unfortunately, both proofs fail for jump-diffusion
models—the statements and proofs of several popular imperfect substitutes for perfect
hedging and replication are also incorrect (see [10]), and the reason for the failure is
fundamental rather than technical.

1.3. The Case of Jump-Diffusions

In the Merton–Black–Scholes theory, the pricing equation is derived from the absence
of frictions and no-arbitrage assumption. The no-arbitrage assumption means that it is
impossible to construct a portfolio of securities traded in the market such that, at the
expiration date, the value of the portfolio is non-negative with probability 1, and posi-
tive with positive probability. Leaving aside an important theoretical background from
economics and finance, and the technical conditions necessary to make the statements
mathematically accurate, the absence of frictions and the no-arbitrage assumption imply
that the discounted prices of all securities traded in the market must be local martingales
under a probability measure Q on the filtered probability space where the process X lives.
The crucial point is that Q 6= P, where P is the historic or physical probability measure
estimated using the time series for the prices of securities already traded on the market.
The pricing measure Q may not assign non-zero probabilities to events of zero measure
under P and vice versa; hence, Q must be equivalent to P. This explains the name for
Q: an equivalent martingale measure (EMM; another name is risk-neutral measure). The
discounting can be taken into account as the killing of the Markov process, and L = LQ in
(1) is the infinitesimal generator of the process with killing, under Q. Then, {V(t, Xt)}, the
discounted price process, is a local martingale if for any t < τUc and stopping time τ ≥ t
s.t. τ ≤ τUc , EQ[V(τ, Xτ) | Xt = x] = V(t, x).

The boundary problem (1), (2), (3) is used to calculate the prices of new securities. In
(sufficiently regular) diffusion models, there exists a unique EMM; hence, one can calculate
the price of any contingent claim. In financial markets and insurance, a great variety of
contingent claims are constructed and sold, and the implicit assumption is that one can
theoretically calculate the price of new securities.

The three conditions are as follows: (1) a perfect hedge is possible; (2) perfect repli-
cation is possible; (3) there exists a unique EMM are equivalent (naturally, under subtle
technical conditions)—and markets satisfying these conditions are called complete markets.
The Feynman–Kac theorem gives the representation of the price as the expectation of the
payoff stream under Q:

V(t, x) = EQ
[∫ τUc

t
g(s, Xs)ds + G(τUc , VτUc )

]
. (4)

If X is a jump process or jump-diffusion process, then the hedging/replicating argu-
ment is not applicable. Fortunately, according to the general economic theory, if the market
does not admit arbitrage, there exists an EMM such that the price of each contingent claim
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is given by (4) (an accurate mathematical statement imposes additional subtle conditions on
X); an EMM is not unique, and one may choose an EMM one believes in. In real financial
markets and numerous empirical studies, the measures calibrated to prices of the underly-
ing financial instruments and options are not only different; quite often, the measures are
not equivalent. Several examples can be found in the well-known empirical study in [11]:
prices of certain stocks are calibrated to processes of infinite variation, whereas the prices of
options—to processes of finite variation, which contradicts the well-known conditions on
equivalent probability measures in [12] (the authors of [11] did not notice this discrepancy
of their calibration results). One of the important reasons for discrepancies of this kind is
the inaccuracy of popular numerical methods used for pricing and calibration. Inaccurate
methods are constructed and used because crucial qualitative properties of jump-diffusion
models and prices V(t, x) in these models are not taken into account. Examples of errors of
popular methods, including the analysis of implications for risk management, can be found
in [2,13–20]. The aims of this paper are to list and explain the irregularity of V(t, x) (and
the free boundary, in the case of options of American type) in several standard situations,
and explain how to design efficient numerical methods that work well in wide classes of
jump-diffusion models.

In incomplete markets and the jump-diffusion models which are models of incomplete
markets, one cannot use the hedging or replication argument to derive the equation for
contingent claims. However, one can start by choosing an EMM and defining the price by
(4). In many cases of interest, the representation (4) and the Fourier/Laplace transform
technique suffice to express the price in the form of an integral, and an efficient numerical
procedure for the evaluation of the designed integral. In some popular classes of models,
the derivation of pricing formulas is based on (1), although the rigorous justification is
lacking. Informally, one can use Dynkin’s formula:

V(t, x) = EQ
[∫ τUc

t
(−∂s − L)V(s, Xs)ds + G(τUc , VτUc )

]
(5)

to conclude that (1) must hold. Thus, (1) is the backward Kolmogorov equation. In [21,22],
the formal derivation of (1) is given for Lévy processes satisfying the (ACP)-condition
(absolute continuity of potential measures) in the infinite time horizon case (stationary
problem) and the (ACT)-condition (absolute continuity of transition measures) in the non-
stationary case—in ([12], Section 41), one can find equivalent conditions for the (ACP)-
and (ACT)-conditions; the equation is understood in the sense of generalized functions. A
similar proof can be given for wider classes of strong Markov processes satisfying the same
conditions. However, the author is unaware of a published proof in the general setting.
See [1,2] for a review of partial results, and [23–25] for proofs in several special cases.

The next important complication in the case of jump-diffusion processes is the form of
the boundary condition which becomes non-local:

V(t, x) = G(t, x), x ∈ U(t)c. (6)

Note that the standard boundary problems for fractional differential equations are
local although the form of the conditions is non-standard. The non-standard boundary
conditions are formally invented in order for the Cauchy problem to be well defined. In
the literature, one can find discussions about a proper choice of the boundary conditions.
On the contrary, the non-local boundary condition (6) is a part of the definition of the value
function, and cannot be replaced for convenience with a local condition.

One can use the boundary problem (1), (2), (6) as follows:

(1) To prove the existence and uniqueness of the solution in the class of sufficiently regular
functions; sufficiently regular means that Dynkin’s formula (5) is valid;

(2) Applying (5) to conclude that V equals the RHS of (4).

Unfortunately, this scheme is very difficult to realize in many models, including many
popular diffusion models, and the majority of the results in the literature are obtained



Mathematics 2022, 10, 1028 5 of 36

assuming without proof that the boundary problem has the unique solution, and the
solution is sufficiently regular so that Ito’s formula (or, more generally, Dynkin’s formula)
can be applied; then, the solution satisfies (4) and (5), hence, the problem of calculation of
the expectation (4) is solved. The necessity of proving this crucial assumption is brushed
under the carpet.

The main difficulty for the proof stems from the irregularity of the value function
V, which makes general theorems of Feynman–Kac type available in the literature not
applicable; the irregularity of V is the artifact of the properties of the infinitesimal generators.
However, for several classes of contingent claims and types of models, V given by (4) can
be explicitly calculated using the Fourier/Laplace technique. In the case of Lévy processes
(in terms of PDO, the case of operators with constant symbols), and problems of several
basic types (boundary problems with flat boundaries), either no or very weak conditions
on the process are needed. The result is an integral depending on (t, x) as a parameter,
in one or more dimensions. An explicit analytical expression can be used to study the
regularity of solutions; in a number of important case, the integral can be efficiently and
quickly calculated. Since the study of the regularity of solutions of boundary problems can
be localized (see [26]), the author hopes that the results for operators with constant symbols
and boundary problems with flat boundaries can be used to prove the correspondence
between the stochastic expressions and boundary problems with curved boundaries, and
operators with state- and time-dependent symbols.

1.4. Structure of This Paper

Lévy models are considered in Section 2, and the pricing of European options using
the Fourier transform technique (solution of the Cauchy problem) and efficient numerical
realizations are in Section 3. To price barrier options (boundary problems for parabolic
operators), the Laplace transform, Wiener–Hopf factorization and maturity randomization
(method of lines) are needed (Section 4). Explicit formulas involve multi-dimensional
integrals, and efficient numerical calculations based on contour deformations become
more involved. In Section 5, we analyze the peculiarities of the early exercise boundary
and the prices of American options (solutions of free boundary problems), and present a
general stable scheme based on the method of lines. The proof of convergence is based on
the probabilistic interpretation of the operator form of the Wiener–Hopf factorization. In
Section 6, we explain how the methods of Sections 4 and 5 are modified to price options in
regime-switching models (solve systems of boundary problems), and how to approximate
more complicated stochastic volatility models and models with stochastic interest rates
with regime-switching models. In Section 7, we outline the structure of several exactly
solvable models with non-constant symbols and list several outstanding problems for these
classes of models, which seem to be non-trivial and interesting from the point of view of
the theory of boundary problems for PDE and PDO. Finally, in Section 8, we summarize
the results presented in this paper, review several other groups of methods and, wherever
possible, outline the relative advantages of different methods.

2. Lévy Models or PDO with Constant Symbols
2.1. Lévy Processes

Let X be the Lévy process on the filtered probability space (Ω;F ; {Ft}t≥0;Q).
E = EQ denotes the expectation operator under Q. We use the definition in [21,27] of
the characteristic exponent ψ(ξ) = ψQ(ξ) of a Lévy process X on Rn, under Q, which is
marginally different from the definition in [12]. Namely, ψ is definable from:

E[ei〈ξ,Xt〉] = e−tψ(ξ), ξ ∈ Rn, t ≥ 0, (7)

where 〈a, b〉 = ∑n
j=1 ajbj. This definition of the characteristic exponent implies that the in-

finitesimal generator LX of X is the pseudo-differential operator (pdo)−ψ(D); equivalently,
LX acts of oscillating exponents are as follows: LXei〈x,ξ〉 = −ψ(ξ)eixξ .
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Denote D = {x | |x| ≤ 1}. The following theorem (Lévy–Khintchine theorem) can be
found in many monographs, e.g., ([12], Thm. 8.1).

Theorem 1. (i) Let X be a Lévy process on Rn. Then, its characteristic exponent admits the repre-
sentation:

ψ(ξ) =
1
2
〈Aξ, ξ〉 − i〈γ, ξ〉+

∫
Rn
(1− ei〈x,ξ〉 + i〈x, ξ〉1D(x))F(dx), (8)

where A is a symmetric non-negative-definite n× n matrix, γ ∈ Rn, and F(dx) is a measure on
Rn satisfying:

F({0}) = 0,
∫
Rn
(|x|2 ∧ 1)F(dx) < ∞. (9)

(ii) The representation (8) is unique;
(iii) Conversely, if A is a symmetric non-negative-definite n× n matrix, γ ∈ Rn, and F is a

measure on Rn satisfying (9), then there exists a Lévy process X with the characteristic exponent (7).

The triple (A, F, γ) is called the generating triplet of X. The A and F are called the
Gaussian covariance matrix and Lévy measure of X. When F = 0, X is Gaussian, and if A = 0,
X is called purely non-Gaussian.

Essentially, the term −i〈x, ξ〉1D(x) in (8) is needed to ensure the convergence of the
integral, and hence different functions can be (and are) used instead of c(x) := 1D(x), for
instance, c(x) = 1/(1 + |x|2); the A and F are independent of the choice of c. If F satisfies
the condition:

F({0}) = 0,
∫
Rn
(|x| ∧ 1)F(dx) < ∞, (10)

which is stronger than (9), then (8) can be simplified:

ψ(ξ) =
1
2
〈Aξ, ξ〉 − i〈γ0, ξ〉+

∫
Rn
(1− ei〈x,ξ〉)F(dx), (11)

where γ0 = γ−
∫
Rn x1D(x)F(dx).

If the sample paths of a Lévy process have bounded variation on every compact time
interval a. s., we say that the Lévy process has bounded variation. A Lévy process has
bounded variation if and only if A = 0 and (10) holds (see, e.g., [28], p. 15).

2.2. Examples of Lévy Processes on R
Example 1. The Lévy density of a (pure jump) one-dimensional stable Lévy process X of index
α ∈ (0, 2) is of the form

F(dy) = |y|−α−1(c+1(0,+∞)(y) + c−1(−∞,0)(y))dy, (12)

where c± ≥ 0 and c+ + c− > 0. If α 6= 1, then, substituting (12) into the Lévy–Khintchine
formula with σ2 = 0, one easily derives ψst(ξ) = −iµξ + ψ0

st(α, C+, ξ), where µ can be expressed
in terms of α, c± and b:

ψ0
st(α, C+, ξ) = C+ξα1(0,+∞)(ξ) + C−(−ξ)α1(−∞,0)(ξ), (13)

C− = C+, and C+ = C+(α, c+, c−) = −c+Γ(−α)e−iπα/2 − c−Γ(−α)eiπα/2. See [9]. For
somewhat different (naturally, equivalent) formulas, see [29] and ([12], Thm.14.15). In the case
α = 1, the formula for ψ0 is different (see [9]):

ψ0(ξ) = σ|ξ|(1 + i(2β/π) sign ξ ln |ξ|), (14)

where σ = (c++ c−)π/2, β = (c+− c−)/(c++ c−). This is a version of Zolotarev’s parametriza-
tions [30] for stable processes of index 1. See [9,12] for further references. Note that the symbol of
the infinitesimal generator L is non-smooth at zero.
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The tails of the probability distributions of stable Lévy processes exhibit slow polyno-
mial decay. Hence, the second moment of the distribution of Xt is infinite. In real financial
markets, the distributions have finite second moments, which makes stable processes
unsuitable. The simplest way to ensure that the second moment is finite is to consider
processes with exponentially decaying tails; the symbols of L are analytic in a strip. These
equivalent properties were used as the basis for the definition of a general class of Regular
Lévy processes of exponential type (RLPE) [21,22]. Below, we list several popular sub-classes
of RLPE. The reader can easily observe that, in all these examples, the characteristic expo-
nent ψ(ξ) = −iµξ + ψ0(ξ) admits analytic continuation to the union of a strip and cone
C around R, and Re ψ0(ξ) → +∞ as ξ → ∞ in a sub-cone C+ ⊂ C. In [31], the defini-
tion of the general class of processes enjoying these properties was given. The suggested
name SINH-regular processes reflects the fact that the integrals in pricing formulas can be
efficiently calculated using changes of variables of the form:

ξ = χω1,b,ω(y) = iω1 + b sinh(iω + y) (15)

(sinh-acceleration). Lévy processes used in quantitative finance are SINH-regular processes.

Example 2. KoBoL processes. Modifying the Lévy density (12):

F(dy) = (c+y−ν+−1eλ−y1(0,+∞)(y) + c−(−y)−ν−−1eλ+y1(−∞,0)(y))dy, (16)

where ν± ∈ (0, 2), c± ≥ 0, c+ + c− > 0 and λ− < 0 < λ+, we obtain a class of Lévy processes
with exponentially decaying tails. In the case ν− 6= 1, ν+ 6= 1, the characteristic exponent of the
KoBoL process is of the form ψ(ξ) = −iµξ + ψ0(ξ), where:

ψ0(ξ) = c−Γ(−ν−)[λ
ν−
+ − (λ+ + iξ)ν− ] + c+Γ(−ν+)[(−λ−)

ν+ − (−λ− − iξ)ν+ ]; (17)

if either ν+ = 1 or ν− = 1, then the formula for ψ0 is different. See [21,27]. In particular, if
ν+ = ν− = 1, then:

ψ0(ξ) = c+((−λ−) ln(−λ−)− (−λ− − iξ) ln(−λ− − iξ))

+c−(λ+ ln λ+ − (λ+ + iξ) ln(λ+ + iξ)). (18)

In the symmetric case ν− = ν+ ∈ (0, 2) \ {1},−λ− = λ+, c+ = c−, the class of processes
with the Lévy density (16) was introduced by Koponen [32], who derived a rather inconvenient
formula for the characteristic exponent (different from (17)) and suggested a somewhat misleading
name truncated Lévy processes. The generalization (16) was introduced in [27], where the character-
istic exponent was calculated and several option pricing problems were solved; the name Koponen’s
family of truncated Lévy processes was used. Starting with [21], the name KoBoL processes is used.
In [11], a subclass of KoBoL with ν− = ν+ 6= 1 and c+ = c− was called CGMY model and labels
for the parameters of the KoBoL model were changed.

Rosinski [33] suggested the name exponentially tilted stable Lévy processes and gave a general
definition of a class which is a subclass of the class RLPE.

Example 3. Normal inverse Gaussian (NIG) processes, and the generalization: normal tempered
stable (NTS) processes are constructed in [34,35], respectively. The characteristic exponent is
given by

ψ0(ξ) = δ[(α2 + (ξ + iβ)2)ν/2 − (α2 − β2)ν/2], (19)

where ν ∈ (0, 2), δ > 0, |β| < α; NIG obtains with ν = 1.

Example 4. Variance Gamma processes (VGPs) were introduced to finance in [36]. The character-
istic exponent can be written in the form:

ψ0(ξ) = c[ln(α2 − (β + iξ)2)− ln(α2 − β2)], (20)
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where α > |β| ≥ 0, c > 0.

Example 5. In the Merton model [37], the characteristic exponent is given by

ψ0(ξ) =
σ2

2
ξ2 + λ ·

(
1− eimξ− s2

2 ξ2)
, (21)

where σ, s, λ > 0 and µ, m ∈ R.

Example 6. The hyper-exponential jump-diffusion processes (HEJD model) were introduced
in [38,39] and studied in detail in [38,40]). The characteristic exponent is of the form:

ψ0(ξ) =
σ2

2
ξ2 + λ+ ·

n+

∑
j=1

ip+j ξ

iξ − α+j
+ λ− ·

n−

∑
k=1

ip−k ξ

iξ + α−k
, (22)

where n± are positive integers and α±j , λ±, p±j > 0 satisfy ∑n±
j=1 p±j = 1. A double-exponential

jump diffusion model introduced to finance in [41] (and well known for decades) can be obtained as
a special case of hyper-exponential jump-diffusion models by taking n+ = n− = 1.

Example 7. Other classes of Lévy processes with rational characteristic exponents and non-trivial
BM components [21,38,40,42,43].

Example 8. The characteristic exponents of the processes of the β-class constructed in [44] are of
the form:

ψ0(ξ) =
σ2

2
ξ2 +

c1

β1

{
B(α1, 1− γ1)− B(α1 −

iξ
β1

, 1− γ1)

}
(23)

+
c2

β2

{
B(α2, 1− γ2)− B(α2 +

iξ
β2

, 1− γ2)

}
,

where cj ≥ 0, αj, β j > 0 and γj ∈ (0, 3) \ {1, 2}, and B(x, y) is the Beta-function. Evidently, all
poles of ψ0 are on iR+ \ 0.

Example 9. The Lévy density and characteristic exponent of the meromorphic Lévy processes
introduced in [45] are defined by almost the same formulas as in the HEJD model. The difference
is that the sums are infinite. A natural condition α±j → +∞ as j → +∞ is imposed, and the
requirement that an infinite sum defines a Lévy density is equivalent to ∑j≥0 p±j (α

±
j )
−2 < +∞.

The formula for ψ0 is (22) with the infinite numbers of terms; the poles of ψ(ξ) are on iR \ 0.

Remark 1. If one-factor Lévy models are calibrated to prices of stocks and indices in financial
markets, then, in the majority of cases, KoBoL processes of order ν ∈ (0, 1), without the diffusion
component (or very small diffusion component) give the best fit. Typically, processes with a jump
part of finite activity such as the Merton model, HEJD model and other models with rational
characteristic exponents do not calibrate well to the real data but one may try to use simple models
to approximate involved ones. There are publications where HEJD are used to approximate KoBoL
dynamics. However, it is evident that the approximations of operators of order ν ∈ (0, 1) by
operators of order 2 cannot work well near the boundary. The reader can find examples in [46] which
illustrate this point. A very flexible multi-parameter β-family and meromorphic processes can be
used to approximate KoBoL processes, but these approximations are much less efficient than direct
calculations in the KoBoL model.

For applications to qualitative problems in economics, processes with rational characteristic
exponents are more suitable due to the triviality of the Wiener–Hopf factorization. See, e.g., [47–52].



Mathematics 2022, 10, 1028 9 of 36

2.3. Examples of Lévy Processes on Rn

Example 10. In the notation used in this paper, the characterization of non-trivial stable Lévy processes
on Rn of index α ∈ (0, 2) ([12], Thm. 14.10) is as follows. There exist µ ∈ Rn and a finite non-zero
measure Gst(dφ) on the unit sphere Sn−1 := {ξ ∈ Rn | |ξ| = 1} such that if α 6= 1, then:

ψ(ξ) = −i〈µ, ξ〉+
∫

Sn−1

|〈ξ, φ〉|α
(

1 + i tan
απ

2
sign 〈ξ, φ〉

)
Gst(dφ) (24)

is the characteristic exponent of a stable Lévy process of index α, and if α = 1, then:

ψ(ξ) = −i〈µ, ξ〉+
∫

Sn−1

|〈ξ, φ〉|
(

1− i
2
π

tan
απ

2
〈ξ, φ〉 ln |〈ξ, φ〉|

)
Gst(dφ) (25)

Conversely, for any µ ∈ Rn and a finite non-zero measure Gst(dφ) on Sn−1, (24) and (25)
define the characteristic exponents of a stable Lévy process of index α 6= 1 and α = 1, respectively.

A straightforward multi-dimensional analog of RLPE class was introduced in ([21],
Sect. 9.1.4). The characteristic exponent of an RLPE admits analytic continuation to a tube
domain U containing Rn, and stabilizes to a positively homogeneous function as ξ → ∞
remaining in U. As in the 1D-case, we impose conditions on ψ0 in the representation:

ψ(ξ) = −i〈µ, ξ〉+ ψ0(ξ), (26)

where µ ∈ Rn.

Example 11. Consider the multi-factor KoBoL family of pure jump Lévy processes constructed in
([21], Section 9.1.1). Let α ∈ (0, 2), and let G(dx) be a finite non-zero measure and λ a positive
continuous function on the unit sphere Sn−1. Then:

F(dx) = ρ−α−1 exp(−λ(φ)ρ)dρ G(dφ) (27)

is a Lévy measure. If α ∈ (0, 2), α 6= 1, the characteristic exponent is:

ψ0(ξ) = Γ(−α)
∫

Sn−1

[λ(φ)α − (λ(φ)− i〈ξ, φ〉)α]G(dφ) (28)

and if α = 1:

ψ0(ξ) =
∫

Sn−1

[λ(φ) ln λ(φ)− (λ(φ)− i〈ξ, φ〉) ln(λ(φ)− i〈ξ, φ〉)]G(dφ). (29)

Passing to the limit λ ↓ 0 in (28) and (29), one can easily derive alternative representa-
tions of the characteristic exponents of stable Lévy processes.

Example 12. The class of multi-factor normal tempered stable (NTS) Lévy processes constructed
in ([21], Section 9.1.2) can be defined by

ψ0(ξ) = δ
{
[(α2 + 〈A(ξ − iβ), (ξ − iβ)〉]ν/2 − [α2 − 〈Aβ, β〉]ν/2

}
, (30)

where δ, α > 0, A is a positive-definite matrix, β ∈ Rn, α2 − 〈Aβ, β〉 > 0.

The following is a straightforward definition of the class of SINH-regular processes
in [31], in the simplest form.
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Definition 1. We say that X is a SINH-regular process of order (ν, ν′) if the characteristic exponent
is of the form ψ0 admits analytic continuation to a domain of the form U = iD + C, where D is an
open set containing {0}, and C is an open cone C around Rn s.t.:

|ψ0(ξ)| ≤ C(1 + |ξ|)ν, ξ ∈ U , (31)

where C is independent of ξ, and there exists U+ ⊂ U , of the same form: U+ = iD+ + C+, s.t.:

Re ψ0(ξ) ≥ c|ξ|ν′ − C, ξ ∈ U+, (32)

where C, c > 0 are independent of ξ.

2.4. General Remarks

1. Stable Lévy processes can be characterized as the limiting case of SINH-regular pro-
cesses when the tube domain iD +Rn of analyticity shrinks to {0}; the conditions are
valid in C only. The calculation of expectations in stable Lévy models can be efficiently
performed by either modifying the sinh-acceleration technique or approximating
stable Lévy processes with SINH-regular ones [8,9].

2. The definition in [31] allows for U+ to be adjacent to R, and Definition 1 can be
generalized in a similar fashion.

3. In [31], the bounds (31) and (32) are formulated for ψ rather than ψ0. One can easily
derive the bounds for ψ using the bounds for ψ0.

4. It is easy to see that NTS processes are SINH-regular but a multi-factor KoBoL X is
SINH-regular only if X is a mixture of independent KoBoL in 1D.

5. VGP and their multi-factor generalizations are SINH-regular if we replace the weight
|ξ|ν with ln(2 + |ξ|).

6. As in [31], more general weight functions can be used. It can be shown that, in the
case of pure jump processes, ψ0(ξ) = o(|ξ|2) as (C 3)ξ → ∞; hence, one can use the
upper bound with ν = 2 in all cases.

7. If ν = ν′, then ψ0 is an elliptic symbol. If ν′ < ν, then, typically, ν− ν′ < 1, hence, ψ0

is hypo-elliptic.
8. If in the representation (26), µ 6= 0, and ν < 1, then the principal symbol of ψ(ξ) is

−i〈µ, ξ〉, which leads to the irregularity of the Wiener–Hopf factors and the solutions
of the boundary problems.

9. In the case of Cauchy problems in the whole space, the drift can be eliminated by
the change of variables x = x′ − tµ, and the same change of variables is implicit in
efficient numerical methods for the Fourier inversion methods based on the conformal
deformation of lines and hyperplanes of integration. Formally, the same change of
variables can be applied in the case of more general boundary problems but the change
makes a flat boundary (typical in pricing problems for standard barrier options) non-
flat. When the boundary is flat, explicit pricing formulas can be derived and the study
of the (ir)regularity of the solutions simplified.

3. Pricing European Options in Lévy Models and Cauchy Problems in RnRnRn for
Operators with Constant Symbols
3.1. Exact Formulas

Let r ≥ 0 be the constant riskless rate, X a Lévy process in Rn under an EMM Q chosen
for pricing, and G(XT) the payoff of the contingent claim at maturity date T. The price
V(t, x) of the claim at time t and Xt = x is given by

V(t, x) = EQ
[
e−r(T−t)G(XT) | Xt = x

]
. (33)
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Assume that the characteristic exponent ψ of X is analytic in a tube domain iD +Rn,
where D is an open set containing {0}, and the Fourier transform:

Ĝ(ξ) = (2π)−n
∫
Rn

e−i〈x,ξ〉G(x)dx (34)

is analytic in a tube domain iD′ + Rn, where D′ ∩ D is an non-empty open set. Let the
product e−(T−t)ψ(ξ)Ĝ(ξ) be in L1(iω +Rn) for ω ∈ D′ ∩ D. Decomposing G in the Fourier
integral, substituting into (33), and using Fubini’s theorem to justify the change of the order
of integration and taking expectation, we obtain, for any ω ∈ D ∩ D′:

V(x, t) = (2π)−n
∫

Im ξ=ω
ei〈x,ξ〉−(T−t)(r+ψ(ξ))Ĝ(ξ)dξ. (35)

The evident representation (35) was derived in [21,53,54]. Using the PDO notation,
V(t, x) = e−(T−t)(r+ψ(Dx))G(x), where the operator on the RHS acts in appropriate spaces
with exponential weights. It is easy to verify that V is a solution of the Cauchy problem

(∂t − ψ(Dx)− r)V(t, x) = 0, t < T, x ∈ Rn, (36)

subject to V(T, x) = G(x), x ∈ Rn, and appropriate bounds on V as x → ±∞. Equation (36)
is understood in the sense of generalized functions, and under certain regularity conditions,
the solution is unique. See [53,54] and ([21], Chapt. 15) for details. Thus, in this case, the
equivalence of the pricing problem and the Cauchy problem is established.

3.2. Efficient Numerical Realizations in 1D Case

In [21,53,54], the integral on the RHS is numerically realized using the trapezoid rule or
Simpson rule, and the standard real-analytical error bounds are used to give prescriptions
for the choice of the numerical scheme to satisfy a given error tolerance ε > 0. Since the
integrand is analytic in a strip around the line of integration, it is significantly more efficient
to use the simplified trapezoid rule, the reason being that the error of the infinite trapezoid
rule decays as exp[−2πd/ζ], where d is the half-width of the strip of analyticity around
the line of integration, and ζ is the step. See, e.g., Thm. 3.2.1 in [55]. Thus, if the strip of
analyticity is not too narrow, it is relatively easy to satisfy a very small error tolerance for
the discretization error. Note that popular variations of this straightforward approach such
as the Carr–Madan method [56] and COS method [57–59] introduce additional errors which
are difficult to control, and lead to systematic errors in practically important situations.
See [2,13,14,16–20,31] for the analysis of errors of the Carr–Madan method and COS.

In many cases of interest, the integrand slowly decays at infinity, and a very large
number of terms of the truncated sum (simplified trapezoid rule) are needed to satisfy
even a moderate error tolerance. However, in the case of standard European options, and
in the case of piece-wise polynomial approximations of complicated payoffs [16,46,60],
Ĝ is meromorphic with a finite number of simple poles; in [20], approximations with an
infinite number of poles appear. If X is SINH-regular of order (ν, ν′) with ν′ > 0, one
can use an appropriate conformal deformation and the corresponding change of variables
to reduce calculations to the case of an integrand which is analytic in a strip around the
line of integration and decays at infinity faster than exponentially. The complexity of
the numerical scheme based on the sinh-acceleration (15) is of the order of E ln E, where
E = ln(1/ε); in the case of VGP with µ = 0, of the order of O(E2). See [31] for details. Note
that the parameter ω in (15) is chosen so that the oscillating factor ei(x+(T−t)µ)ξ becomes a
quickly decaying one. The idea is similar to the idea of the saddle point method. However,
simpler universal families of conformal deformations are easier to use, especially when the
deformations of several lines of integration are needed, and the deformations must be in a
certain agreement [10,61].
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3.3. Stable Lévy Processes and Fractional Differential Operators

In the case of stable Lévy processes, the expectation can be finite only if G is bounded
or increases at a sufficiently small polynomial rate at infinity. However, if Ĝ is analytic in an
open cone C around R \ {0}, then the evaluation of probability distribution functions and
expectations can be reduced to the evaluation of integrals over (0,+∞), and an exponential
change of variables ξ = eiω+y, where ω ∈ [−π/2, π/2] is used to efficiently evaluate
integrals. In some cases, other conformal deformations are more efficient (see [9]). The
same families of conformal deformations can be used to evaluate the solutions of the
Cauchy problem for the fractional-parabolic equations of the form:

(∂t − |Dx|α)V(t, x) = 0, t < T, x ∈ R,

where α > 0, and more general ones.

3.4. Calculation of Probability Distributions and Expectations (Prices) in Multi-Factor Lévy
Models and Solution of the Cauchy Problems in Rn

When n is moderate, X is SINH-regular, and G can be approximated by a function
whose Fourier transform Ĝ is analytic in the union of a tube domain and cone UG ⊂ iD + C,
and can be efficiently calculated; then one can construct appropriate conformal deforma-
tions of the form (15) for each variable. The complexity of the scheme is O((E ln E)n), which
is not large if, e.g., n = 2, 3, 4. For exchange or basket options with payoffs (ex1 − ex2 − K)+,
(ex1 + ex2 − K)+, Ĝ can be explicitly calculated in terms of the Beta function, and the val-
ues of the latter can be efficiently calculated using the same sinh-acceleration technique
(see [6,7]).

4. Barrier Options in Lévy Models, and Boundary Problems for PDO with
Constant Symbols

We consider in detail the 1D case, and in the end, outline extensions to the multi-factor
case. We start with the basic notation and facts of the Wiener–Hopf factorization, and then
formulate the results for barrier options.

4.1. Main Notation

• X: a Lévy process on R;
• (Ω,F , {F}t≥0): the filtered measure space generated by X;
• M: the set of all stopping times with respect to the filtration {F}t≥0;
• Q: an EMM chosen for pricing;
• ψ(ξ) = −iµξ + ψ0(ξ): the characteristic exponent of X;
• h, h± ∈ R, h− < h+: barriers;
• τ−h and τ+

h : first entrance time by X into (−∞, h] and [h,+∞), respectively;
• q > 0: the discount rate;
• The (expected) present value of the perpetual stream g(Xt) which is lost at time τ−h :

V−(g; q; h; x) = Ex

[∫ τ−h

0
e−qtg(Xt)dt

]
;

• The (expected) present value of the perpetual stream g(Xt) which is lost at time τ+
h :

V+(g; q; h; x) = Ex

[∫ τ+h

0
e−qtg(Xt)dt

]
;

• the (expected present) value of the perpetual stream g(Xt) which is lost at τ+
h+
∧ τ−h− :

V(g; q; h−, h+; x) = Ex

[∫ τ+h ∧τ−h−

0
e−qtg(Xt)dt

]
;
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• Tq: exponentially distributed random variable of mean 1/q, independent of X;
• X̄t = sup0≤s≤t Xs and Xt = inf0≤s≤t Xs—the supremum and infimum processes

(defined pathwise, a.s.);
• Normalized EPV operators (normalized resolvents) under X, X̄, and X calculate the

(normalized) expected present value of the streams under X, X̄ and X:

(Eqg)(x) := EQ[g(XTq)] := qEQ
[∫ +∞

0
e−qtg(Xt)dt | X0 = x

]
(E+q g)(x) := EQ[g(X̄Tq)] := qEQ

[∫ +∞

0
e−qtg(X̄t)dt | X0 = X̄0 = x

]
(E−q g)(x) := EQ[g(XTq)] := qEQ

[∫ +∞

0
e−qtg(Xt)dt | X0 = X0 = x

]
;

• Wiener–Hopf factors: φ+
q (ξ) = EQ[eiX̄Tq ], φ−q (ξ) = EQ[eiXTq ]

Basic facts:

(1) φ+
q (ξ) (resp., φ−q (ξ)) admits (uniformly bounded) analytic continuation to the upper

(resp., lower) half-plane.
(2) The EPV operators act in L∞(R). If supp g ⊂ (−∞, h], then supp E+q g ⊂ (−∞, h]. If

supp g ⊂ [h,+∞), then supp E−q g ⊂ [h,+∞).
(3) Eq = q(q + ψ(D))−1, E+q = φ+

q (D), E−q = φ−q (D). If there exist µ− ≤ 0 ≤ µ+,
µ− < µ+, such that:

EQ[eβXTq ] < ∞, β ∈ [−µ−,−µ+], (37)

then:

(a) ψ admits (uniformly bounded) analytic continuation to the strip S[µ− ,µ+ ] :=
{ξ | Im ξ ∈ [µ−, µ+]} (meaning: analytic in the interior and continuous up to
the boundary);

(b) φ+
q (ξ) admits analytic continuation to the half-plane {Im ξ ≥ µ−};

(c) φ−q (ξ) admits analytic continuation to the half-plane {Im ξ ≤ µ+};
(d) the action of the EPV operators extends to L∞ and Sobolev spaces with expo-

nential weights.

The properties (a)–(d) are used to study the asymptotics of prices of barrier op-
tions (solutions of the boundary problems) at the boundary [21,62,63], and develop ef-
ficient numerical methods for pricing barrier options, credit default swaps (CDSs) and
lookbacks [10,61,64,65].

4.2. Wiener–Hopf Factorization

We use three equivalent versions of the Wiener–Hopf factorization

E[eiξXTq ] = E[eiξX̄Tq ]E[eiξXTq ], ξ ∈ R; (38)
q

q + ψ(ξ)
= φ+

q (ξ)φ−q (ξ), ξ ∈ R; (39)

Eq = E−q E+q = E+q E−q . (40)

Equation (39) is a special case of the initial form of the Wiener–Hopf factorization used
in complex analysis since [66]; (40), with the interpretation of the EPV operators as PDO,
is used in analysis (see, e.g., [26]). In both cases, the derivation is possible under certain
regularity conditions on ψ. The probabilistic versions (38) and (40), hence, (39), hold for
any Lévy process. In probability, the straightforward and short proof of (38) is based on

Lemma 1 ([67], Lemma 2.1, and [68], p. 81). Let X and Tq be as above. Then:

(a) the random variables X̄Tq and XTq − X̄Tq are independent; and
(b) the random variables XTq and XTq − X̄Tq are identical in law.
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Equation (40) is a special case of the next lemma derived in [21,22,49] under unneces-
sary restrictions on the process, and in [46], for any Lévy process. The proof below (in a
shortened form) is borrowed from [46].

Theorem 2. Let X be a Lévy process. Then, for any g ∈ L∞(R) and h ∈ R,

V−(g; q; h; ·) = q−1E−q 1(h,+∞)E+q g, (41)

V+(g; q; h; ·) = q−1E+q 1(−∞,h)E−q g. (42)

Proof. Let X, X̄ and X start at 0. Then: Eq g(x) = E[g(x + XTq)],

E+g(x) = E[g(x + X̄Tq)], E−g(x) = E[g(x + XTq)],

and, by definition:

V−(g; q; h; x) := E
[∫ τ−h

0
e−qtg(x + Xt)dt

]

= E
[∫ ∞

0
1x+Xt>he−qtg(x + Xt)dt

]
= q−1E[g(x + XT)1x+XT>h].

Applying Lemma 1, we continue:

V−(q; h; x) = q−1E[g(x + XT + XT − XT)1x+XT>h]

= q−1E[1x+XT>hE+q g(x + XT)]

= q−1E−q 1(h,+∞)E+q g(x).

This proves (41). Proof of (42) is by symmetry.

Remark 2. If (37) is satisfied, one can allow for exponentially increasing measurable g(x) if:

|g(x)| ≤ C(e−µ′−x + e−µ′+x), (43)

where µ− ≤ µ′− ≤ µ′+ ≤ µ+, and

q + ψ(−iµ′±) > 0. (44)

For the proof of Theorem 2 in this case, it suffices to consider a non-negative measurable
function g. We approximate g with the sequence gn(x) = min{g(x), n}, apply Theorem 2 to gn
and justify passage to the limit using the dominated convergence theorem.

The boundary problem for V−(q; x; h), in the PDO notation, is

(q + ψ(Dx))V−(g; q; h; x) = g(x), x > h, (45)

subject to V−(g; q; h; x) = 0, x ≤ h. Under certain regularity conditions on ψ and g, the
standard analytical technique [26] can be applied, and the existence and uniqueness of
solutions in a class of bounded sufficiently regular functions proved. In [21], we derived

V−(g; q; h; ·) = q−1φ−q (D)1(h,+∞)φ
+
q (D)g, (46)

which is identical to (41); the (ACP)-condition was used. Thus, under a weak regularity con-
dition, the expectation of the stochastic integral is the unique solution of the corresponding
boundary problem, and vice versa.
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The following theorem is a trivial corollary of Theorem 2 and (40).

Theorem 3. Let X be a Lévy process satisfying (37), and let G admit the representation
G = q−1Eqg, where g is a measurable function satisfying (43) and (44).

Then:

(a) (E−q )−1G := E+q g and (E+q )−1G := E−q g are measurable functions satisfying (43);
(b) For any h ∈ R:

V−,inst(G; q; x; h) := EQ
[
e−qτ−h G(Xτ−h

) | X0 = x
]
= (E−q 1(−∞,h](E−q )−1G)(x),

V+,inst(G; q; x; h) := EQ
[
e−qτ+h G(Xτ+h

) | X0 = x
]
= (E+q 1(−∞,h](E+q )−1G)(x).

4.3. Single Barrier Options

Let X be a Lévy process on R under an EMM Q chosen for pricing, r ≥ 0 the riskless
rate, and h the barrier. We consider the case of the down-and-out option, which expires
if X enters (−∞, h] before the maturity date T. If the barrier is not breached, the payoff
is G(XT). Applying Fubini’s theorem and (41), we calculate the Laplace transform of the
price Vn.t.d.(G; h; T, x) with respect to T:

Ṽn.t.(G; h; q, x) =
∫ +∞

0
e−qTVn.t.d.(G; h; T, x)dT

= e−rTq−1EQ
[
1XTq>hG(XTq) | X0 = x

]
= e−rTq−1(E−q 1(h,+∞)E+q G)(x).

Applying the inverse Laplace transform and using (41) and (46), we obtain, for any
σ > 0:

Vn.t.(G; h; T; x) =
e−rT

2πi

∫
Re q=σ

eqTq−1(E−q 1(h,+∞)E+q G)(x)dq (47)

=
e−rT

2πi

∫
Re q=σ

eqTq−1(φ−q (D)1(h,+∞)φ
+
q (D)G)(x)dq. (48)

The representation (47) is derived in [46] for arbitrary Lévy process. In [21,22], (48), is
derived solving the corresponding boundary problem

(∂t + L− q)V(t, x) = 0, x > h, t < T, (49)

V(T, x) = G(x), (50)

V(t, x) = Gb(x), x ≤ h, t < T, (51)

under certain regularity condition on V; X satisfies the (ACT)-condition—the ambiguity
of the specification of the payoff at (T, x), x ≤ h, is irrelevant because Lévy processes are
stochastically continuous, and, therefore, Q[τ−h = T] = 0. Thus, under weak regularity
conditions (the condition on the process is stronger than in the time-independent case),
the expectation of the stochastic expression defining the price is the unique solution of the
corresponding boundary problem, and vice versa.

In [21,22,46,61,64], more general classes of single-barrier options, with payoff streams
during the lifetime of the option, and non-zero payoffs Gb(Xτ−h

) at time τ−h < T are
considered and pricing formulas derived. In [10], similar general formulas are derived
when the payoff Gb depends on t and x.

4.4. Numerical Realizations

If Gb depends on t and x, the explicit formula is a quadruple integral, the explicit
form of (48) is a triple integral, and in addition, one needs to evaluate the Wiener–Hopf
factors for all dual variables arising in the pricing formula. Thus, efficient calculations are
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difficult. When one uses the Gaver–Stehfest algorithm (see, e.g., [10,61,64]), only a positive
q appears, but the coefficients in the approximate Laplace inversion formula are very large.
In the result, in many cases of interest, high precision arithmetic is necessary to ensure
the stability of results not to mention their accuracy (see [61,64] for examples). One can
avoid large coefficients using the method of lines. In the probabilistic interpretation, time to
maturity is approximated by a sum of exponentially distributed random variables, which
results in a sequence of time-independent problems (maturity randomization or Carr’s
randomization) (see [46,69] for efficient numerical realizations of this idea in applications
to single and double barrier options, respectively). Appropriate conformal deformations
of the lines of integration lead to faster and more accurate numerical algorithms [10,61].
We illustrate the choice of deformations with the simplest example of the no-touch digital
option Vn.t.(1; h; T; x) (the payoff at maturity is 1). Then, E+q G = φ+

q (D)G = 1, and (47)–(48)
simplify. Assuming that (37) holds, we take a sufficiently small ω0 < 0, and write (48) as

Vn.t.(1; h; T; x) =
e−rT

(2π)2i

∫
Re q=σ

eqTq−1
∫

Im ξ=ω0

ei(x−h)ξ φ−q (ξ)

−iξ
dξ dq. (52)

The set of admissible ω0 < 0 is determined by the properties of the Wiener–Hopf fac-
tors; general formulas for the latter are well known. For efficient numerical realizations, the
characteristic exponent should admit an analytic continuation to a strip {Im ξ ∈ (λ−, λ+)},
λ− < 0 < λ+, around the real axis [21]. Then, (see [21,64]), for any q > 0:

(I) There exist σ−(q) < 0 < σ+(q) such that:

q + ψ(η) 6∈ (−∞, 0], Im η ∈ (σ−(q), σ+(q)); (53)

(II) The Wiener–Hopf factor φ+
q (ξ) admits analytic continuation to the half-plane {Im ξ >

σ−(q)}, and can be calculated as follows—for any ω− ∈ (σ−(q), min{Im ξ, σ+(q)}):

φ+
q (ξ) = exp

[
1

2πi

∫
Im η=ω−

ξ ln(q + ψ(η))

η(ξ − η)
dη

]
; (54)

(III) The Wiener–Hopf factor φ−q (ξ) admits analytic continuation to the half-plane {Im ξ <
σ+(q)}, and can be calculated as follows—for any ω+ ∈ (max{Im ξ, σ−(q)}, σ+(q)):

φ−q (ξ) = exp
[
− 1

2πi

∫
Im η=ω+

ξ ln(q + ψ(η))

η(ξ − η)
dη

]
. (55)

Analytic continuation with respect to q, ξ is possible, and conformal deformation of
the contours of integration are possible as well.

Assume that X is SINH-regular. Then, a numerical realization of (52) is designed choos-
ing deformations L(1), L(2) and L(3) of the lines of integration {Im ξ = ω0},
{Re q = σ} in (52) and the line of integration {Im η = ω+} in (55). We use deforma-
tions of the form L(1) = χω1,b,ω(R), L(2) = χω′1,b′ ,ω′(R), where the function χω1,b,ω is

defined by (15), and L(3) = χL;σ,bl ,ωl
(R), where χL;σ,bl ,ωl

is defined by

χL;σ,bl ,ωl
(y) = σ + ibl sinh(iωl + y). (56)

Since x − h > 0, the oscillating factor ei(x−h)ξ quickly decays if we choose ω > 0;
hence, the wings of the contour point upward. The contour L(2) must be above L(1) so that
ξ − η is separated from 0 for all ξ ∈ L(1) and η ∈ L(2). In particular, ω′ ≥ ω. The upper
bound on ω′ is implied by the requirement that L(2) be in the domain of analyticity of ψ.
Finally, L(3) must be chosen so that q + ψ(η) 6∈ (−∞, 0] for all η ∈ L(2) and q ∈ L(3).
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4.5. Double Barrier Options

The following procedure is borrowed from [69]. Consider knock-out double-barrier
options with barriers h− < h+; the option expires worthless if X leaves (h−, h+) before
maturity date T; if Xt ∈ (h−, h+) until T, the option payoff at maturity is G(XT). Assuming
the constant riskless rate, the option value at time 0 is:

Vk.o.(G; h−, h+; T, x) = e−rTEQ
[

1τ−h−
∧τ+h+

>TG(XT)

]
, (57)

and the corresponding boundary problem is:

(∂τ + ψ(Dx) + r)V(τ, x) = 0, τ > 0, x ∈ (h−, h+), (58)

V(0, x) = 1(h− ,h+)(x)G(x), (59)

V(τ, x) = 0, τ ≥ 0, x 6∈ (h−, h+). (60)

As in the case of single barrier options, the Laplace transform (maturity randomization)
reduces the calculation of the expectation on the RHS of (57) to the evaluation of the
perpetual stream

Wk.o.(G; h−, h+; q, x) = EQ
[∫ τ−h−

∧τ+h+

0
e−qtG(Xt)dt

]
, (61)

which is abandoned at time τ−h− ∧ τ+
h+

. In [69], Wk.o.(G; h−, h+; q, x) was evaluated as
follows:

Wk.o.(G; h−, h+; q, x) = G0(x)− G1
+(x)− G1

−(x) + G2
+(x) + G2

−(x)− G3
+(x)− G3

−(x) + · · · (62)

where:
G0
+(x) = G0(x)

∣∣
[h+ ,+∞)

, G0
−(x) = G0(x)

∣∣
(−∞,h− ]

,

Gn
+(x) = E−q

(
1(−∞,h− ](x) ·

(
(E−q )−1Gn−1

−
)
(x)
)

∀ n ≥ 1,

Gn
−(x) = E+q

(
1[h+ ,+∞)(x) ·

(
(E+q )−1Gn−1

+

)
(x)
)

∀ n ≥ 1.

In the case of HEJD, the series can be explicitly calculated [70,71]. For general Lévy
processes, [69] uses a general numerical method based on the piece-wise linear interpolation
of functions Gn

±, fast convolution and the refined version of the fast Fourier transform (FFT)
technique developed earlier in [46]. It is demonstrated that the standard version of FFT
and fractional FFT are either inaccurate or inefficient for many classes of Lévy processes.

In [64], the calculations are in the dual space and fractional-parabolic deformations of
the contours of integration are used; the more efficient sinh-acceleration technique can be
applied in the same vein.

Under additional regularity conditions on ψ, it is possible to prove that the boundary
problem (58)–(60) has a unique solution in the class of bounded functions continuous on
[0,+∞)× (h−, h+). Then, if X satisfies the (ACT)-condition, the expectation given by (57)
is this unique solution.

4.6. Regularity of Solutions of Boundary Problems

Assume that ψ0 is an elliptic symbol of order ν ∈ (0, 2), hence, X is a pure jump
process. Then, it is easy to prove (see [21]) that:

(a) If ν ∈ (1, 2) or ν ∈ (0, 1] and µ = 0, then φ±q are elliptic symbols of order κ± = −ν/2;
(b) If ν = 1, then φ±q are elliptic symbols of order κ±q , where κ± ∈ (−1, 0) depend on µ,

and κ+q + κ−q = −1;
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(c) If ν ∈ (0, 1) and µ > 0, then φ+
q (ξ) = (q− iµξ)−1(1 + α+q (ξ)) and φ−q (ξ) = 1 + α−q (ξ),

where α±q are of order −1 + ν + ε, for any ε > 0. Hence, κ+q := ord φ+
q = −1, and

κ−q := ord φ−q = 0;
(d) If ν ∈ (0, 1) and µ < 0, then φ−q (ξ) = (q− iµξ)−1(1 + α−q (ξ)) and φ+

q (ξ) = 1 + α+q (ξ),
where α±q are of order −1 + ν + ε, for any ε > 0. Hence, κ+q := ord φ+

q = 0, and
κ−q := ord φ−q = −1.

Straightforward calculations based on (a)–(d) show (see [21,62,63]) that the prices of
down-and-out barrier options—hence, solutions of the corresponding boundary problems—
are not smooth (and in the case of (c), discontinuous) at the barrier; the leading term of
asymptotics as x ↓ h is calculated. In [63], the asymptotics of the derivatives of the price
V(t, x) (sensitivities) is calculated as well.

In cases (a), (b), (c), V(τ, x) ∼ c(τ)(x− h)κ−q , and Vx(τ, x)→ +∞ as x ↓ h. In case (d),
Vx is continuous up to the boundary but Vxx is unbounded.

The case of the BM with embedded jumps was not explicitly studied but the study
can be performed in a similar vein. If the jump component is of order ν ∈ [1, 2), then the
solution is continuous up to the boundary but Vx is discontinuous; if ν ∈ (0, 1), then Vx is
continuous but Vxx is unbounded.

The case of the double-barrier options was not studied but since the study of the
regularity at the boundary is easily localized (see [26]), one can easily prove that, for
instance, in case (c), the solution is discontinuous at h− but smooth at h+; Vx is unbounded
as x → h−, and Vxx is unbounded as x → h+.

4.7. The Case of Time-Dependent Boundaries

The regularity of solutions is an open problem. In this section, we formulate several
natural hypotheses. Assuming that the boundary (or two boundaries) are piece-wise
smooth, one can try to study the regularity of solutions localizing the problem. In the
case of processes of order ν ∈ [1, 2), the operator A(Dt, Dx) is quasi-elliptic (the symbol
Â(η, ξ) = iη − iµξ + ψ0(ξ) satisfies |Â(η, ξ)| ≥ c(|η| + |ξ|ν) − C, for (η, ξ) ∈ R2), and
elliptic if ν = 1; hence, localization can be performed as in the elliptic case [26]. If ν ∈ (1, 2),
one expects that, if t is fixed and (t, x) tends to a point (t, x0) on a smooth part of the
boundaries, the solution behaves as c(t)|x − x0|ν/2. If ν = 1, then the study becomes
complicated. One expects that the asymptotics at the boundary can be naturally described
in the coordinates x = x′ + f (t), which makes the boundary locally flat: x′ = h′. For
each point t in a small neighborhood of t0, the asymptotics of the price V(t, x′) in the
new coordinate system is of the form c(t)|x′|κ±(t), where κ±(t) ∈ (0, 1) (“-” for the lower
boundary and “+” for the upper boundary) continuously depend on t and are defined by
the “drift” µ′(t, h′) in the new coordinate system and ψ0 as in case (b) above.

If ν ∈ (0, 1), then the localization itself becomes more difficult because the principal
symbol −iη− iµξ is hyperbolic. Assuming that the localization is possible, one expects that
the solution is smooth up to the boundary (or discontinuous at the boundary) when the
vector field −∂τ + µ∂x is transversal to the boundary and points to (or from, respectively)
the boundary.

4.8. Multi-Factor Case

Consider first a boundary problem in (0,+∞)× Rn−1
x′ × (0,+∞). In the analytical

setting, one makes the Fourier transform with respect to x′ and solves the family of problems
on {τ > 0, xn > 0} using the results above. However, then the dependence of the Wiener–
Hopf factors on ξ ′ does not allow for the interpretation of the Wiener–Hopf factors as
the symbols of the EPV operators, and one is forced to impose additional potentially
unnecessary conditions in order to justify the results.

A natural alternative is to represent the payoff functions as sums of functions sup-
ported on direct products of the half-axis. Then, after an appropriate change of variables,
each new problem is a problem on (0,+∞)n+1. Then, we make the Laplace transform
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with respect to τ and xj, j = 1, 2, . . . , n− 1, and solve the resulting family of problem on
(0,+∞) depending on q ∈ (0,+∞)n exactly as in the case of Lévy processes on R. The
characteristic exponent of the one-dimensional process is ψ(−iq, ξn), and the resulting
analytical expression admits analytic continuation to {q ∈ Cn | Re qj > 0} (and wider
regions, if the process is sufficiently regular).

In this way, one can derive explicit formulas for single barrier options, and the repre-
sentation of the price of double-barrier options with flat parallel barriers. In the application
to credit risk models (counterparty risk), important variations are problems with bound-
aries xj = hj, j = n, n− 1, when n = 2, and even j = n, n− 1, n− 2, when n = 3. The case
n = 2 can be solved modifying in the straightforward fashion the iterative procedure used
in the case of two parallel flat boundaries. The proof and design of efficient numerical
procedures become more involved but, at the theoretical level, the tools remain essentially
the same. The case n = 3 becomes messier still but an iteration procedure can be designed,
and convergence to the price proved as in the case of two boundaries.

The case of curved boundaries is similar to the case n = 1, and naturally, the results
are at the level of hypotheses so far.

5. American Options and Free Boundary Problems
5.1. Basic Example

The European options can be exercised only at expiry: if ST = eXT ≥ K, then it is
optimal to exercise the European call option and receive eXT − K; otherwise the option
expires and is worthless, and the payoff is 0. An American option can be exercised at any
moment until the expiry date, T. If the process X is Markovian, it is natural to expect that
there is a subset B of the half-space {(t, x) | t ≤ T} such that the option is exercised the first
time (t, Xt) ∈ B. B is called the exercise region and the part of the boundary ∂B that is in
the open half-plane {(t, x) | t < T} is called the early exercise boundary. In the simplest
cases of the American option put and call options, the early exercise regions are connected,
and of the form {(t, x) | x ≤ h∗(t), t < T} and {(t, x) | x ≥ h∗(t), t < T}, respectively.

In the Brownian motion case, the early exercise boundary and option value can be
found by solving the corresponding free boundary problem. In addition to the terminal
condition at t = T, one adds the value matching and smooth pasting condition at the early
exercise boundary. Let r ≥ 0 be the riskless rate, δ ≥ 0 the dividend rate, and Xt be a Lévy
process under the risk-neutral measure chosen for pricing, with the infinitesimal generator
L. For the American put option in the one-factor model, the free boundary problem is of
the form

(∂t + L− r + δ)V(t, x) = 0, x > h(t), t < T, (63)

V(T, x) = (K− ex)+, (64)

V(t, x) = K− ex, x = h∗(t), t < T, (65)

Vx(t, x) = −ex, x = h∗(t), t < T, (66)

and V is sought in the class of continuous bounded functions, which are of the class
C1,2 above the early exercise boundary, with the first derivative Vx continuous up to the
boundary (these regularity conditions for the American option price are well known and
proven). On the RHS of (65), we write K− ex instead of (K− ex)+ because it is non-optimal
to exercise the option unless the payoff is non-negative. The free boundary problem
for the American call option is similar. The equivalence of the pricing problems for the
American put and call options and the corresponding free boundary problems is proven in
the Brownian motion case and for Brownian motion with embedded compound Poisson
process. For general Lévy processes, the equivalence is an open problem. Note that for
processes with jumps, the value matching condition (65) becomes non-local:

V(t, x) = K− ex, x ≤ h∗(t), t < T, (67)
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and the smooth pasting condition may fail. We will not use the smooth pasting condition.
Instead, we look for the boundary which maximizes the solution of the problem (63),
(64), (67).

5.2. Behavior of the Early Exercise Boundary near Maturity

The next subtle point is the limit h∗(T−) := limt→T h∗(t). Designing numerical
methods, one is tempted to assume that, as t→ T, the region in the state space Ut where the
American option with the payoff g(Xt) remains alive, tends to {x | g(x) ≥ 0}. In the case
of the put option above, this assumption translates into the condition h∗(T− 0) = ln K: the
limit of the early exercise boundary at maturity (in the S-coordinate) is equal to the strike.
This statement is correct if r > 0 and δ = 0. If the stock pays dividends, then it is possible
that h∗(T−) < ln K; in the case r = 0, simple general no-arbitrage considerations spelled
out by Merton prove that it is non-optimal to exercise the American put before maturity.
Essentially the same no-arbitrage argument proves that it is non-optimal to exercise the
American call on non-dividend paying stock before maturity. Starting with [72,73], the
behavior of the critical stock price near maturity for American options in diffusion models
has been studied in a number of publications (see the bibliography in [74]). It is proved, in
particular, that if the stock pays dividends, then, depending on the parameters σ2, r, δ, the
limit of the early exercise boundary for the American call in the Black–Scholes model is
above the strike.

In [21,40], it is proven that in the presence of positive jumps, the early exercise boundary
for the American put without dividends is separated from the strike by a margin. In [21],
the result is obtained for KoBoL, NTS and NIG models using the Wiener–Hopf factorization
technique. In [40], the proof is based on the calculation of θ(t, x) := Vt(t, x) of out-of-the-
money options, at expiry (in the case of the put, in the region x > ln K, in the case of the
call, in the region x < ln K). It was proved that, in the presence of jumps, θcall(T−, x) < 0
for x < ln K (in the diffusion case, θcall(T−, x) = 0 for x < ln K). Using this result and
the put-call parity, it is proven that it is not optimal to exercise the American put without
dividends up to expiry in the region where rK < −θcall(T−, x). It is demonstrated that
for parameters’ values documented in empirical studies of financial markets, the margin
is several percent of the strike or even more than a dozen percent. Hence, a numerical
method is based on the condition h∗(T−) = ln K is expected to produce rather inaccurate
results. In [24], a similar formula for θ of out-of-the-money options in one-factor Lévy
driven quadratic term structure models (QTSMs) is presented but without the proof.

In [74], the results in [24,40] are generalized for wide classes of multi-factor Markov
models with jumps, and the proofs are simplified. First, consider a European option with
the (effective) payoff g+(XT) = max{0, g(XT)}; for a European call on a stock with the
price process eXt , and strike K, g(x) = ex − K. Let F(x, dy) be the density of jumps of the
underlying Markov process Xt and denote by U−(g) := {x | g(x) < 0} the out-of-the-
money region. Denote by V(g+; x, τ) the option price at time τ > 0 to expiry and XT−τ = x,
and by C(g+; x) the limit of the −θ of the option, at expiry:

C(g+; x) = lim
τ→+0

V(g+; x, τ)

τ
. (68)

For wide classes of payoffs and jump-diffusion models, the limit exists for x ∈ U−(g),
and it is given by

C(g+; x) =
∫

g+(x + y)F(x, dy), (69)

for almost all x ∈ U−(g) (see [74]). If (69) is applied to digital options, one modifies
the definition of the payoff: g(x) = 1 in the in-the-money region, and g(x) < 0 in the
out-of-the-money region.

Let U+(g) = U−(−g) be the in-the-money region of the option, and Ωτ be the optimal
non-exercise region for the American option, in the x−space, at time τ to expiry. Clearly,
Ωτ ⊃ U−(g), hence, ∪τ>0Ωτ ⊃ U−(g). However, it may be the case that it is non-optimal
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to exercise the option up to expiry even if x is in the in-the-money region U+(g). Let L be
the infinitesimal generator of X. Define: ΩJ = {x ∈ U+(g) | Lg(x) + C((−g)+, x) > 0}.
The following two theorems from [74] give the “lower bound” for the limit of the no-
exercise region at maturity and approximate formulas for the option price close to maturity,
which can be used at the first step of backward induction procedures for pricing American
options, in wide classes of Markov models.

Theorem 4 ([74], Thm. 2.2). Ω+0 ⊃ ΩJ ∪U−(g).

Theorem 5 ([74], Thm. 2.3). Let Lg(x) + C((−g)+, x) 6= 0. Then, as τ → 0:

1. For x in the out-of-the-money region, U−(g):

Vam(g+; x, τ) ∼ τC(g+; x); (70)

2. For x in the in-the-money region U+(g):

Vam(g+; x, τ) ∼ g(x) + τ(Lg(x) + C((−g)+; x))+. (71)

5.3. Perpetual American Options in One-Factor Models or Stationary Free Boundary Problems
on R

The solution of the optimal stopping problem in Lévy models with infinite time
horizon (equivalently, stationary free boundary problems) is the main block for the solution
of the problems with finite time horizon using maturity randomization (equivalently,
method of lines), in regime-switching models, and the approximation of more general
Markov models with regime-switching Lévy models.

The first simple but crucial trick which makes it possible to give simple proofs and
design efficient procedures is the reduction in the option to acquire an instantaneous payoff
G(Xt) to the option to abandon the stream −g(Xt). If q is the discount rate, then we assume
that G = q−1Eqg, where g satisfies (43) and (44). This implies that G is sufficiently regular,
does not increase too quickly at infinity, and the discount rate is not too small. In the case
of options with finite time horizon, using sufficiently small time intervals in the method of
lines, the latter condition can be satisfied in all cases. In the case of the American put with
the infinite time horizon, on the non-dividend paying stock, the representation G = q−1Eqg
is impossible but a representation G = q−1(E−q )−1g is possible and suffices for the proof.

Assuming that G = q−1Eqg, for any stopping time τ:

Ex[e−qτG(Xτ)
]
= q−1Eqg(x) + Vex(−g; τ; x),

where:

Vex( f ; τ; x) = Ex
[∫ +∞

τ
e−qt f (Xt)dt

]
.

Hence, an optimal time to exercise the American option with the payoff function G is
an optimal time to abandon the stream {−g(Xt)}t≥0, and vice versa.

Theorem 6. Let the following conditions hold:

(i) X is a Lévy process with the non-trivial infimum process;
(ii) g is a non-decreasing stream that changes sign;
(iiii) Bounds (37), (43) and (44) hold.

Then:

(a) There exists h such that:

E+q g(x) ≤ 0, x ≤ h, and E+q g(x) ≥ 0, x ≥ h. (72)

(b) τ−h , the entry time into (−∞, h], is an optimal exit time in classM.
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(c) The option value can be represented as the EPV of the stream g(Xt)−U(Xt), where U is a
non-decreasing function vanishing above h.

(d) If g is not monotone but (i) holds, then τ−h is an optimal exit time in the class of stopping
times of the threshold type.

Proof. (a,d) are immediate from the representation

Vex(g; τ−h ; x) = q−1E−q 1(h,+∞)E+q g(x).

The expectation operator E−q being positive, Vex(g; τ−h ; x) is maximized when the
function 1(h,+∞)E+q g is maximized. Hence, all negative values of E+q g must be set to 0.

(b,c) are directly derived (see [21,49,75]) verifying the conditions of the following
general lemma; the proof is much shorter and simpler than purely probabilistic proofs.
However, we need to assume that X satisfies the (ACP)-property.

Lemma 2 ([21,49,75]). Let τB be the first entrance time into a Borel set B. Let B be a Borel set
such that:

Wex(g; τB; ·) := (q− L)Vex(g; τB; ·) is universally measurable (73)

Wex(g; τB; f ; x) = g(x), x ∈ R \ B, a.e. (74)

Wex(g; τB; x) ≥ g(x), x ∈ B, a.e. (75)

Wex(g; τB; x) ≥ 0, ∀ x. (76)

Then, τB maximizes Vex(g; τB; ·) in the classM.

Proof. Let τ be a stopping time. Then, using Dynkin’s formula and (74)–(76), we obtain:

Vex(g; τB; x) = Ex
[∫ τ

0
e−qt(q− L)Vex(g; τB; Xt)dt

]
+Ex[e−qτVex(g; τB; Xτ)

]
≥ Ex

[∫ τ

0
e−qtg(Xt)dt

]
.

With τ = τB, we obtain the equality, which means that τB is optimal.

Remark 3. In [51], we proved optimality in the class of all stopping times for a wide class of
non-monotone payoffs, under the assumption that the jump density is completely monotone. In [52],
the results are applied to solve a game-theoretical problem. In [76], the American options with
lookback features are studied in cases when the exercise region is discontinuous.

5.4. Good and Bad News Principles and the Failure of the Smooth Pasting Condition

In [77], for special cases, and in [47,49,78] in the general case, the following inter-
pretation of the stopping rule (b) and its mirror reflection for the option to abandon a
non-increasing stream were given:

GOOD NEWS PRINCIPLE. Abandon an increasing stream (exit) when the EPV of the
stream under the supremum process becomes negative.

BAD NEWS PRINCIPLE. Acquire an increasing stream (entry) when the EPV of the
stream under the infimum process becomes positive.

FAILURE OF THE SMOOTH PASTING CONDITION [21,75]. If φ−q (ξ) ∼ c > 0 as ξ → ±∞,
E+q g is smooth at h, E+q g(h) = 0, and (E+q g)′(h) > 0, then h is the optimal exit boundary
but the value function has a kink at h. For the option to abandon a non-increasing stream,
replace φ−q , E−q with φ+

q , E+q .
In terms of atoms of the pdf of X̄Tq and XTq , the failure of the smooth pasting condition

was reformulated and proven in [79].



Mathematics 2022, 10, 1028 23 of 36

5.5. American Options with Finite Time Horizon or Non-Stationary Boundary Problems on R
We have an optimal stopping problem: for t < T, find:

V(t, x) = sup
τ∈M,τ≤T

EQ
t

[
e−r(τ−t)G(Xτ) | Xt = x

]
. (77)

Carr’s randomization [80] or method of lines approximates V(t, x) with a sequence
of perpetual American options. The maturity period is divided into N subintervals,
using points 0 = t0 < t1 < · · · < tN = T. Each sub-period [ts, ts+1] is replaced
with an exponentially distributed random maturity period Ts with mean ∆s = ts+1 − ts,
s = 0, 1, . . . , N − 1. The random variables Ts, s = 0, . . . , N − 1 and the process X are as-
sumed to be independent. Typically, one takes ∆s = T/N for all s. If no optimization
decision is involved, then we can say that the deterministic maturity date T is replaced
with T′ = T0 + T1 + · · ·+ TN−1. If all Ts ∼ Exp N/T, then T′ is Erlang-distributed. The
same idea can be applied to price barrier and lookback options, with flat boundaries. When
optimizing decisions are involved, an accurate formulation of the approximate optimal
stopping problem becomes more involved: a time-consistent exercise rule must take into
account realizations of Ts := T0 + T1 + · · ·+ Ts, s = 0, 1, . . ., hence, the rule must be up-
dated after the arrival of each Ts. The convergence of Carr’s randomization procedure
for American options in wide classes of Lévy models is proven in [81]. The paper [80]
solves the sequence in the BM model using explicit formulas for the boundary problem for
second-order differential operators; this technique cannot be applied to other Lévy models.
Furthermore, ref. [80] formulates an equivalent form of maturity randomization as the
approximation of the American option with a finite-time horizon by the American option
with the Erlang-distributed maturity date, and stated that Richardson’s extrapolation can
be applied. Both statements are false for American options but hold for barrier options.
The convergence of Carr’s randomization approximation is proven in [71] for wide classes
of Markov processes (additional conditions on the process are necessary), and Richardson’s
extrapolation of arbitrary order is justified in [63] for the value function and its derivatives.

The proof of optimality of the solution of the sequence and pricing procedure simplify
if, at each step, the option is reduced to the option to abandon a stream. Then, the conditions
of the basic theorems for perpetual options can be easily verified for each option in the
sequence. This is the idea of the solution in [21,38,40,49]. For simplicity, consider equidistant
dates, and set ∆ = T/N, q = 1/∆ + r.

The backward induction procedure is as follows.

1. Set V0 = G+ (the payoff at maturity).
2. In the cycle s = 1, 2, . . . , N, find Vs as the solution to the optimal stopping problem:

Vs(x) = sup
τ∈M

EQ
[

e−qτG(Xτ) +
1
∆

∫ τ

0
dt e−qtVs−1(Xt) | X0 = x

]
. (78)

3. VN is Carr’s randomization approximation to time-0 option price.

The reduction to the sequence of exit problems is as follows.
Set Ws = Vs −G, and notice that the maximization of Vs is equivalent to the maximiza-

tion of Ws. To reformulate the optimal stopping problem in terms of Ws, we find function
gq such that:

G(x) = q−1EQ
[∫ +∞

0
e−qtgq(Xt)dt | X0 = x

]
.

For the put, gq(x) = qK− (q + ψ(−i))ex, where ψ is the characteristic exponent of the
Lévy process X. We have:

−G(x) +EQ[e−qτG(Xτ)
]
= −EQ,x

[∫ τ

0
e−qtgq(Xt)dt | X0 = x

]
,
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therefore, the optimal stopping problem in terms of Ws is:

Ws(x) = sup
τ∈M

EQ
[∫ τ

0
e−qt( f (Xt) +

1
∆

Ws−1(Xt))dt | X0 = x
]

, (79)

where f (x) = −gq(x) + (1/∆)G(x). Assuming that r + ψ(−i) ≥ 0, the function:

f (x) = −(qK− (q + ψ(−i))ex) +
1
∆
(K− ex) = −rK + (r + ψ(−i))ex

is non-decreasing (the case of the put option). The function W0 = (−G)+ is also non-
decreasing. Using Theorem 6, we find Carr’s randomization approximation h1 to the early
exercise boundary, and prove that W1 is non-decreasing and vanishes below h1.

In the cycle s = 1, 2, . . . , N − 1, using Theorem 6 and the induction assumptions: Ws
is non-decreasing and vanishes below hs, we find the approximation to the early exercise
boundary hs+1 and Ws+1 and prove that Ws+1 is non-decreasing and vanishes below hs+1.
Finally, Vs = Ws + G, s = 1, 2, . . . , N. See ([49], Chapt. 13) for details.

5.6. Shape of the Early Exercise Boundary and Smooth Pasting Condition

Assume that X is the process of finite variation, with non-zero drift µ. Then, one can
conjecture that far from maturity, the early exercise boundary is almost flat; hence, the
smooth pasting condition fails if the vector field ∂t + 〈µ, ∂x〉 is transversal to the boundary
and points from the boundary. One can also conjecture that the smooth pasting condition
fails everywhere but this is far from evident in view of the fact that the behavior of the early
exercise boundary at maturity can be very irregular, especially in the multi-factor case. One
cannot exclude cases when, at some parts of the free boundary, the vector field ∂t + 〈µ, ∂x〉
is transversal to the boundary and points toward the boundary. At these parts, the smooth
pasting condition would hold.

6. Barrier Options and American Options in Regime-Switching Lévy Models and
Systems of Pseudo-Differential Equations, Approximation of Stochastic Volatility
Models and Models with Stochastic Interest Rate

LetM be a finite state Markov chain with transition rates λjk, j, k = 1, 2, . . . , M. Set
Λj = ∑k 6=j λjk. For each j, let X(j) be a Lévy process on R with the characteristic exponent
ψj and infinitesimal generator Lj under a measure Qj. The riskless rate qj, instantaneous
payoffs Gj, streams of payoffs gj and early exercise boundary hj depend on the state. In
the case of barrier options, hj are given, and in the case of American options, hj are chosen,
solving the optimal stopping problem. The infinitesimal generator of the model is a matrix
PDO L = −ψ(D), where:

ψ(ξ) = diag (ψj(ξ) + Λj)
M
j=1 − [λjk]j 6=k).

If there are no barriers, then, evidently, one can solve the Cauchy problem as in
the scalar case; the only difference is that the matrix exponential exp[−(T − t)(ψ(ξ) +
diag [qj]

M
j=1]) appears, and the choice of appropriate contour deformations is more involved.

Similarly, in the case of h1 = · · · = hM, one can use the matrix form of the Wiener–Hopf
factorization, and repeat the calculations (in the PDO form) which we used in the no-regime
switching case. However, if M is large, then even these theoretically straightforward and
simple methods are very difficult for efficient numerical realization. Furthermore, the
straightforward methods outlined above are not applicable if the boundaries are different
in different states. This is the case when stochastic volatility models and models with
stochastic interest rates are approximated by Markov modulated Lévy models and/or
American options are priced.

The idea of the approximation is as follows [82–86]. The action of the infinitesimal
generator of the Markov process is discretized—replaced by the infinitesimal generator
Ldisc of the Markov chain with an infinite number of states, and then truncated. At the
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boundary of the truncated discretized state space, it is necessary to impose appropriate
conditions so that the truncated operator is the infinitesimal generator of a Markov chain,
without killing. Hence, Dirichlet boundary conditions may not be used. Instead, in order
to avoid killing, a kind of reflection condition must be imposed: transition rates from each
point at the boundary to points in the truncated discretized state space must change. If LM
is a diffusion, the discretization and boundary conditions are straightforward; in the case
of processes with jumps, constructions are more involved.

In a number of publications [50,82–87], we used the following simple iteration proce-
dure, which we outline below in the case of down-and-out options: the option is exercised
in state j when X(j) breaches the barrier hj from above. Numerical examples demonstrated
the stability of the procedure even for M > 2000 [86].

A problem with finite time horizon is reduced to a sequence of boundary problems
with infinite time horizon using the method of lines (Carr’s randomization). The regularity
conditions are as follows. For each j:

(i) X(j)
t satisfies the (ACP)-property (needed in the case of American options only);

(ii) gj is measurable, non-negative, and does not grow too fast at infinity;
(iiii) (qj + Λj − Lj)Gj is continuous, monotone, and does not grow too fast at infinity.
(iv) In each state, the rate of growth is controlled by conditions (37), (43), with qj + Λj in

place of qj.

Note that the general results for American options are obtained for non-negative gj.
However, we have optimal stopping results in the non-regime switching case when the
payoff function g may assume negative values. The same technique can be used in regime-
switching models, hence, the procedure can be generalized to the case of non-monotone
payoff functions, under certain conditions on the payoffs and processes. The case of barrier
options with payoff functions that change sign can be reduced to the case of non-negative
payoff functions using the linearity of the expectation operator.

At each step of the backward induction, we use the following block:

I. Reduce the pricing problem to the problem of evaluation of a perpetual stream (in
different states, the payoff streams are different).

II. Assuming that the value functions in each state but state j are known, calculate the
state-j option value.

III. In the case of American options, calculate the approximation to the early exercise
boundary in state j.

IV. Using this conditional result as a guide, construct an iteration scheme for all states,
and prove that the value functions converge to some limits.

The algorithm for perpetual American options (used as a block at each time step in
the backward induction procedure) is as follows.

I. Choose the grid ~x (it might be necessary to use different grids in different states).
II. In the cycle j = 1, . . . , M, calculate the initial approximation Vj,0 to the option value:

Vj,0(~x) = EQj

[∫ τ−j

0
e−(qj+Λj)tgj(Xt)dt | X0 = ~x

]

III. In the cycle ` = 0, 1, . . . , for each j = 1, 2 . . . , M, calculate:

Vj,`+1(~x) = EQj

[∫ τ−j

0
e−(qj+Λj)t

(
gj(Xt) + ∑

k 6=j
λjkVk,`(Xt)

)
dt | X0 = ~x

]

Stop when ‖V·,`+1 −V·,`‖ ≤ ε, where ε is the error tolerance.

The limit as `→ ∞ exists because the sequence of option values in each state is increasing
(the non-negativity of gj is needed for the proof).
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7. Affine and Quadratic Term Structure Models
7.1. Affine Processes

Affine processes are used in models with stochastic volatility and stochastic interest
rates. The adjective affine is explained by two almost equivalent properties:

(1) The characteristic function of the transition density is of the form of an exponential
function of an affine function of factors of the models with the coefficients depending
on time to maturity τ = T − t and spectral parameter ξ:

E[ei〈ξ,XT〉 | Xt = x] = exp[〈A(τ, ξ), x〉+ B(τ, ξ)], (80)

where 〈a, b〉 = ∑j ajbj [88]. If the stochastic interest rate rt is modeled as an affine
function of the factors of the model, the state space must be enlarged as in the
probabilistic version of the Feynman–Kac formula, and an additional factor
Yt =

∫ t
0 rsds IS added. The extended model remains affine, and the representation (80)

becomes possible.
(2) The coefficients of the stochastic differential equation (SDE) defining the process are

affine functions of the state variable.

Property (1) allows one to calculate expectations V(t, x) = E[G(XT) | Xt = x] as
in the case of Lévy models. However, given SDE, it is necessary to (1) prove that the
representation of the form (80) exists; and (2) calculate the matrix function A(τ, x) and
vector-function B(τ, x).

The formal proof is straightforward [89]. Assuming that the Feynman–Kac theorem holds,
write down the Cauchy problem

(∂t + L)V(t, x) = 0, t < T, x ∈ D0, (81)

V(T, x) = ei〈ξ,x〉, (82)

and where D0 and L are the interior of the state space D of the process and infinitesimal
generator, respectively, substitute anzatz (80) into (81)–(82) and reduce the calculation
of (A, B) to the solution of the generalized system of Riccati equations associated with
the model. The proof in the general case is unknown (see [2] for the discussion and
bibliography).

An incomplete list of outstanding problems for affine models, which can be regarded
as mathematical problems for a general well-defined class of PDO, is as follows (each of
the problems is solved for particular models or certain subclasses of affine models but
the complete answers, in full generality, are unknown—for a short overview of the extant
results, see [2]):

I. Prove the equivalence of (1) and (2) in the general case or for as wide a class of SDE
with affine coefficients as possible. The difficulty stems, in particular, from the fact that
the state space is of the form (R+)m ×Rn−m, the infinitesimal generator degenerates
at the boundary and the term of order 0 (“electric potential”) is an bounded affine
function;

II. Prove the Feynman–Kac theorem for the (backward) Cauchy problem and more
general boundary problems.

III. Derive general conditions for the explosion of the solution of the boundary problem
(81) and (82) as t→ T.

IV. Study the domain of analyticity of the characteristic function (80) and its behavior at
infinity, hence, the applicability of the conformal deformation technique. For partial
results, see [2,15].

V. Derive conditions on the parameters of affine interest rate models which ensure that
the solution of (81) and (82) with ξ = 0 (price of the discount bond) is bounded by 1.
For partial results, see [23,25].
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VI. Study the asymptotics of the solution of the (backward) Cauchy problem with the
terminal condition V(T, x) = G(x), as T → +∞. For partial results based on the
eigenfunction expansion technique, see [90–93]. The main block is the generalized
eigenfunction expansion of the essentially non-self-adjoint quadratic Hamiltonian.
This is a special case of the same procedure in quadratic term structure models [91].

7.2. Wishart Models

Factors are naturally organized as a matrix rather than vector. One may regard Wishart
models as square root models where the positive scalar stochastic factor is replaced by a
positive-definite matrix. See [94,95] for a list of references. The outstanding problems are
the same as for affine models.

7.3. Quadratic Term Structure Models (QTSM)

In the pure diffusion case, the infinitesimal generator of QTSM is of the form:

L = 〈κ(θ − x), ∂x〉+
1
2
〈A∂x, ∂x〉+ 〈Bx, x〉+ 〈d, x〉+ d0, (83)

where κ is an anti-stable matrix with real entries, matrix A is positive definite, B is semi-
definite (both with real entries), θ, d ∈ Rn, d0 ∈ R. The characteristic function is an
exponential of a quadratic function of x, with the coefficients depending on time to maturity
τ and the spectral parameter ξ and can be calculated solving the associated system of
generalized Riccati equations. The generalized eigenfunction expansion can be calculated
as well [90,91]. It is interesting that, for the parameters of QTSM documented in real
financial markets, L is essentially non-self-adjoint, hence, not diagonalizable.

If the diffusion part of the infinitesimal generator is replaced with a PDO, then the
exact calculation of the characteristic function and generalized eigenfunction expansion is
not known. For asymptotic approximations, see [24,92].

7.4. Systems of Affine and Quadratic Term Structure Models

To the best of my knowledge, there are no general results in this direction, although in
view of a huge body of publications in quantitative finance, one expects that some special
cases have been considered.

8. Conclusions

In this paper, non-standard features of several basic problems arising in finance,
insurance and economics are explained, and a group of related efficient methods (analytical
and numerical) are outlined. The objective is to calculate the prices of contingent claims.
In the general economic framework, the price V of a contingent claim is the expectation
of a certain stochastic expression. In the case of Markov models, V is a function of time
and the spot value x = Xt of the underlying source of uncertainty. The formal application
of Dynkin’s formula leads to a boundary problem for an integro-differential (pseudo-
differential) equation of the form ∂t + LX , where LX is the infinitesimal generator of X (we
allow for processes with killing/birth, hence, in the case of the Lévy model and the constant
interest rate r, LX = −ψ(Dx)− r, where ψ(ξ) is the characteristic exponent of X). However,
in the majority of cases of interest, the rigorous proof of the theorem of Feynman–Kac type
is lacking. In the paper, several basic situations where proofs are available are considered
in more detail; more general results are only outlined.

The following general features of the boundary problems discussed in this paper may
be of general interest to specialists in PDE and PDO.

1. In models with jumps, boundary conditions are non-local, whereas the standard
boundary and co-boundary problems for PDE, PDO and fractional differential equa-
tions are local. See, e.g., [3,4,96,97]. Therefore, (1) one of the standard approaches to
boundary problems, namely reduction to the boundary, cannot be used to reduce the
dimension of the problem; (2) numerical methods which do not take the non-locality



Mathematics 2022, 10, 1028 28 of 36

of the boundary conditions into account properly produce sizable errors; if the time
horizon is large, the relative errors are, typically, very large.

2. In popular pure diffusion models such as the Heston model, the operator degenerates
at the boundary. The degeneration is sufficiently regular so that the generalization
of the Boutet de Monvel calculus for degenerate elliptic operators [3] is applicable
in a number of situations (interestingly, the infinitesimal generator in the Heston
model is one of the basic examples in [3]). Formally, one can apply this calculus to
boundary problems in models with jumps provided that the characteristic exponent
of the jump part is a rational function. However, such an application would require
the approximation of non-local boundary conditions by local ones. For a reduction to
the boundary in applications to the Heston model and other basic diffusion models,
see [98] and the bibliography therein.

3. The degeneration and non-locality of the infinitesimal generators are the sources of
fundamental difficulties for a rigorous proof of the Feynman–Kac theorem. One must
establish certain regularity conditions of the solution for the proof. For applications of
Dynkin’s formula, conditions are weaker than for applications of Ito’s formula, and,
in some cases, general regularity results [3,5] can be used. However, the author is
unaware of any general proof.

4. In the case of Lévy models (PDO with constant symbols) and problems with flat
boundaries, the probabilistic version of the Wiener–Hopf factorization technique can
be used to derive an explicit formula for the price in the form of oscillatory integrals,
and the analytic form of the same technique used to derive the same formula for
the unique solution of the corresponding boundary problem thereby proving the
Feynman–Kac theorem. In the case of problems with a curved boundary, the general
regularity results and the proof of the Feynman–Kac theorem are unknown.

5. The proof and study of regularity are especially non-trivial if the infinitesimal operator
L = −ψ(Dx) of a Lévy model is an elliptic PDO of order ν ∈ (0, 1). Models of this kind
are documented in the majority of empirical studies (if Lévy models are calibrated
to the real data). We outlined approaches to study general boundary problems with
operators of the form ∂t − ψ(Dx)− r.

6. In popular Lévy models, the solutions of the boundary problems are irregular at the
boundary, hence numerical methods that (implicitly or explicitly) assume that the
solution is more smooth than it is inevitably produce large errors.

7. If the infinitesimal operator of a Lévy model is an elliptic PDO of order ν ∈ (0, 1),
then the smooth pasting principle for free boundary may fail.

8. In many cases, the free boundary is discontinuous at the terminal date, which implies
that a numerical method that assumes the continuity is bound to be inaccurate.

In the paper, proofs of facts 4–8 and several related efficient numerical methods for
the solution are outlined. The main blocks are as follows.

1. The interpretation of operators in the operator form from the Wiener–Hopf factoriza-
tion as expectation operators under supremum and infimum processes, and explicit
formulas for solutions of basic boundary problems under very mild restrictions on
operators and boundary conditions, in the case of flat boundaries.

2. The interpretation allows one to prove the convergence of general algorithms for
pricing options:

(a) With finite time horizon (stationary boundary problems) using maturity ran-
domization (method of lines);

(b) In regime-switching models;
(c) Approximations of models with a stochastic interest rate and stochastic volatil-

ity by regime-switching models (systems of boundary problems);
(d) Options with non-monotone and discontinuous payoffs, with applications to

game-theoretical problems.
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3. In the interest of brevity, the refined version of the fast Fourier transform (FFT) and
inverse Fourier transform (iFFT) introduced in [46,69] to price single and barrier
options in Lévy models is not described in the paper. The refined version can be
used to accurately evaluate options of various kinds. The advantage of refined FFT
and iFFT as compared to existing versions, including the fractional FFT, stems from
the flexibility of choices of grids of different length in the dual and state spaces, in
each block of the numerical procedure. The final result is calculated using an almost
optimal number of the standard FFT and iFFT blocks of the same (smaller) size.

4. Instead, in the paper, we describe very fast and accurate methods for the numerical
evaluation of integrals, in dimensions 1–4, based on the conformal deformation tech-
nique. The main idea is close to the idea of the saddle point method but the families of
the contour deformations that we use allow one to relatively easily construct deforma-
tions with respect to several variables. The joint deformation of several contours above
can be regarded as a further step in the realization of a general program of study
of the efficiency of combinations of one-dimensional inverse transforms for high-
dimensional inversions outlined in [99,100] with additional twists: the calculation of
the Wiener–Hopf factors, which is necessary to price lookback and barrier options. The
authors of [99,100] consider three main different one-dimensional algorithms for the
numerical realization of the Bromwich integral (i) Fourier series expansions with the
Euler summation; (ii) combinations of Gaver functionals; and (iii) deformation of the
contour in the Bromwich integral, and discuss various methods of multi-dimensional
inversion based on combinations of these three basic blocks. Our results imply that,
for the purposes of multi-dimensional inversion, the class of deformations must be
enlarged. In particular, in some practically important situations, deformations close to
the steepest descent such as Talbot’s deformation q = rθ(cot θ + i),−π < θ < π [101]
are not applicable, and one must resort to seemingly less efficient deformations.
Note that the general conformal deformation technique that we develop is especially
efficient in the case of highly oscillatory integrals.

We are grateful to the anonymous referee for the suggestion to include a short review
of other methods. Naturally, essentially all methods developed to solve boundary problems
for PDE and PDO can be used to price contingent claims, and many of these methods (if
not all—the literature is huge) are used. We list and explain sources and types of errors of
several groups of methods.

1. “THE HILBERT TRANSFORM METHOD” is used in backward induction procedures
to price options of several types. Calculations are in the dual space. At each time
step, operators of the form F1(−∞,h)F−1 and F1(h,+∞)F−1 are expressed in terms
of the Hilbert transform, and the latter is realized using the fast Hilbert transform.
See [102–104] and the bibliographies therein. In these papers and other papers where
the fast Hilbert transform is used, the grids of the same length in the state and dual
spaces are used, which is presented as an advantage of the fast Hilbert transform
approach. However, in many cases, the choice of grids of equal size leads to either
very large errors or unnecessarily long grids and a large CPU time. See [46] for
details and the explanation on how to use grids of various length in order to efficiently
control discretization and truncation errors. Efficient methods of the numerical Fourier
inversion described in the paper can be adjusted to the Hilbert transform. See [10]
for an efficient numerical realization of operators F1(−∞,h)F−1 and F1(h,+∞)F−1,
applicable when these operators are applied only once. For an efficient numerical
realization of operators generalizing the Hilbert transform, which is applicable in
backward induction procedures (double spiral method), see [105].

2. VARIATIONS OF THE STRAIGHTFORWARD APPLICATION OF THE FOURIER AND IN-
VERSE FOURIER TRANSFORM to European options, equivalently, the solution of Cauchy
problems for parabolic PDO on the real line, namely, COS method and Carr–Madan
method mentioned in Section 3.2, introduce additional unnecessary errors. The so-
called Lewis–Lipton formula is the standard Fourier inversion formula with the
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prefixed line of integration. The choice of the line is non-optimal in the majority of
cases; the conformal deformation method is much faster and more accurate. See [2]
for numerical examples.

3. IN THE CONV METHOD [106,107], at each step of backward induction, an extremely
inefficient interpolation procedure for the approximation of the value function at each
time step is applied. In probabilistic terms, continuous distributions are approximated
by discrete distributions supported on a uniform grid, a dual grid is chosen, and the
calculations at each time step are reduced to the composition of FFT, multiplication by
the array of values of the characteristic function, and iFFT. The procedure is simple
but the errors are large. See [46] for the detailed analysis.

4. THE COS METHOD is applicable (and has been applied) to price options of various
kind. The essence of the method is an approximation of the kernel of the transition
operator by a linear combination of cosines (hence the name). I find it difficult to
find a sound mathematical argument in favor of this approximation. On the contrary,
it is possible to indicate additional sources of errors and produce examples which
demonstrate the inefficiency of COS. In backward induction procedures, the errors of
COS accumulate very quickly, and pricing barrier options with even a moderate time
horizon (0.5Y) is, essentially, impossible. See numerical examples in [2,13,14,16–20,31].

5. IN THE PROJ METHOD, the transition density of a random variable (equivalently,
the kernel of the transition operator) is projected on a B-spline basis. See [20] for the
bibliography, the discussion about the relative efficiency of COS, PROJ, the method
in [46] which does not use an approximation of the transition kernel, and for an
efficient procedure for the calculation of the projection coefficients using the sinh-
acceleration. Note that the error of the approximation of the transition kernel is in the
H2-norm; hence, if the transition density has large derivatives or is non-smooth at the
origin, which is the case of the VG model and Lévy models of order ν close to 0, then
the errors of PRPJ can be very large.

6. APPROXIMATIONS OF VALUE FUNCTIONS AT EACH TIME STEP AND FILTERING.
In [16,20,46,69] (see also the bibliographies therein), the value function at each time
step is approximated by piece-wise polynomials. In view of the irregularity of value
functions near the boundary discussed in the paper, such an approximation introduces
an error which can be controlled. See [16,60]. The approximation can be interpreted
as a spectral filter, which is used in a number of publications to increase the speed
of convergence. In [108], ad hoc spectral filters are used to increase the convergence
of the integrals: “When Fourier techniques are employed to specific option pricing
cases from computational finance with non-smooth functions, the so-called Gibbs
phenomenon may become apparent. This seriously impacts the efficiency and accu-
racy of the pricing. For example, the Variance Gamma asset price process gives rise to
algebraically decaying Fourier coefficients, resulting in a slowly converging Fourier
series. We apply spectral filters to achieve faster convergence. Filtering is carried out
in Fourier space; the series coefficients are pre-multiplied by a decreasing filter, which
does not add significant computational cost. Tests with different filters show how
the algebraic index of convergence is improved.” The quoted statement is correct.
However, spectral filters are designed to regularize the results. The regularization of
value functions results in serious errors in regions of paramount importance for risk
management: near barrier and strike, close to maturity and for long dated options.
For instance, close to the barrier or default boundary, the value can be overvalued
or undervalued manifold. This remark is applicable to the applications of spectral
filtering in [109] as well. Note that the conformal deformation technique allows
one to eliminate the Gibbs phenomenon without sacrificing accuracy, and at a small
CPU cost.

7. APPROXIMATION OF SMALL JUMPS COMPONENT BY A DIFFUSION. Cont and
Volchkova [110] approximated the small jump component by a diffusion. In the
result, a PDO of order ν < 2 is replaced with the sum Lε = ε∂2

x + µ∂x + LJ , where
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ε > 0 is small, µ ∈ R and LJ is an integral operator with the kernel of class L1; for
an accurate approximation, the peak of the kernel has to be very high. After that, a
standard implicit–explicit finite difference scheme is used to price barrier options. It
is evident that if the infinitesimal generator L is a PDO of order ν < 2, hence, the
derivative of the solution can be unbounded near the boundary, an approximation
of L by Lε must lead to sizable errors near the boundary because the solution of the
boundary problem becomes smooth up to the boundary. Numerous numerical exam-
ples in [111] have demonstrated the inaccuracy of the Cont–Voltchkova method. Note
that the methods in [111] resemble but are less efficient than the method in [46,69].

8. THE APPROXIMATION OF KOBOL AND OTHER PROCESSES OF INFINITE ACTIVITY

BY HEJD MODEL. In [38,40], the author constructed an HEJD model (without a
special label attached) whilst keeping in mind to try such an approximation. For
pricing American and barrier options, the advantage of HEJD is a simple explicit
formula for the Wiener–Hopf factors in the case of positive values of the spectral
parameter, derived in [38,40]. Unfortunately, for wide regions in the parameter
space and large values of the spectral parameter which arise if a small time step
in a backward induction procedure is used, an accurate approximation requires
the use of HEJD with very large parameter values and high precision arithmetic is
necessary. The reason is the same as in the case of the Cont–Voltchkova method. Due
to this inefficiency, the author did not mention approximation of KoBoL by HEJD.
Later, such an approximation was used in a number of publications, e.g., [112,113].
For a typical set of parameter values of KoBoL and moderate maturities, such an
approximation can be very inaccurate at the distance of up to several percent of
barrier. See [46] for numerical examples that illustrate the inefficiency of HEJD
approximation. The problem of a large spectral parameter can be partially resolved
using Richardson’s extrapolation. In applications to pricing barrier options, the
convergence of Richardson’s extrapolation of arbitrary order is proven in [63]. Note
that the technique of conformal deformations [10] is more efficient than approximation
by HEJD, even in cases when the approximation is reasonably accurate.

9. APPROXIMATION OF UNDERLYING JUMP-DIFFUSIONS WITH CONTINUOUS TIME MARKOV

CHAINS. In [82–84,86], in the models with stochastic interest rates and/or stochastic
volatility, the dynamics of additional factors is approximated by continuous time
Markov chains. In the PDE language, a part of the infinitesimal generator is dis-
cretized; the result is a regime-switching Lévy model. At the first (discretization)
step, a Markov chain with the infinite number of states (infinite grid) appears; at
the second step, the infinite grid is truncated, and transition rates in a vicinity of the
“boundary” of the truncated grid are adjusted so that the Markov chain remains the
Markov chain without killing. Thus, the Dirichlet condition must be avoided. In
the diffusion case, the adjustment can be interpreted as the discretization of the high
contact condition ∂2

yV = 0; in the jump-diffusion case, the “discretized boundary
condition” is non-local and more involved. Later, in a number of publications starting
with [114], the approximation-by-continuous time Markov chain was used for more
general Markov processes in 1D. In some publications, even the dynamics of Lévy fac-
tors was approximated by a continuous time Markov chain. Such an approximation is
rather inefficient, especially if the tails decay slowly, and/or in the presence of barriers.
Furthermore, in related publications, the discretized Dirichlet condition is used, which
leads to significant errors of backward induction procedures with many steps.

10. EIGENFUNCTION EXPANSION APPROACH. In the case of diffusion models on the
real line, there is a significant body of results obtained by V. Linetsky and their
students (see, e.g., [115] and the bibliography therein). In [90,91,116], the generalized
eigenfunction expansion is derived for solutions of the Cauchy problems in multi-
factor models.

11. ASYMPTOTIC METHODS. Due to the irregularity of solutions near the boundary, the
asymptotic formulas are reasonably accurate only in a rather small vicinity of the
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boundary [62]: hence, they are rather useless for numerical purposes (although useful
for the qualitative analysis). The same is true for asymptotics near maturity (in terms
of time to maturity, short time asymptotics). The conformal deformation method can
be used to calculate solutions close to maturity with high accuracy. For long time
asymptotics, efficient methods can be derived using the eigenfunction expansion
technique [92]. Note that there is a large body of the literature devoted to the study of
the asymptotics of implied volatility close to maturity and far from maturity.

12. FAST GAUSS TRANSFORM [117,118] can be efficiently used in certain diffusion models,
and models with jumps of a special structure.

13. For applications of finite elements to option pricing, see [119].
14. APPROXIMATIONS BASED ON PURELY PROBABILISTIC METHODS. The literature is

huge. A typical feature is that the convergence of a method is proven without error
bounds. A typical example is the Cont–Voltchkova method [110]. The proof of
convergence is given; however, as the numerical examples in [111] demonstrate, in
many cases, it is necessary to use extremely fine and long grids to satisfy the error
tolerance of the order of one percent, at a very large CPU cost.

15. MONTE-CARLO SIMULATIONS. The version of the Monte Carlo simulations that is
closest to the methods of the present paper is based on the evaluation of the cumulative
probability distribution function (cpdf) on an appropriate grid and interpolation.
In applications to finance, the idea was used for the first time in [120]. Note that
in [120] FFT and in a number of papers since FFT is used. As numerical examples
in [31] demonstrate, the evaluation of the cpdf of Lévy processes using FFT leads to
inaccurate results. The conformal deformations technique allows one to design much
more accurate Monte-Carlo simulation procedures [9,31].
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3. Levendorskiĭ, S. Degenerate Elliptic Equations. In Mathematics and Its Applications; Kluwer Academic Publishers Group: Dordrecht,

The Netherlands, 1993; Volume 258.
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25. Levendorskiĭ, S. Consistency conditions for affine term structure models. II. Option pricing under diffusions with embedded

jumps. Ann. Financ. 2006, 2, 207–224. [CrossRef]
26. Eskin, G. Boundary Value Problems for Elliptic Pseudodifferential Equations. In Translations of Mathematical Monographs;

American Mathematical Society: Providence, RI, USA, 1981; Volume 9.
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