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Abstract: In this paper, we propose a new accelerated algorithm for finding a common fixed point of
nonexpansive operators, and then, a strong convergence result of the proposed method is discussed
and analyzed in real Hilbert spaces. As an application, we create a new accelerated viscosity forward–
backward method (AVFBM) for solving nonsmooth optimization problems of the sum of two objective
functions in real Hilbert spaces, and the strong convergence of AVFBM to a minimizer of the sum of
two convex functions is established. We also present the application and simulated results of AVFBM
for image restoration and data classification problems.
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1. Introduction

Image restoration is a fundamental problem in image processing. The image restora-
tion (image deblurring or image deconvolution) is concerned with the reconstruction or
estimation of the uncorrupted image from a blurred and noisy image [1,2]. Thus, the main
objective of the image restoration algorithms is to reduce the blurring effects and the noise
that degraded the image by minimizing the noise of the degraded image to produce an
estimate image that approaches the original image.

The image restoration problem can be modeled by a linear inverse problem, which is
formulated by:

u = Bv + e, (1)

where B ∈ Rm×n is the blurring matrix, v ∈ Rn is an original image, u ∈ Rm is the observed
image, and e ∈ Rm is a noise. One of the most popular models to solve Problem (1) is the
least absolute shrinkage and selection operator (LASSO) [3], which can be considered in
the following form:

min
v
‖Bv− u‖2

2 + τ‖v‖1, (2)

where τ > 0 is a regularization parameter, ‖ · ‖1 is l1-norm, and ‖ · ‖2 is l2-norm. Moreover,
Problem (2) can be applied to solving many areas of science and applied science such as
astronomical imaging [4], microscopy [5], and signal recovery problems [6].
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The nonsmooth convex optimization model which includes (2) as a particular case has
the following form:

min
x∈H

φ1(x) + φ2(x), (3)

where H is a Hilbert space with norm ‖ · ‖, and inner product 〈·, ·〉, φ2 : H → R ∪ {∞}
is a proper convex and lower semi-continuous function, and φ1 : H → R is convex
differentiable with a Lipschitz continuous gradient constant L > 0. The solution set of
Problem (3) will be denoted by Ω := Argmin(φ1 + φ2). Furthermore, x is a solution of
Problem (3) if and only if x satisfies the fixed point equation:

x = proxcφ2(I − c∇φ1)(x), (4)

where c > 0, I is an identity operator, ∇ f is the gradient of f , proxφ2 = (I + ∂φ2)
−1, and

∂φ2 is the subdifferential of φ2 defined by:

∂φ2(a∗) := {u ∈ H : φ2(a) ≥ 〈u, a− a∗〉+ φ2(a∗), a ∈ H},

see [7–9] for more details. For solving (3), the Forward–Backward splitting (FBS)
algorithm [10] has been using the following form:

xk+1 = proxckφ2︸ ︷︷ ︸
backward step

(I − ck∇φ1)︸ ︷︷ ︸
forward step

(xk), k ∈ N, (5)

where x1 ∈ H and 0 < ck < 2/L. To accelerate the proximal gradient algorithm, the inertial
technique or extrapolation technique was proposed by Nesterov in 1983 [11] for solving
a class of convex optimization problems (3), where F := φ1 + φ2 is a smooth and convex
function. A typical algorithm takes the following form:{

yk = xk + θk(xk − xk−1),
xk+1 = yk + c∇F(yk), k ∈ N,

(6)

where c > 0 is the step size depending on the Lipschitz continuity modulus of ∇F and
the inertial parameter θk ∈ (0, 1) for all k. He also showed that by choosing {θk} such
that supk θk = 1, this algorithm has a faster convergence rate than the general gradient
algorithm; see [11]. In 2009, Beck and Teboulle [12] improved FBS by using the inertial
techniques; this algorithm is known as the fast iterative shrinkage-thresholding algorithm
(FISTA), which is defined as follows:

yk = prox 1
L φ2

(xk − 1
L∇φ1(xk)),

tk+1 =
1+
√

1+4t2
k

2 , θk =
tk−1
tk+1

,
xk+1 = yk + θk(yk − yk−1), k ∈ N,

(7)

where x1 = y0 ∈ H, t1 = 1 and θk is the inertial parameter. The FISTA has been recognized
as a fast method. It is noted that the inertial parameter {θk} in (7) satisfies supk θk = 1. So,
the sequence generated by FISTA has a rate of convergence that is proven to be significantly
better, both theoretically and practically. Recently, Liang and Schonlieb [13] modified
FISTA, called “FISTA-Mod”, for the short and proved weak convergence theorem of FISTA-
Mod. Moreover, they proved ‖xk − xk−1‖ = O(1/k). The FBS and FISTA are only weak
convergence in Hilbert spaces. For strong convergence, the viscosity approximation method
(VAM) of the fixed point of a nonexpansive operator T was proposed by Moudafi [14], who
proved the strong convergence of the methods (8) in real Hilbert spaces.

xk+1 = γkg(xk) + (1− γk)Txk, k ∈ N, (8)

where x1 ∈ H, γk is a sequence in (0, 1) and g is a contraction operator. In 2008,
Takahashi [15] modified the viscosity approximation method of Moudafi [14] for find-
ing a common fixed point of a countable family of nonexpansive operators {Tk}. His
algorithm takes the following form:

xk+1 = γkg(xk) + (1− γk)Tkxk, k ∈ N, (9)
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where x1 ∈ H, {γk} ⊂ (0, 1), and g is a contraction operator. He proved a strong conver-
gence theorem of (9) under some conditions on {Tk} and {γk}.

In 2012, He and Guo [16] introduced the following modified viscosity approximation
method for a countable family of nonexpansive operators:

xk+1 = γkg(xk) + (1− γk)Lkxk, k ∈ N, (10)

where {γk} ⊂ (0, 1), Lk = ∑k
i=1

(
wi
sk

)
Ti, sk = ∑k

i=1 wi, wi > 0 with ∑∞
i=k wk = 1. They

proved strongly the convergence of (10) under the condition on {γk} without any other
condition on {Tk}. However, this algorithm needs larger computational work than that
of (9). After that, several algorithms for the common fixed points of a countable family of
nonexpansive operators were introduced and discussed; see [16–20].

Inspired by [10,12,15], in this paper, we propose a simple method with the inertial
technique for solving a common fixed point problem of a countable family of nonexpansive
operators in a real Hilbert space. We then prove a strong convergence of the proposed
method under some suitable conditions. Finally, we apply our proposed method to solving
the image restoration and classification problems.

The rest of this paper is organized as follows: In Section 2, we present some notation
and useful lemmas that will be used in this paper. The strong convergence of the accelerated
viscosity fixed point method and the accelerated viscosity forward–backward method are
analyzed in Section 3. Applications and simulated results for image restoration and data
classification problems are given in Section 4. Finally, we give a conclusion remark for
further study in Section 5.

2. Preliminaries

In this section, we present some definitions and useful lemmas for proving our main
results in the next section. Throughout this paper, we adopt the following notations:

• H denotes a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉;
• C denotes a nonempty closed convex subset ofH;
• Fix(T) denotes the set of all fixed points of T;
• ⇀ and→ denote the weak convergence and strong convergence, respectively;
• proxcφ2(I − c∇φ1) denotes the forward–backward operator of φ1 and φ2 with respect

to c.

A mapping T : C → C is said to be an L-Lipschitz operator if there exists L > 0 such
that ‖Ta− Tb‖ ≤ L‖a− b‖ for all a, b ∈ C. An L-Lipschitz operator is called a nonexpansive
operator and contraction operator if L = 1 and L ∈ (0, 1), respectively. If T : C → C is
a nonexpansive operator with Fix(T) 6= ∅, then Fix(T) is closed and convex, and the
mapping I − T is demiclosed at zero, that is for any sequence {xk} ⊂ C such that xk ⇀ a
and ‖xk − Txk‖ → 0 imply a ∈ Fix(T). A mapping PC is said to be a metric projection
of H onto C, if for every a ∈ H, there exists a unique nearest point in C denoted by PCa
such that:

‖a− PCa‖ ≤ ‖a− b‖, ∀ b ∈ C.

Moreover, PC is firmly nonexpansive mapping and PC satisfying 〈a− PCa, b− PCa〉 ≤ 0,
∀a ∈ H, b ∈ C. Let {Tk} and Λ be families of nonexpansive operators of C into itself such
that ∅ 6= Fix(Λ) ⊂ Γ := ∩∞

k=1Fix(Tk), where Fix(Λ) is the set of all common fixed points of
Λ. A sequence {Tk} is said to satisfy the NST-condition (I) with Λ [21] if for every bounded
sequence {xk} in C,

lim
k→∞
‖xk − Tkxk‖ = 0 implies lim

k→∞
‖xk − Txk‖ = 0 for all T ∈ Λ.

If Λ is singleton, i.e., Λ = {T}, then {Tk} is said to satisfy the NST-condition (I) with
T. After that, Aoyama, Kohsaka and Takahashi [22] introduced the condition (Z), which is
more general than that of NST-condition (I). A sequence {Tk} is said to satisfy the condition
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(Z) if whenever {xk} is a bounded sequence in C such that limk→∞ ‖xk − Tkxk‖ = 0, it
follows that every weak cluster point of {xk} belongs to Γ.

It is also known that proxcφ2(I− c∇φ1) is a nonexpansive mapping when 0 < c < 2/L.
The following lemmas are useful for proving our main results.

Lemma 1 ([23]). Let φ1 : H → R be a convex and differentiable function with an L-Lipschitz
continuous gradient of φ1 and let φ2 : H → R∪{∞} be a proper lower semi-continuous and convex
function. Let Tk := proxckφ2(I − ck∇φ1) and T := proxcφ2(I − c∇φ1), where ck, c ∈ (0, 2/L)
with ck → c as k→ ∞. Then, {Tk} satisfies NST-condition (I) with T.

Lemma 2 ([24]). For all a, b ∈ H, and t ∈ [0, 1] the following hold:

(i) ‖ta + (1− t)b‖2 = t‖a‖2 + (1− t)‖b‖2 − t(1− t)‖a− b‖2;
(ii) ‖a± b‖2 = ‖a‖2 ± 2〈a, b〉+ ‖b‖2;
(iii) ‖a + b‖2 = ‖a‖2 + 2〈b, a + b〉.

Lemma 3 ([25]). Let {ai, i = 1, 2, . . . , k} ⊂ H. For bi ∈ (0, 1), i = 1, 2, . . . , k such that
∑k

i=1 bi = 1. Then, the following identity holds:∥∥∥∥∥ k

∑
i=1

biai

∥∥∥∥∥
2

=
k

∑
i=1

bi‖ai‖2 −
k

∑
i,j=1,i 6=j

bibj‖ai − aj‖2.

Lemma 4 ([26]). Let {ak} be a sequence of non-negative real numbers, {bk} be a sequence of real
numbers, and {tk} be a sequence of real numbers in (0, 1) such that ∑∞

n=1 tk = ∞. Assume that:

ak+1 ≤ (1− tk)ak + tkbk, k ∈ N.

If lim supi→∞ bki
≤ 0 for every subsequence {aki

} of {ak} satisfying the condition:

lim inf
i→∞

(aki+1 − aki
) ≥ 0,

then limk→∞ ak = 0.

3. Main Results

In this section, we propose a new accelerated viscosity fixed point method, which is
called “AVFPM” for solving a common fixed point of nonexpansive operators in a real
Hilbert space. In order to introduce AVFPM, we assume the following:

• g : H → H is a contraction with constant η ∈ (0, 1);
• {Tk : H → H} is a family of nonexpansive operators;
• {Tk} satisfies condition (Z);
• Γ := ∩∞

k=1Fix(Tk) 6= ∅.

Theorem 5. Let {xk} be a sequence generated by Algorithm 1 (AVFPM). Then, {xk} converges
strongly to an element a∗ ∈ Γ, where a∗ = PΓg(a∗).

Now, we prove the strong convergence of Algorithm 1 (AVFPM).
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Algorithm 1: An accelerated viscosity fixed point method (AVFPM).
Initialization: Take x0, x1 ∈ H arbitrarily and positive sequences
{λk}, {σk},{γk}, {βk}, and {αk} satisfy the following conditions:

{αk} ⊂ (0, 1), lim
k→∞

αk = 0 and
∞

∑
k=1

αk = ∞,

{βk} ⊂ (0, 1), 0 < a5 ≤ γk < 1, αk + βk + γk = 1,

0 < a1 ≤ λk ≤a2 < 1, 0 < a3 ≤ σk ≤ a4 < 1.

for some positive real numbers a1, a2, a3, and a4.
Iterative steps: Calculate xk+1 as follows:
Step 1. Choose a bounded sequence of non-negative real numbers {µk}. For k ≥ 1,
set

θk =

 min
{

µk,
τk

‖xk − xk−1‖

}
if xk 6= xk−1,

µk otherwise,

where {τk} is a sequence of positive real numbers such that limk→∞ τk/αk = 0.
Step 2. Compute 

wk = xk + θk(xk − xk−1),
zk = (1− λk)wk + λkTkwk,
yk = (1− σk)Tkwk + σkTkzk,
xk+1 = αkg(wk) + βkTkzk + γkTkyk.

Update k := k + 1 and return to Step 1.

Proof. By the Banach contraction principle, there exists a unique a∗ ∈ Γ such that a∗ =
PΓg(a∗). By definitions of xk+1, we have:

‖wk − a∗‖ ≤ ‖xk − a∗‖+ θk‖xk − xk−1‖, (11)

and:

‖zk − a∗‖ ≤ (1− λk)‖wk − a∗‖+ λk‖Tkwk − a∗‖ ≤ ‖wk − a∗‖. (12)

From (12), we get:

‖yk − a∗‖ ≤ (1− σk)‖Tkwk − a∗‖+ σk‖Tkzk − a∗‖ ≤ ‖wk − a∗‖. (13)

From (11)–(13), we obtain:

‖xk+1 − a∗‖ ≤ αk‖g(wk)− g(a∗)‖+ αk‖g(a∗)− a∗‖
+ βk‖Tkzk − a∗‖+ γk‖Tkyk − a∗‖
≤ αkη‖wk − a∗‖+ αk‖g(a∗)− a∗‖
+ βk‖zk − a∗‖+ γk‖yk − a∗‖
≤ (1− αk(1− η))‖wk − a∗‖+ αk‖g(a∗)− a∗‖
≤ (1− αk(1− η))‖xk − a∗‖

+ αk

[
θk
αk
‖xk − xk−1‖+ ‖g(a∗)− a∗‖

]
.

By the condition of θk, we have limk→∞
θk
αk
‖xk − xk−1‖ = 0, and so there exists a

constant M > 0 such that
θk
αk
‖xk − xk−1‖ ≤ M ∀k ≥ 1. Thus:
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‖xk+1 − a∗‖ ≤ (1− αk(1− η))‖xk − a∗‖+ αk(M + ‖g(a∗)− a∗‖).

By mathematical induction, we get:

‖xk+1 − a∗‖ ≤ max
{
‖x1 − a∗‖, M + ‖g(a∗)− a∗‖

1− η

}
∀k ≥ 1.

This implies that {xk} is bounded and {wk}, {zk}, {yk}, {Tkwk}, {Tkzk},
{Tkyk}, and{g(wk)} are also bounded. By Lemma 2, we obtain:

‖wk − a∗‖2 ≤ ‖xk − a∗‖2 + θ2
k‖xk − xk−1‖2

+ 2θk‖xk − a∗‖‖xk − xk−1‖, (14)

and:

‖zk − a∗‖2 ≤ ‖wk − a∗‖2 − λk(1− λk)‖wk − Tkwk‖2. (15)

By Lemma 2(i) and (15), we obtain:

‖yk − a∗‖2 ≤ (1− σk)‖Tkwk − a∗‖2 + σk‖Tkzk − a∗‖2

− σk(1− σk)‖Tkwk − Tkzk‖2 (16)

≤ ‖wk − a∗‖2 − σkλk(1− λk)‖wk − Tkwk‖2

− σk(1− σk)‖Tkwk − Tkzk‖2

From (12), (14), (16), Lemmas 2(iii) and 3, we have:

‖xk+1 − a∗‖2 = ‖αk(g(wk)− g(a∗)) + βk(Tkzk − a∗) + γk(Tkyk − a∗)‖2

+ 2αk〈g(a∗)− a∗, xk+1 − a∗〉
≤ αk‖g(wk)− g(a∗)‖2 + βk‖Tkzk − a∗‖2 + γk‖Tkyk − a∗‖2

+ 2αk〈g(a∗)− a∗, xk+1 − a∗〉
≤ αkη‖wk − a∗‖2 + βk‖wk − a∗‖2 + γk‖wk − a∗‖2

− γkσkλk(1− λk)‖wk − Tkwk‖2

− γkσk(1− σk)‖Tkwk − Tkzk‖2 + 2αk〈g(a∗)− a∗, xk+1 − a∗〉 (17)

≤ (1− αk(1− η))‖xk − a∗‖2

+ αk

[
2‖xk − a∗‖

(
θk
αk
‖xk − xk−1‖

)
+

(
θk
αk
‖xk − xk−1‖

)
θk‖xk − xk−1‖

+ 2〈g(a∗)− a∗, xk+1 − a∗〉
]
− γkσkλk(1− λk)‖wk − Tkwk‖2

− γkσk(1− σk)‖Tkwk − Tkzk‖2.

So, we get:

γkσkλk(1− λk)‖wk − Tkwk‖2 ≤ ‖xk − a∗‖2 − ‖xk+1 − a∗‖2 + αk M
′
, (18)

and:

γkσk(1− σk)‖Tkwk − Tkzk‖2 ≤ ‖xk − a∗‖2 − ‖xk+1 − a∗‖2 + αk M
′
, (19)

where:
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M
′
= supn≥1

{
2‖xk − a∗‖

(
θk
αk
‖xk − xk−1‖

)
+
(

θk
αk
‖xk − xk−1‖

)
θk‖xk − xk−1‖

+ 2〈g(a∗)− a∗, xk+1 − a∗〉
}

.

Now, we show that {xk} converges strongly to a∗. Let ak = ‖xk − a∗‖2. Suppose that
{aki
} is a subsequence of {ak} such that lim infi→∞(aki+1 − aki

) ≥ 0. By (19) and conditions
of {λk}, {σk},{γk}, {βk}, and {αk}, we have:

lim sup
i→∞

γki
σki

(1− σki
)‖Tki

wki
− Tki

zki
‖2 ≤ lim sup

i→∞
(aki
− aki+1 + αki

M
′
)

≤ lim sup
i→∞

(aki
− aki+1)

+ lim sup
i→∞

αki
M
′

(20)

= − lim inf
i→∞

(aki+1 − aki
)

≤ 0.

This implies that:
lim
i→∞
‖Tki

wki
− Tki

zki
‖ = 0. (21)

Similarly, we have limi→∞ ‖wki
− Tki

wki
‖ = 0. By definitions of θk and xk+1, we get:

lim
i→∞
‖wki

− xki
‖ = 0. (22)

So, we obtain:

‖xki
− Tki

xki
‖ ≤ ‖xki

− Tki
wki
‖+ ‖Tki

wki
− Tki

xki
‖ (23)

≤ 2‖wki
− xki

‖+ ‖wki
− Tki

wki
‖ → 0.

From definitions of xk+1, we have:

‖zki
− xki

‖ ≤ ‖wki
− xki

‖+ λki
‖wki

− Tki
wki
‖, (24)

‖yki
− Tki

wki
‖ = σki

‖Tki
wki
− Tki

zki
‖,

and:

‖yki
− xki

‖ ≤ ‖yki
− Tki

wki
‖+ ‖Tki

wki
− wki

‖+ ‖wki
− xki

‖. (25)

This implies:

lim
i→∞
‖zki
− xki

‖ = lim
i→∞
‖yki
− xki

‖ = 0. (26)

Moreover,

‖xki+1 − xki
‖ ≤ ‖xki+1 − Tki

xki
‖+ ‖Tki

xki
− xki

‖
≤ αki

‖g(wki
)− Tki

xki
‖+ βki

‖zki
− xki

‖ (27)

+ γki
‖yki
− xki

‖+ ‖Tki
xki
− xki

‖,

which implies limi→∞ ‖xki+1 − xki
‖ = 0. Now, we claim:

lim sup
i→∞

〈g(a∗)− a∗, xki+1 − a∗〉 ≤ 0.

Indeed, choose a subsequence {xkij
} of {xki

} such that:

lim sup
i→∞

〈g(a∗)− a∗, xki
− a∗〉 = lim

j→∞
〈g(a∗)− a∗, xkij

− a∗〉.
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Since {xkij
} is bounded, there exists a subsequence {xkijp

} of {xkij
} such that

xkijp
⇀ u ∈ H. Without loss of generality, we may assume that xkij

⇀ u ∈ H. Since

{Tk} satisfies condition (Z), we have u ∈ Γ. As limi→∞ ‖xki+1 − xki
‖ = 0 and a∗ = PΓg(a∗),

we obtain:

lim sup
i→∞

〈g(a∗)− a∗, xki+1 − a∗〉 = 〈g(a∗)− a∗, u− a∗〉 ≤ 0. (28)

By (17), (28), and limk→∞
θk
αk
‖xk − xk−1‖ = 0, we can apply Lemma 4 to obtain

limk→∞ ‖xk − a∗‖ = 0; that is, {xk} converges strongly to a∗ = PΓg(a∗). This completes
the proof.

Finally, we will apply the Algorithm 1 (AVFPM) for solving the nonsmooth convex
optimization problems (3) of the sum of two objective functions φ1 and φ2 by assuming
the following:

• g : H → H is a contraction with constant η ∈ (0, 1);
• φ1 : H → R is convex differentiable with Lipschitz continuous gradient constant

L > 0;
• φ2 : H → R∪ {∞} is a proper convex and lower semi-continuous function;
• Ω := Argmin(φ1 + φ2) 6= ∅.

By setting Tk = proxckφ2(I − ck∇φ1), which is the forward–backward operator of
φ1 and φ2 with respect to ck ∈ (0, 2/L) and ck → c, we have an accelerated viscosity
forward–backward method for solving the problems (3) as follows:

Next, we prove the strong convergence of Algorithm 2 (AVFBM) by using Theorem 5.

Algorithm 2: An accelerated viscosity forward–backward method (AVFBM).
Initialization: Take x0, x1 ∈ H arbitrarily and positive sequences
{λk}, {σk}, {γk}, {βk}, and {αk} satisfy the following conditions:

{αk} ⊂ (0, 1), lim
k→∞

αk = 0 and
∞

∑
k=1

αk = ∞,

{βk} ⊂ (0, 1), 0 < a5 ≤ γk < 1, αk + βk + γk = 1,

0 < a1 ≤ λk ≤a2 < 1, 0 < a3 ≤ σk ≤ a4 < 1.

for some positive real numbers a1, a2, a3, and a4.
Iterative steps: Calculate xk+1 as follows:
Step 1. Choose a bounded sequence of non-negative real numbers {µk}. For k ≥ 1,
defined θk by the same as Algorithm 1.

Step 2. Compute
wk = xk + θk(xk − xk−1),
zk = (1− λk)wk + λk proxckφ2(I − ck∇φ1)wk,
yk = (1− σk)proxckφ2(I − ck∇φ1)wk + σk proxckφ2(I − ck∇φ1)zk,
xk+1 = αkg(wk) + βk proxckφ2(I − ck∇φ1)zk

+γk proxckφ2(I − ck∇φ1)yk.

Update k := k + 1 and return to Step 1.

Theorem 6. Let {xk} be a sequence generated by Algorithm 2 (AVFBM). Then, {xk} converges
strongly to an element a∗ ∈ Ω, where a∗ = PΩg(a∗).
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Proof. Let T := proxcφ2(I − c∇φ1) and Tk := proxckφ2(I − ck∇φ1). Then, T and {Tk}
are nonexpansive operators for all k, and Fix(T) = ∩∞

k=1Fix(Tk) = Argmin(φ1 + φ2). By
Lemma 1, we have {Tk}, which satisfies condition (Z). Therefore, we obtain the result
directly by Theorem 5.

4. Application and Simulated Results
4.1. Image Restoration

In this example, we apply Algorithm 2 (AVFBM) to solving an image restoration
problem (2) and compare the deblurring efficiency of AVFBM, FBS [10], and FISTA [12].
Our programs are written in MATLAB and run on a laptop with an Intel core i5, 4.00 GB
RAM, and windows 8 (64-bit). All algorithms applied to the l1-regularization problem (2);
that is, φ1(x) = ‖Bx− b‖2

2 and φ2(x) = τ‖x‖1, where B is the blurring operator, b is the
observed image, and τ is the regularization parameter. The maximum iteration number for
all methods was fixed at 500.

In these experiments, we consider four gray-scale images (Cameraman, Lenna, Woman,
and Boy) with size of 256 × 256 as the original images and consider Gaussian blur of
filter size 9× 9 with a standard deviation σ = 4 with noise 10−4. We have measured the
performance of AVFBM, FBS, and FISTA by means of the Signal-to-Noise Ratio (SNR) [27]
and Peak Signal-to-Noise Ratio (PSNR) [28]. The SNR and PSNR at xk of the restored
images are defined as:

SNR(x, xk) = 10 log10

{
‖x− x̄‖2

‖xk − x‖2

}
,

PSNR(xk) = 10 log10

(
2552

MSE

)
,

where MSE = 1
2562 ‖xk − x‖2

2, x is the original image, and x̄ is the mean of the original
image. The regularization parameter was chosen to be τ = 10−4, and the initial image was
the blurred image. The Lipschitz constant L of the gradient∇ f is L = 2λmax(BT B) [12]. The
parameters of the algorithms are chosen as follows: λk =

0.5k
k+1 , σk =

0.99k
k+1 , αk =

1
50k , βk =

1
300k+1 , γk = 1− αk − βk, ck = k

L(k+1) , c = 1
L , τk = 1015

k2 and µk = tk−1
tk+1

, where tk is a

sequence defined by t1 = 1 and tk+1 =
1+
√

1+4t2
k

2 . The contraction mapping is defined by
g(a) = 0.95a for all a ∈ Rn. The comparison of the performance of AVFBM, FISTA, and FBS
by means of SNR and PSNR is shown in Figure 1. The plot of SNR and PSNR at xk of the
restored images is shown in Figure 2. We see from Figures 1 and 2 that AVFBM gives a
higher performance of SNR and PSNR than the other methods. The comparison results for
deblurring of the three methods of the four images are shown in Figure 3.
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(a) Signal-to-Noise Ratio (SNR)

Blurred Image FBS FISTA AVFBM

Cameraman 3.7432 6.6511 9.9796 10.9632

Lenna 3.8312 6.7045 9.901 10.7501

Woman 4.5189 8.0734 11.5319 12.3696

Boy 3.3431 6.1435 9.4715 10.1616
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(b) Peak Signal-to-Noise Ratio (PSNR)

Blurred Image FBS FISTA AVFBM

Cameraman 20.9709 26.7867 33.4438 35.411

Lenna 23.3723 29.1191 35.5119 37.2102

Woman 20.3108 27.4197 34.3367 36.0121

Boy 20.2437 25.8446 32.5005 33.8808
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Figure 1. Comparison of SNR and PSNR by FBS, FISTA, AVFBM.
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Figure 1.: Comparison of SNR and PSNR by three deblurring methods.
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Figure 2.: Plot of SNR and PSNR for the images.

all i = 1, 2, . . .M such that

tj =

M∑
i=1

wif(〈hi,xj〉+ bi), j = 1, 2, . . . , N, (40)
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Figure 2. Plot of SNR and PSNR for the images.

(a) Original Image (b) Blurred Image (c) FBS (d) FISTA (e) AVFBM

(f) Original Image (g) Blurred Image (h) FBS (i) FISTA (j) AVFBM

(k) Original Image (l) Blurred Image (m) FBS (n) FISTA (o) AVFBM

(p) Original Image (q) Blurred Image (r) FBS (s) FISTA (t) AVFBM

Figure 3.: Original images, blurred images and restoration for the images.

which means that zero error
∑N

i=1 ‖oi − ti‖ close to 0 while ELM is to find only
parameter wi with random hi and bi. As above N equations, the equation (40) can
be rewritten as

Hw = T (41)

where

H =


f(〈h1,x1〉+ b1) · · · f(〈hM ,x1〉+ bM )

...
. . .

...

f(〈h1,xN 〉+ b1) · · · f(〈hM ,xN 〉+ bM )


N×M

,

w =
[
wT

1 , . . . ,w
T
M

]T
m×M and T =

[
tT1 , . . . , t

T
N

]T
m×N . From the equation (41), ELM

learning algorithm estimate the weight w by w = H†T where H† = (HTH)−1HT is

12

Figure 3. Original images, blurred images, and Deblurring images by FBS, FISTA, AVFBM.
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4.2. Data Classification

In this section, a learning algorithm named extreme learning machine (ELM) [29] will
be investigated. ELM is a learning algorithm for single-hidden layer feedforward neural
networks (SLFNs). Let D = {(xi, ti) : xi ∈ Rn, ti ∈ Rm, i = 1, 2, . . . , N} be a training dataset
with N distinct training data xi and label ti. For a given M nodes in the hidden layer, the
SLFNs output for the jth pattern, oj ∈ Rm, is given by:

oj =
M

∑
i=1

wi f (〈hi, xj〉+ bi), j = 1, 2, . . . , N, (29)

where f is the activation function, hi ∈ Rn and bi ∈ R for i = 1, 2, . . . , M are the weight
vector and bias connecting the input layer to the ith hidden node, respectively, and wi ∈ Rm

for i = 1, 2, . . . , M is the weight vector connecting the ith hidden layer to the output layer.
The target of SLFNs is to approximate the parameters wi, hi, bi for all i = 1, 2, . . . , M such
that:

tj =
M

∑
i=1

wi f (〈hi, xj〉+ bi), j = 1, 2, . . . , N, (30)

which means that zero error ∑N
i=1‖oi − ti‖ is close to 0 while ELM is used to find only

parameter wi with random hi and bi. As the above N equations, Equation (30) can be
rewritten as:

Hw = T (31)

where:

H =


f (〈h1, x1〉+ b1) · · · f (〈hM, x1〉+ bM)

...
. . .

...

f (〈h1, xN〉+ b1) · · · f (〈hM, xN〉+ bM)


N×M

,

w =
[
wT

1 , . . . , wT
M
]T

m×M and T =
[
tT
1 , . . . , tT

N
]T

m×N . From Equation (31), the ELM learning
algorithm estimates the weight w by w = H†T where H† = (HTH)−1HT is the pseudo-
inverse matrix of H. Note that the linear system (31) can be represented by a least squared
method. As shown in [29], ELM has an extremely fast training speed and good generaliza-
tion performance. Nevertheless, its solutions also have some drawbacks [30]. To overcome
these drawbacks, regularized extreme learning machine (RegELM) [30] replacing the least
square method by the regularization method, i.e., ridge regression, for the training model
was proposed, and the mathematical model of the RegELM algorithm can be described as:

min
w∈RM×m

1
2
‖Hw− T‖2

2 +
λ

2
‖w‖2

2, (32)

where λ > 0 is called the regularization parameter. The RegELM’s output weight can be
calculated by w = (λI + HTH)†HTT, where I is the identity matrix. Although RegELM
can be expected to provide better generalization ability than ELM and its running time
is extremely fast similarly to ELM, we can define a greater generalization of RegELM as
in [31] by replacing Equation (32) in a generalized way as follows:

min
w∈RM×m

1
2
‖Hw− T‖2

2 + λ[(1− α)
1
2
‖w‖2

2 + α‖w‖1], (33)

where 0 ≤ α ≤ 1. Equation (33), called elastic net, trades off between the ride regression
(α = 0) and the LASSO (α = 1). In this paper, we present a new algorithm for RegELM and
employ our results to data classification problems with benchmark datasets. For this case,
we set α = 1, and Problem (33) becomes a LASSO problem. From our result (Theorem 6) in
Section 3, we can apply AVFBM (Algorithm 2) to solve the LASSO problem and define a
learning algorithm for RegELM as follows:
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RegELM-AVFBM: Given a training set D = {(xi, ti) : xi ∈ Rn, ti ∈ Rm, i = 1, 2, . . . , N},
activation function f ,

Step 1: Select regularization parameter λ and hidden node number M.
Step 2: Randomly hi and bi, i = 1, . . . , M.
Step 3: Calculate the hidden layer output matrix H.
Step 4: Obtain the output weight w by using AVFBM (Algorithm 2).

Several benchmark problems were chosen for experiments. All datasets were down-
loaded from https://archive.ics.uci.edu/ (accessed on 6 April 2020). The information of
each dataset viz name of datasets, the number of attributes (number of input nodes), the
number of classes (number of output nodes), and the number of (sample) data are sum-
marized in Table 1. Each dataset was normalized to zero mean and unit variance; 70% of
the data were sampled for training, and the remaining 30% were used for testing. For each
method, we tested a different number of hidden nodes M in order to see which architecture
provided the best results. The number of nodes in the hidden layer varied from 1 to 200
for the abalone dataset and from 1 to 100 for the other five datasets. For each method,
we set the sigmoid function as the activation function f and the regularization parameter
λ = 1× 10−5 for regularized methods (RegELM and RegELM-AVFBM). However, for
approximation methods (AVFBM, FISTA), we use relative error criteria, ‖xk−xk−1‖

‖xk‖
< ε,

for the stopping algorithm and set all control sequences (λk, σk, αk, βk, γk, ck, τk, µk) as in
Section 4.1. For evaluating the performance of each method, an accuracy is defined as the
total accuracy rate of classifying each case correctly. Accuracy is a value that represents the
power of a model to correctly predict, and it is described as follows.

Accuracy = (TP + TN)/(TP + FP + TN + FN).

In experimental results, the accuracy of training and testing in percentage and the suit-
able number of hidden nodes of our method compared with direct methods viz standard
ELM [29] and RegELM [30] are described in Table 2. RegELM-AVFBM has a good behavior
in terms of accuracy of prediction and fit for testing datasets compared with the two direct
methods. However, it is hard to compare the computational time, since approximation
methods take time to iterate for convergence to the solution. Thus, to evaluate in the same
way, we use two approximation methods (FISTA and AVFBM) for training RegELM and
train the model with five different stopping errors ε under a maximum of 100,000 itera-
tions. Table 3 shows the performance viz accuracy of training and testing (in percentage),
computational time (in second), number of computed iterations, and number of suitable
nodes in the hidden layer.

Table 1. Information of benchmark datasets.

Datasets # Attributes # Classes
# Observations

# Train (≈70%) # Test (≈30%)

Zoo 16 7 70 31

Iris 4 3 105 45

Wine 13 3 128 50

Parkinsons 23 2 135 60

Heart Disease UCI 14 2 213 90

Abalone 8 3 2924 1253

Note that the cardinal number of set A is denoted by #A. For example, # Attributes is the number of attributes of
the data.

https://archive.ics.uci.edu/
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Table 2. Comparison of the accuracy of training and testing as well as the number of hidden nodes
for ELM, RegELM, and RegELM-AVFBM.

Datasets
ELM RegELM RegELM-AVFBM

Training (%) Testing (%) # Nodes Training (%) Testing (%) # Nodes Training (%) Testing (%) # Nodes

Zoo 97.1429 93.5484 13 97.1429 93.5484 13 100 96.7742 93
Iris 99.0476 100 60 98.0952 100 42 98.0952 100 54
Wine 98.4375 100 36 98.4375 100 36 100 100 40
Parkinsons 94.8148 75 31 94.8148 75 31 96.2963 81.6667 78
Heart Disease UCI 86.385 84.4444 25 86.385 84.4444 25 88.7324 85.5556 33
Abalone 69.0492 67.4381 89 69.0492 67.4381 89 68.4337 67.518 111

Table 3. Comparison of the accuracy of training and testing, computation time, number of iterations,
and number of hidden nodes for RegELM-FISTA and RegELM-AVFBM. The sign ∞ in the column
# Iters means that the model was computed over the maximum iterations (100,000 iterations for
this case).

Datasets ε
RegELM-FISTA RegELM-AVFBM

Training (%) Testing (%) Time(s) # Iters # Nodes Training (%) Testing (%) Time(s) # Iters # Nodes

Zoo

0.1 90 90.3226 0.0005994 11 33 98.5714 93.5484 0.0008407 9 82
0.01 98.5714 93.5484 0.0021261 40 72 100 96.7742 0.0079208 81 93

0.001 100 93.54839 0.0085405 455 42 98.57143 93.54839 0.005203 157 13
0.0001 97.142857 93.548387 0.0152656 1330 13 97.14286 93.54839 0.0142225 384 13

0.00001 97.142857 93.548387 0.0353528 2609 13 97.14286 93.54839 0.0193836 694 13
0.000001 97.142857 93.548387 0.0561337 4193 13 97.142857 93.548387 0.0317928 1354 13

Iris

0.1 79.0476 91.1111 0.0006506 11 39 80 91.1111 0.0003463 7 20
0.01 80 91.1111 0.0008544 27 9 96.19048 100 0.0033075 110 56

0.001 92.38095 97.77778 0.0141314 658 22 98.09524 100 0.0217391 804 54
0.0001 96.190476 100 0.051715 4232 38 98.095238 100 0.1359273 4891 53

0.00001 98.0952381 100 0.6242778 41,584 56 98.0952381 100 0.9981745 47,695 42
0.000001 - - - ∞ - - - - ∞ -

Wine

0.1 97.6563 96 0.0005292 11 31 99.2188 98 0.0008743 8 65
0.01 99.2188 98 0.0015979 30 64 100 100 0.0047111 98 40

0.001 99.21875 100 0.0106758 364 45 98.4375 100 0.006298 271 36
0.0001 98.4375 100 0.0536025 4374 36 98.4375 100 0.0234622 1146 36

0.00001 98.4375 100 0.2150904 18,406 36 98.4375 100 0.0710794 3135 36
0.000001 98.4375 100 0.4733094 39,108 36 98.4375 100 0.1426151 7342 36

Parkinsons

0.1 80.7407 75 0.0005362 11 5 80.7407 73.3333 0.0007843 4 5
0.01 80.7407 75 0.000316 11 5 96.2963 81.66667 0.0034927 111 78

0.001 96.2963 78.33333 0.0143303 649 83 95.55556 76.66667 0.0092722 252 31
0.0001 98.518519 85 0.1072512 4702 95 100 76.666667 0.0401135 1533 60

0.00001 99.2592593 78.3333333 0.3693551 31,488 60 95.555556 75 0.0395779 2266 31
0.000001 95.5555556 75 0.3067227 32,185 31 94.814815 75 0.0887627 5421 31

Heart Disease UCI

0.1 82.6291 84.4444 0.000561 11 52 86.8545 85.5556 0.0006593 8 72
0.01 84.9765 84.4444 0.0008177 31 57 85.9155 84.4444 0.0027626 73 25

0.001 87.79343 86.66667 0.0115745 600 61 88.73239 85.55556 0.0051466 240 33
0.0001 90.140845 85.555556 0.1300254 5231 58 86.38498 84.44444 0.0131317 644 25

0.00001 86.384977 84.444444 0.0629385 6507 25 86.384977 84.444444 0.042063 1707 25
0.000001 86.3849765 84.4444444 0.1245222 12,505 25 86.384977 84.444444 0.054982 3366 25

Abalone

0.1 57.2845 56.3448 0.0008332 11 9 57.0109 56.664 0.0007203 7 16
0.01 59.13133 57.86113 0.0116477 47 147 66.72367 66.0016 0.0199067 111 96

0.001 64.74008 64.08619 0.07772 445 111 68.63885 67.11891 0.2978755 817 175
0.0001 66.792066 66.400638 0.8201147 5560 96 68.433653 67.517957 0.9515634 4480 111

0.00001 68.5362517 67.1987231 11.9269803 51,900 149 68.7414501 67.6775738 3.4826104 21,877 89
0.000001 - - - ∞ - 68.9466484 67.6775738 13.0566531 81,392 89

5. Conclusions

In this work, by using the inertial technique together with the viscosity approximation
method, we propose a new accelerated algorithm for finding a common fixed point of a
countable family of nonexpansive operates in a real Hilbert space. The strong convergence
of the proposed method is established under some suitable conditions. As a special case,
we obtain a new accelerated algorithm, called the accelerated viscosity forward–backward
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method (AVFBM), for solving nonsmooth convex optimization problems. We also apply
our algorithm, AVFBM, to solving image restoration and classification problems. By
our experiments, for image restoration problem, they show that our algorithm, AVFBM,
has a better performance for SNR and PSNR than that of FBS and FISTA, which are
the most popular methods for solving such problems. Moreover, for the classification
problems of six datasets—Zoo, Iris, Wine, Parkinsons, Heart Disease UCI, and Abalone
(https://archive.ics.uci.edu/, accessed on 6 April 2020)—we use our algorithm, AVFBM,
as a learning algorithm for finding the optimal output weight w in the mathematical
model (32) of the classification problems. We compare the efficiency of our method with
ELM, RegELM, and RegELM-FISTA by using the measurement of accuracy of training
and testing. We found that our algorithm outperforms the other methods, as seen from
Tables 2 and 3.
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