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Abstract: In order to study retailers’ ordering behavior deviating from the standard theoretical
optimal decision, which is caused by retailers’ information asymmetry, cognitive ability, insufficient
computing ability, and other factors, we construct a bounded-rationality choice model with quan-
tal response equilibrium. First, the existence and uniqueness of quantal response equilibrium of
transshipment game have been proved with the transshipment price satisfying certain conditions.
Then, the numerical example demonstrates that with the increase of bounded-rationality parameters,
retailers’ quantal response equilibrium will converge to Nash equilibrium due to the learning effect,
and their profits will converge to the profits predicted by standard theory. Finally, the results show
that retailers are more averse to the explicit loss of shortage than to the implicit loss of inventory
surplus caused by the increase of order quantity. Hence, retailers tend to overorder to avoid loss
of shortage.

Keywords: quantal response equilibrium; bounded rationality; transshipment; ordering
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1. Introduction

The loss incurred by the mismatch between existing supply and market demand
is huge, which is fundamentally caused by the uncertainty of market demand. Left-
over will lead to the increase of holding cost and disposal cost, and stockout will lead
to sales loss. Cisco, the world’s largest network-equipment maker, created an inventory
surplus of $2.69 billion by misreading the market demand in 2001, which shocked in-
vestors deeply [1]. In contrast, the stockout has caused huge losses to the retail industry.
For example, the American supermarket retail industry loses $7–10 billion a year due to
shortages [2]. Additionally, Roland Berger also surveyed retail supermarkets in Beijing,
Shanghai, and Shenzhen, and found that the out-of-stock rate of China’s supermarket
industry is conservatively estimated at 10%, resulting in direct losses of $12.3 billion a
year. In addition to direct economic losses, the mismatch between supply and demand
may have a significant negative impact on a company’s performance in the capital market.
Hendricks and Singhal [3,4] found that announcements about supply–demand mismatches
would have a negative impact on a company’s stock price. They observed that 73% of
the companies in the sample experienced a negative stock market reaction after the excess
inventory announcement, and that for companies with higher growth expectations and
higher debt-to-equity ratios, the reaction to the excess inventory announcement was likely
to be even more negative.

To mitigate the impact of mismatch between supply and demand, some managers
propose transshipment as a solution to this problem. Transshipment, whose underlying
principle is risk pooling, refers to the movement of products between retailers at the
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same level. Previous studies have demonstrated that transshipment can reduce inventory
and improve service levels. For example, ASML, a semiconductor component supplier
based in Veldhoven, the Netherlands, supplies components to customers in more than
50 regions including North America, Asia, and Europe. In Asia, ASML set up a main
warehouse in Shanghai and other places, and sub-warehouses in Singapore and other
places, so as to realize inventory sharing in Asia, which reduced the annual inventory
cost of distributor by 50% [5]. In fact, car dealers in the United States satisfy up to 18%
of their new vehicle customer demand by locating vehicles at another dealer [6]. Early
transshipment was mostly used in heavy manufacturing, such as the supply of parts for
large construction equipment, aircraft, and power generation equipment [7,8]. However,
with the development of information technology and logistics industry, the application
scope of transshipment is further expanded. In fact, this strategy has been widely promoted
in clothing (Benetton, Mango), automobile (Toyota, Volvo), publishing (Xinhua Group),
and medical insurance.

Despite the potential benefits of transshipment, in practice retailers will deviate from
the optimal order quantity predicted by standard theory. This is mainly because there is
a key assumption in traditional transshipment studies that decision-makers are perfectly
rational. However, the actual order quantity deviates from the theoretical optimal quantity
due to the fact that the decision-maker’s information acquisition ability, cognitive ability,
and computing ability are limited. Zhao et al. [9] conducted a survey among 54 inventory
managers and found that none of them purely adopted standard theories when making
decisions, while 45 managers admitted that standard theories and behavioral factors
should be considered when making decisions. Additionally, in 2016, the power supply
bureaus subordinate to a provincial power company required 1.59 million electricity meters.
However, in order to ensure a 3-day response time, each power supply bureau would
overorder the meters, making the actual order quantity close to 1.84 million. Although the
order quantity of each power supply bureau is far more than the demand, the imbalance
rate of supply and demand of these power supply bureau still reaches 3.421%. This resulted
in 260,000 pieces of surplus stock and an inventory cost of $2 million. A survey of the
company showed that power supply bureaus overordered when placing orders and did not
consider transshipment, resulting in large inventory costs. Hence, the behavioral factors
must be considered when studying retailer’s order decision, so as to make corresponding
countermeasures in advance.

In order to study the behavior of retailers deviating from the theoretically optimal
order quantity, based on the assumption that retailers are bounded rational, we propose
the following research questions:

(1) what are retailers’ ordering behavior if they are boundedly rational.
(2) when the retailer is bounded rational, whether there is still order equilibrium.

To address the questions mentioned above, we consider a two-echelon supply chain
with an upstream supplier and two downstream retailers. The members of the supply
chain are independent of each other. The methodology we used is classical game theory
and behavioral game theory. We assume that retailers are boundedly rational when making
ordering decisions, that is, they cannot always select the theoretically optimal order quantity.
In order to capture this bounded rationality of retailers, we incorporated quantal response
equilibrium (QRE) into the research framework.

This paper makes several contributions to both transshipment and behavioral oper-
ations. We incorporate QRE into an analytical modeling framework. Then, the existence
of QRE and conditions for its uniqueness are proved. We also study the relationship be-
tween QRE and Nash equilibrium and design an algorithm to find the QRE between two
independent retailers.

The remainder of this paper has been organized as follows: The next section provides
a brief literature review. The order decision model of perfectly rational retailer is provided
in Section 3. In contrast, the order decision model of boundedly rational retailer has
been developed in Section 4. Next, a numerical study has been formulated to investigate
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the relationship between QRE and bounded rationality of the two in Section 5. Finally,
the conclusion is given in Section 6.

2. Literature Review

As a seminal work on transshipment, Rudi et al. [10] investigated the inventory
transshipment between two independent retailers in two geographically different regions.
Subsequent studies are extended based on their work, e.g., from passive transshipment
to preventive transshipment [11], from single stage to multiple stages [12], capacity con-
straints [13] and extension of supply chain [14], etc. For a comprehensive review, readers
can refer to the review conducted by Paterson et al. [15]. Recently, the research topic on
inventory transshipment has shifted to behavioral decision making, which mainly stud-
ies retailers’ ordering bias through behavioral experiments. This part of the literature
mainly focuses on the well-known behavioral deviation called pull-to-center bias, that is,
for high-margin products, the retailer’s order quantity tends to be less than the theoreti-
cally optimal order quantity, but more than the mean demand; for low-margin products,
the order quantity is larger than the optimal order quantity, but less than the mean demand.
Such pull-to-center bias was first observed in the newsvendor model by Schweitzer and
Cachon [16] in behavioral experiments. The potential benefits of transshipment are not
limited to manufacturing companies. In recent years, transshipment has been widely
used in retail. LC Waikiki, a large fast fashion retailer in Turkey, transships thousands of
its products among its more than 475 retail branches [17]. This strategy has resulted in
significant inventory cost savings and improved service levels. In fact, transshipment can
reduce inventory cost by 15–20% as well as lost sales by 75% [18]. Hence, it is necessary to
investigate this behavioral bias in order not to affect the benefits of transshipment.

Subsequent studies have primarily tried to figure out what factors lead to the pull-
to-center bias, including overconfidence [19], fairness concern [20], learning effect [21],
prospect theory [22], reference effect [23], etc. In the research of behavioral inventory
transshipment, some studies also found the existence of the pull-to-center effect, and also
sought for the corresponding behavioral factors to explain. Villa and Castañeda [24] are
the first to explain the pull-to-center bias from the aspects of anchoring, loss aversion
and reference effect. Li et al. [25] revealed the pull-to-center bias from the perspective of
overconfidence. Katok and Villa [26] also found the pull-to-center effect in their empirical
studies, but the bias under centralized system is different from that under a decentralized
system. However, they did not analyze its causes.

Additionally, some other studies only found that the pull-to-center bias in the case of
high margins. Li and Chen [27] observed that the order quantity is less than the optimal
order quantity regardless of the timing of setting transshipment price or the stock sharing
mechanism and analyzed the influence of the two mechanisms on the order quantity.
Davis et al. [28] found that the order quantity decreased by 7.87% and 7.96%, respectively,
in centralized and decentralized systems (manufacturer and retailers set transshipment
price, respectively), and explained this from the perspective of fairness. Without considering
different margins, Zhao et al. [9] revealed the reason for the low order quantity from the
perspective that decision-makers often ignored transshipment as the demand side.

In this paper, we try to use the concept of bounded rationality which takes into account
the cognitive limitations of the decision maker, proposed by Simon [29], to explain retailers’
inventory decision deviating from the theoretically optimal order quantity. Based on the
knowledge of bounded rationality in individual decision making drawn from experiments
in economics and psychology, Camerer proposed several promising new research direc-
tions [30]. Recently, this concept has been frequently used in operations management
research. Su is the first research to combine bounded rationality with newsvendor prob-
lem [31]. Wang et al. proposed a novel bounded rationality behavioral decision model
to explore the differences in hotel selection among various types of tourists [32]. Li et al.
considered the influence of bounded rationality in the design of compensation contracts
for retail store managers [33]. In addition, in a network route choice problem, Sun et al.
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generalized the concept of bounded rationality through a link-based perception error model
to investigate the uncertain behavior of drivers [34]. For the study of bounded rationality in
operations management, we recommend readers to refer to Ren and Huang for a detailed
review [35].

The above literature found that the pull-to-center bias still exists when transshipment
is permitted, and the factors leading to this bias were identified through behavioral experi-
ments, such as anchoring demand mean, loss aversion, reference effect, overconfidence and
fairness, etc. However, in the behavioral experiment, it is difficult to distinguish whether
subjects consider the pooling of demand risk or the retailer’s bounded rationality when
deciding the order quantity. Hence, Zhang and Siemsen [36] believe that the pull-to-center
effect is a robust experimental phenomenon rather than a theoretical result. Motivated
by this, we studied the ordering behavior of retailers from the perspective of analytical
modeling. Referring to the method adopted by Su [31], the notion of quantal response equi-
librium is introduced in this paper to demonstrate the existence of behavioral ordering bias
from the perspective of bounded rationality. In this paper, under the framework of quantal
response equilibrium, we will study the ordering decision of two independent retailers.
The existence and uniqueness of quantal response equilibrium for ordering decision has
been proved. We will also design the corresponding algorithm, called distributed learning
automata, to find the quantal response equilibrium.

3. Ordering Decision Model of Perfectly Rational Retailer

Consider a system consisting of two independent retailers (1 and 2), each selling
the same perishable product to its own market. Two retailers face two random demands
that are independent of each other. f (·) and F(·) are the density function and cumulative
distribution function of retailer 1’s demand, respectively, while g(·) and G(·) are the density
function and cumulative distribution function of retailer 2. Before the selling season, retailer
i should decide its order quantity Qi, i = 1, 2. The wholesale price of unit product is w,
and replenishment is impossible during the selling season. Retailer i use its inventory to
satisfy the demand with the unit selling price ri. At the end of the selling season, the two
retailers can cooperate with other by transshipment if one has excess demand and the other
has surplus inventory, which can reduce inventory cost as well as improve service level.
Assume that retailer i can transship its excess inventory to retailer j at unit transshipment
price pt and retailer j can cover each unit of transportation cost ct when retailer i has
surplus inventory and retailer j (j = 3− i) is out of stock. After transshipment, retailer i
disposes of their surplus inventory at unit salvage value si if they still have excess inventory,
and retailer j has a penalty mj for each unit unsatisfied demand if they are still out of stock.
We show all the notations and their meanings in Table 1.

Table 1. List of notations.

Symbol Description

f (·) Density function of retailer 1’s demand
F(·) Cumulative distribution function of retailer 1’s demand
g(·) Density function of retailer 1’s demand
G(·) Cumulative distribution function of retailer 1’s demand
Qi Retailer i’s order quantity, i = 1, 2 (units)
Di Retailer i’s demand, i = 1, 2 (units)
w Unit wholesale price (CNY)
ri Unit selling price of retailer i (CNY)
pt Unit transshipment price (CNY)
ct Unit transportation cost (CNY)
si Unite salvage value or retailer i’s inventory (CNY)
mi Penalty for each unit unsatisfied demand of retailer i (CNY)
Tij The amount of transshipment from retailer i to j (units)
Ri The sale of retailer i (units)
Ui The excess inventory of retailer i (units)
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Table 1. Cont.

Symbol Description

Zi The shortage of retailer i (units)
πi The expected profit of retailer i (CNY)
αi The probability of the inventory state: Di < Qi, Dj > Qj, Di + Dj > Qi + Qj
βi The probability of the inventory state: Di > Qi, Dj < Qj, Di + Dj < Qi + Qj
λ The bounded rationality parameter

Assumption 1. According to Hanany et al. [37], assume that si ≤ pt ≤ ri + mi − ct, which
ensures that retailers have an incentive to implement transshipment. pt ≥ si indicates that when
retailer i has inventory surplus, they can obtain more profit by transferring out products than
recycling at salvage value. pt + ct ≤ ri + mi indicates that when retailer i is out of stock, it is
profitable to transfer in products.

Assumption 2. According to Rudi et al. [10], assume that si ≤ sj + ct, mi ≤ mj + ct. This condi-
tion prevents retailers from speculating through transshipment and thus ensure that transshipment
occurs only when one has excess inventory, and the other is out of stock.

We assume that retailer i has excess inventory and retailer j is out of stock after
the demand is realized. Define X+ = max(0, X). The excess inventory of retailer i is
(Qi − Di)

+, and the shortage of retailer j is (Dj −Qj)
+. The amount of transshipment from

retailer i to j is Tij = min
{
(Qi − Di)

+,
(

Dj −Qj
)+}. Then, the sale and excess inventory

of retailer i are Ri = min{Qi, Di}+ Tji, Ui = (Qi − Di − Tij)
+, respectively. The shortage

of retailer j is Zj = (Dj −Qj − Tij). Hence, we give the expected profit function of retailer i:

πi
(
Qi, Qj

)
= E

(
riRi + siUi −miZi − (pt + ct)Tji + ptTij − wQi

)
(1)

The right side of Equation (1) consists of six parts, namely sales revenue, salvage
value, loss of stockout, cost of transshipment, revenue of transshipment, and ordering
cost. According to the description of the above variables, we rewrite the Equation (1) to
Equation (2).

πi
(
Qi, Qj

)
= E

(
rimin{Qi, Di}+ si

(
Qi − Di − Tij

)+ −mi
(

Di −Qi − Tji
)+ − (pt + ct)Tji + ptTij − wQi

)
(2)

To study order decisions of two independent retailers, it is necessary to study the
conditions under which the interaction between two independent retailers exists Nash
equilibrium. Motivated by Rudi et al. [8], the existence and uniqueness conditions of Nash
equilibrium of order decisions for two independent retailers are obtained.

Proposition 1. If the transshipment price satisfies thatsi ≤ pt ≤ ri + mi − ct, there is a unique
Nash equilibrium order decision between two retailers. Retaileri’s optimal order quantity can be
solved by the following equation.

F(Qi)−
pt − si

ri + mi − si
αi +

ri + mi − (pt + ct)

ri + mi − si
βi =

ri + mi − w
ri + mi − si

(3)

where αi
(
Qi, Qj

)
=
∫ Qi

0

∫ ∞
Qi+Qj−x g(y) f (x)dydx, βi

(
Qi, Qj

)
=
∫ ∞

Qi

∫ Qi+Qj−x
0 g(y) f (x)dydx.

The above two integrals represent the probability of two different inventory states.
αi
(
Qi, Qj

)
is the probability of the inventory state of Di < Qi, Dj > Qj, and Di + Dj > Qi + Qj.

βi
(
Qi, Qj

)
is the probability of the inventory state of Di > Qi, Dj < Qj, and Di + Dj < Qi + Qj.

Proof. We denote fx(·) as the probability density function of a random variable x. Then, the fol-
lowing marginal probabilities can be well defined: b1

ij = Pr(Di < Qi) fDi+Dj |Di<Qi

(
Qi + Qj

)
,



Mathematics 2022, 10, 1079 6 of 16

b2
ij = Pr

(
Di + Dj > Qi + Qj

)
fDi |Di+Dj>Qi+Qj

(Qi), g1
ij = Pr(Di > Qi) fDj+Di |Di>Qi

(
Qi + Qj

)
,

g2
ij = Pr

(
Dj + Di < Qi + Qj

)
fDi |Di+Dj<Qi+Qj

(Qi), ai = fDi (Qi).
By the implicit function theorem and Equation (3), one can obtain the following

reaction function.

∂Qi
∂Qj

= −
b1

ij(pt − si) + g1
ij[ri + mi − (pt + ct)]

ai(ri + mi − si) +
(

b1
ij − b2

ij

)
(pt − si) +

(
g1

ij − g2
ij

)
[ri + mi − (pt + ct)]

(4)

Given the restrictions of parameters, it is easy to verify that −1 < ∂Qi/∂Qj < 0, which
implies that the reaction function is monotonic, and the absolute value of the slope is less
than 1. Then, the unique Nash equilibrium is obtained immediately. �

Proposition 1 demonstrates that there is a unique Nash equilibrium between the two
retailers when retailers are motivated to implement transshipment by a feasible transship-
ment price, which also indicates that there is a strategic substitution relationship between
order quantities of the two retailers. In addition, the second term on the left of Equation (3)
represents the process of transshipping out inventory surplus, and the third term repre-
sents the process of transshipping in stock from another retailer. Hence, the inventory
transshipment can reduce the order quantity in equilibrium to a certain extent. If transship-
ment is not allowed, Equation (3) degenerates into the classical newsvendor model where
F(Qi) = (ri + mi − w)/(ri + mi − si). It can be seen that the inventory model with trans-
shipment expands the participants on the basis of the classical newsvendor model, thus
producing the risk-pooling effect. Hence, transshipment can relieve inventory pressure,
that is, transshipment can reduce inventory cost and improve service level.

Nash equilibrium of order decisions is based on the assumption that retailers are
perfectly rational, that is, there is no mistake in retailers’ decisions and each retailer can
always reach the theoretical optimal order quantity. Such equilibrium has some limitations,
so in the next section, we will investigate bounded rationality of retailers by the method of
stochastic choice probability model.

4. Ordering Decision Model of Boundedly Rational Retailer

In order to characterize retailer’s bounded rationality, we introduced logit choice
probability model to construct retailer’s bounded rationality and obtained the QRE. In such
a logit choice model, the rationality of retailers is reflected by a bounded rationality param-
eter λ, which would be adjusted dynamically during the convergence of quantal response
equilibrium to Nash equilibrium (assume that the NE is always in the feasible strategy set).
Instead of a specific order quantity, in the framework of QRE, a retailer’s ordering decision
is a probability distribution—that is, all order quantity within the upper and lower limits
of demand are likely to be chosen. For any positive bounded rationality parameter λ > 0,
all feasible order quantities are chosen with positive probability, and the order quantity
with higher expected profit is more likely to be chosen. The value of parameter λ can
reflect the degree of retailer’s bounded rationality. When the parameter λ = 0, retailer i’s
ordering decision follows uniform distribution over the feasible domain, that is, retailer
i does not obtain any information about the optimal order quantity and stochastically
selects between each order quantity with equal probability, which means that retailer i is
completely irrational. When the parameter λ→ ∞ , retailer i becomes perfectly rational
and would definitely choose the theoretical optimal order quantity, which is consistent
with the order quantity predicted by Nash equilibrium.

We assume that the retailer makes multiple ordering decisions during the study.
Each order decision is the beginning of an order period. Before the next order decision,
the retailer can observe the realization of demand and their own revenue, which can be
used as a reference for the next order decision. In addition, we assume that retailers can
gain experience from previous decisions to improve their rationality, that is, retailers have
a learning effect. According to the definition of QRE in McKelvey and Palfrey [38], we can
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get the ordering strategy of two retailers at period t. In fact, with the repetition of order
game, retailers tend to be perfectly rational because of the learning effect.

We define πi
(
Qi, Qj

)
as the expected profit function of retailer i when they choose Qi

and the opponent chooses Qj. Given the conclusion of Proposition 1, it is straightforward
to use Equation (3) to write down the optimal solution (NE) of the transshipment problem.
We denote

(
Q∗i , Q∗j

)
as the Nash equilibrium. In reality, retailers’ order quantity space is

discrete, finite, and bounded. We define retailers’ order quantity sets Si and Sj, respectively,
and let Q∗i ∈ Si and Q∗j ∈ Sj, where Si and Sj are discrete, finite, and bounded. In the
actual ordering process, due to the influence of various factors, the rationality degree of
each retailer is different, but in this paper, for the convenience of analysis, we assume that
retailers have the same level of rationality. Hence, the logit choice probability of retailer i
choosing the order quantity Qi should satisfy the following equation. The probability mass
function of the behavioral solution QRE is as follows.

pi
(
Qi, Qj

)
=

exp
(
λEπi

(
Qi, Qj

))
∑Qi∈Si

exp
(
λEπi

(
Qi, Qj

)) (5)

From Equation (5), it is clear that if retailer i is completely irrational (i.e., λ = 0),
they will choose any order quantity with equal probability 1/|Si| (|Si| is the number of all
feasible order quantities). It indicates that the retailer cannot identify the expected profit
difference of different orders. In contrast, if retailer i is perfectly rational (i.e., λ = +∞),
they will choose the optimal order quantity Q∗i with certainty. This shows that retailer i is
very sensitive to the expected profit difference caused by different order quantity. To obtain
the optimal expected profit, retailer i will always choose Q∗i .

Since there is a game between two retailers, we first study the existence of QRE of
order decision between retailers.

Proposition 2. If si ≤ pt ≤ ri + mi − ct, that is, transshipment can be implemented between the
two retailers, the existence of QRE can be guaranteed.

Proof. If si ≤ pt ≤ ri + mi − ct, then πi
(
Qi, Qj

)
≥ πN

i
(
Qi, Qj

)
= πN

i (Qi). The super-
script N represents the newsvendor model where the retailer only needs to make an inde-
pendent ordering decision in the face of uncertain demand without considering transship-
ment [39,40], and πN

i (Qi) represents retailer i’s expected profit in the newsvendor model
with the order quantity Qi. It is obvious that both feasible order sets Si and Sj are compact
and convex. By Equation (6), let L

(
pi
(
Qi, Qj

))
=
(

pi
(
Qi, Qj

))
∑Qi∈Si

exp
[
λEπi

(
Qi, Qj

)]
− exp

[
λEπi

(
Qi, Qj

)]
, then L(0) = − exp

[
λEπi

(
Qi, Qj

)]
≤ − exp

[
λEπN

i (Qi)
]
≤ 0 and

L(1) = ∑Qi∈Si
exp

[
λEπi

(
Qi, Qj

)]
− exp

[
λEπi

(
Qi, Qj

)]
≥ ∑Qi∈Si

exp
[
λEπN

i (Qi)
]
≥ 0.

Hence, the existence of QRE can be guaranteed from Brouwer’s fixed point theorem. �

Proposition 2 shows that there is QRE in the ordering game between two retailers, that
is, there is equilibrium in the form of probability distribution of order quantity. If transship-
ment can occur, the two retailers maximize their expected profit functions on their feasible
order sets, that is, any order quantity is chosen with a certain probability.

This also shows that retailers’ bounded rationality constructed by QRE has universal
significance in order and inventory management of retail industry. Therefore, the retailers’
bounded rationality should be considered in practice to avoid the profit loss caused by the
decision deviation.

The multiplicity of QRE makes it difficult for retailers to cope. Hence, Proposition 3
gives the uniqueness of QRE of two retailers.

Proposition 3. If si ≤ pt ≤ ri + mi − ct, that is, transshipment can be implemented between the
two retailers, the QRE between the two retailers is unique.
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Proof. If si ≤ pt ≤ ri + mi − ct, then πi
(
Qi, Qj

)
≥ πN

i
(
Qi, Qj

)
= πN

i (Qi). It is obvious that
both feasible order sets Si and Sj are compact and convex. By Equation (5),

∑Qi∈Si
exp

[
λEπi

(
Qi, Qj

)]
= exp

[
λEπi

(
Qi, Qj

)]
+ ∑Q′i ∈Si\Qi

exp
[
λEπi

(
Q′i , Qj

)]
= exp

[
λEπi

(
Qi, Qj

)]
+ exp

[
λEπi

(
Qi, Qj

)] (6)

By Equation (5), we can rewrite the logit choice model into the following equation.

π
(
Qi, Qj

)(
pi
(
Qi, Qj

))
+ πi

(
Qi, Qj

)(
pi
(
Qi, Qj

))
=

1
λ

ln

(
1− pi

(
Qi, Qj

)
pi
(
Qi, Qj

) )
(7)

Since d(ln((1− pi(Qi, Qj))/pi(Qi, Qj)))/d(pi(Qi, Qj)) = 1/(pi(Qi, Qj)(pi(Qi, Qj)

−1)) < 0, 1
λ ln

((
1− pi

(
Qi, Qj

))
/pi
(
Qi, Qj

))
is strictly decreasing monotonically. Then,

d
(
πi
(
Qi, Qj

)(
pi
(
Qi, Qj

)))
/d
(

pi
(
Qi, Qj

))
= πi

(
Qi, Qj

)
and d

(
πi
(
Qi, Qj

)(
pi
(
Qi, Qj

)))
/

d(pi(Qi, Qj)) = πi
(
Qi, Qj

)
demonstrate that the order quantity would not increase in-

finitely in practice, so the profit will always be larger than or equal to zero within a
given range. Hence, πi

(
Qi, Qj

)(
pi
(
Qi, Qj

))
and πi

(
Qi, Qj

)(
pi
(
Qi, Qj

))
increase strictly

with pi
(
Qi, Qj

)
. Obviously, the left side of Equation (7) is monotonically increasing with

pi
(
Qi, Qj

)
and the right side is monotonically decreasing with pi

(
Qi, Qj

)
. As a result,

the graphs of the above two functions intersect only at one point, which guarantees the
uniqueness of the QRE between two retailers. �

Proposition 3 indicates that the ordering decisions of two bounded rational retailers is
unique, which greatly simplifies the ordering decision behavior of retailers and provides
convenience for their ordering and inventory management. Retailers only need to order
according to the unique equilibrium solution, without considering the ordering behavior
of the other party.

Since the uncertainty of demand, neither retailer can determine whether transshipment
will eventually occur. With the logit choice model, the probability and expected profit
function of retailer i choosing the order quantity Qi are as follows.

pi
(
Qi, Sj

)
=

exp
(
λEπi

(
Qi, Sj

))
∑Qi∈Si

exp
(
λEπi

(
Qi, Sj

)) (8)

Eπi
(
Qi, Sj

)
= ∑

Qj∈Sj

pj
(
Si, Qj

)
πi
(
Qi, Qj

)
(9)

Retailers are assumed to be boundedly rational in our behavioral transshipment model.
Since the reasons for boundedly rationality are complex, it is difficult to quantify it. We
amplify the effects of bounded rationality in logarithmic terms.

It can be seen from Figures 1 and 2 that the equilibrium of bounded rationality deviates
from the Nash equilibrium. However, as the bounded rationality parameter increases,
the QRE moves from the initial equal probability choice to Nash equilibrium.
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5. Numerical Study

To get a more intuitive result, some of the values in our example are the same as
Rudi et al.’s [8]. We assume that the demand of the two retailers obeys normal distribution
D1 ∼ N(6, 1.78), D2 ∼ N(4, 1.78), and r1 = r2 = 40, w = 20, m1 = m2 = 15, pt = 25,
s1 = s2 = 5, ct = 2. Combined with the above parameters and theoretical analysis results,
and using Code:Blocks, Gambit 15, and the algorithm which is presented in Appendix A.
the relationship between QRE and bounded rationality of the two retailers is analyzed.
In this numerical study, we assume that retailers have the exponential learning effect,
because the exponential learning effect is more realistic, and it converges faster than the
linear learning effect.

The Nash-equilibrium order quantity of the two retailers is 6 and 4, respectively,
through simulation. When initializing parameters, the initial value of bounded rationality
is 0. The set of retailer 1’s order quantities is S1 = {0, 1, 2, . . . , 10}, and the corresponding
set of retailer 2 is S2 = {0, 1, 2, . . . , 8}. Retailer 1 and 2 have their own initial probabili-
ties, that is, retailer 1 chooses each order quantity with a probability 1/11, and retailer
2 chooses each order quantity with a probability 1/9. In addition, in order to represent
the bounded rationality parameter more clearly, we enlarged the bounded rationality
parameter 100 times.

Figure 3a,b show the probability of retailer 1 choosing different order quantities.
With the increase of bounded rationality parameter, the probability of each order quantity
being selected eventually converges to 0 or 1. As the bounded rationality parameter
increases, the probability of retailer 1 choosing the order quantity 4, 5, 6, 7, 8, 9, and 10
increase first and then decreases again. Hence, these order quantities are more likely to be
selected in the early period, but as retailer 1 gets more rational and familiar with the market,
these order quantities will be gradually abandoned by retailer 1. Additionally, we observe
that the probability of order quantity selection on the right side of the distance optimal
order quantity is greater than the probability of order quantity selection on the left side,
which indicates that retailers prefer to overorder when making decisions. The probability of
retailer 1 choosing order quantity 0, 1, 2, and 3 is decreasing all the time, and the decreasing
speed is gradually slowing down, and tends to 0 when λ is small. The probability that
retailer 1 chooses the order quantity 6 presents an increasing trend, and the increasing
range is gradually decreasing. When λ = 1.3, the probability of retailer 1 choosing order
quantity 6 is already close to 1. Hence, from the point of view of cost, in the investment to
improve the rationality of retailers, the investment in the early period will bring a large
increase in profits, but the benefit is not obvious in the later period.
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Figure 3. (a) Distribution of retailer 1’s order quantities. (b) Retailer 1’s probability and bounded rationality.

Figure 4 is similar to Figure 3, showing the relationship between the probability of
being selected for each order quantity of retailer 2 and bounded rationality parameter.
As the degree of bounded rationality λ increases, the probability of retailer 2 choosing
order quantity 3, 5, 6, 7, 8 goes up first and then down. The probability of choosing order
quantity 0, 1, 2 decreases all the time, and the decreasing speed is gradually slowing down.
The probability of choosing order quantity 4 presents a rising trend, and the rising speed
gradually slows down. When λ = 1.3, the probability of retailer 2 choosing order quantity
4 also approaches 1.
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Figure 5 shows the relationship between order probability and bounded rationality of
two retailers. With the increase of rationality, both retailers select each order quantity from
the initial equal probability to the final Nash equilibrium. In addition, it can be seen from
Figure 5 that when the rational parameter is small, the probability of two retailers choosing
greater than the optimal order quantity is greater than the probability of choosing less than
the optimal order quantity. The reason is that retailers are more averse to shortage than to
leftover. Inventory surplus is a kind of implicit loss, and shortage is a kind of explicit loss.
Hence, retailers are more inclined to choose larger order quantities to avoid explicit losses.
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In fact, Schweizer and Cachon [14] observed this in their behavioral experiment under
the framework of newsvendor model. Again, this behavioral preference persists in the
transshipment model between the two retailers. This phenomenon is particularly evident
in the ordering of raw materials. When there is a shortage of raw materials, the entire
production line, logistics, marketing, and other departments will feel the loss caused by
the shortage of raw materials, so the decision maker will increase the order quantity of
raw materials.
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Figure 6 shows the relationship between expected profit and bounded rationality
parameter. With the increase of bounded rationality parameter, the expected profit of both
retailers will increase. Retailers become more and more rational, and the order quantity
is closer to the optimal order quantity, so their expected profit is also close to the optimal
profit. When λ = 0.63, the expected profit of retailer 1 and 2 is close to the optimal value of
73.3 and 120, respectively. The profit variation trend of the two retailers conforms to the
principle of decreasing efficiency of the learning curve, and this learning effect is consistent
with the learning effect found by Bostian et al. [21] in the behavioral experiment of the
newsvendor model.
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6. Conclusions and Future Research

Ordering behavior deviates from the optimal decision of traditional model due to the
decision maker’s insufficient information acquisition, cognitive ability, and computing abil-
ity. A stochastic choice probability model based on QRE model and considering retailer’s
bounded rationality has been proposed. The QRE transshipment model is established
according to logit function, and the retailer’s decision behavior is predicted by this model.
The specific conclusions are as follows.

Firstly, the existence and uniqueness of QRE of retailers’ ordering decisions is proved,
and a distributed learning automata algorithm is designed to solve such QRE.

Second, with the increase of bounded rationality parameter, the QRE of both retailers’
ordering decisions will converge to Nash equilibrium, and their profits will converge to the
optimal value, which indicates that there is a learning effect in the ordering decisions of
the two retailers. Hence, decision makers can adjust the ordering decisions appropriately
according to their sale experience.

Thirdly, for retailers, they are more averse to explicit shortage losses than to implicit
inventory surplus cost caused by increased order quantities. The reason is that inventory
surplus is a kind of invisible loss, and shortage is a kind of explicit loss. Hence, retailers
are prone to choosing a larger order quantity so as to avoid explicit losses. As a response,
decision makers could modestly reduce the number of items reported by retailers.

Finally, we give some directions for future research. An interesting direction is the
heterogeneity of bounded rationality. In this paper, we assume that each retailer has
the same degree of rationality, that is, retailers’ bounded rationality parameters are the



Mathematics 2022, 10, 1079 14 of 16

same. However, in fact, retailers have different degrees of rationality due to individual
heterogeneity. Hence, the result of such problems might be more complicated than this
paper suggests. Another direction is to design some strategies to reduce or eliminate the
ordering bias caused by bounded rationality, such as training, information sharing, decision
support system, and so forth.
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Appendix A. Algorithm Design

It is very difficult to calculate QRE according to Equations (8) and (9). On the one
hand, we cannot calculate the final result, on the other hand, the model cannot describe the
current situation because there is no infinite order quantity in reality. To solve this tech-
nical problem, we assume that the demand follows a normal distribution with mean
µ and standard deviation σ, Di ∼ N

(
µ, σ2), and the probability density function is

f (Di) =
1

σ
√

2π
exp

(
− (Di−µ)2

2σ2

)
. To avoid negative demand, we restrict the value of Di. We

assume that the demand follows a truncated normal distribution Di ∼ N
(
µ, σ2) and has a

support [0, 2µ].
To solve the QRE, we start at

(
p0

1(Q1, S2), p0
2(S1, Q2)

)
. Q1 and Q2 vary within ±3σ.

Hence, the strategic game of retailer 1 and 2 in finite iterations is as follows, where t is
the period.

Start at λ = 0, as t increases, the algorithm ends when p converges to 0 or 1. Iterate
over the following steps.

When t = 0, retailer 1’s ordering strategy is p0
1(Q1) = 1/|S1|, where |Si| is the size of

retailer i’s feasible order set. Retailer 2’s ordering strategy is p0
2(S1, Q2) = 1/|S2|.

When t ≥ 0, with the ordering strategy at t = 0 and the following equations, the or-
dering strategy at period (t + 1) can be figured out, and so on. The iteration ends when(

pt+1 − p∗
)

converges to some sufficiently small value α (p∗ is the NE). With Equations (8)
and (9), we obtain the following recursive equations.

pt+1
i
(
Qi, Sj

)
=

exp
(
λEt+1(πi

(
Qi, Sj

)))
∑Qi∈Si

exp
(
λEt+1

(
πi
(
Qi, Sj

))) (A1)

Et+1(πi
(
Qi, Sj

))
= ∑

Qj∈Sj

pt
j
(
Si, Qj

)
πi
(
Qi, Qj

)
(A2)

In the specific numerical solution, the initial parameters are first configured, including
the initial ordering strategy of retailer 1 and 2, the current revenue matrix. Then, the order-
ing strategy of the next period is calculated by Equations (A1) and (A2). The QRE under
the current rationality is obtained through repeated iteration, and is saved in the storage
area. The corresponding algorithm steps of distributed learning automata are given below.

Step 1. Initialize parameters.
Step 2. Set the initial ordering strategies for retailer 1 and 2.
Step 3. t = t + 1, λt = λ0eη(t−1) or λt = (c + 1)λt−1.
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Step 4. According to Equations (A1) and (A2), Calculating the new mixed ordering
strategy profile pt+1 =

(
pt+1

i , pt+1
j

)
.

Step 5. If ‖pt+1 − p∗‖ ≤ α.
Step 6. Break.
Step 7. Else.
Step 8. Repeat Step 3~8.
Step 9. End.
In step 3, there are two kinds of learning effects, one is exponential learning ef-

fect, where η is the learning speed, and the other is linear learning effect, where c is the
learning speed.
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