
����������
�������

Citation: Baressi Šegota, S.; And̄elić,

N.; Šercer, M.; Meštrić, H. Dynamics

Modeling of Industrial Robotic

Manipulators: A Machine Learning

Approach Based on Synthetic Data.

Mathematics 2022, 10, 1174. https://

doi.org/10.3390/math10071174

Academic Editor: Florin Leon

Received: 14 March 2022

Accepted: 2 April 2022

Published: 4 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Dynamics Modeling of Industrial Robotic Manipulators:
A Machine Learning Approach Based on Synthetic Data

Sandi Baressi Šegota 1 , Nikola And̄elić 1,* , Mario Šercer 2 and Hrvoje Meštrić 3

1 Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia; sbaressisegota@riteh.hr
2 Development and Educational Centre for the Metal Industry—Metal Centre Čakovec,

Bana Josipa Jelačića 22 D, 40000 Čakovec, Croatia; mario.sercer@mev.hr
3 Ministry of Science and Education, Donje Svetice 38, 10000 Zagreb, Croatia; hrvoje.mestric@mzo.hr
* Correspondence: nandelic@riteh.hr; Tel.: +385-51-505-716

Abstract: Obtaining a dynamic model of the robotic manipulator is a complex task. With the growing
application of machine learning (ML) approaches in modern robotics, a question arises of using
ML for dynamic modeling. Still, due to the large amounts of data necessary for this approach,
data collection may be time and resource-intensive. For this reason, this paper aims to research the
possibility of synthetic dataset creation by using pre-existing dynamic models to test the possibilities
of both applications of such synthetic datasets, as well as modeling the dynamics of an industrial
manipulator using ML. Authors generate the dataset consisting of 20,000 data points and train seven
separate multilayer perceptron (MLP) artificial neural networks (ANN)—one for each joint of the
manipulator and one for the total torque—using randomized search (RS) for hyperparameter tuning.
Additional MLP is trained for the total torsion of the entire manipulator using the same approach.
Each model is evaluated using the coefficient of determination (R2) and mean absolute percentage
error (MAPE), with 10-fold cross-validation applied. With these settings, all individual joint torque
models achieved R2 scores higher than 0.9, with the models for first four joints achieving scores above
0.95. Furthermore, all models for all individual joints achieve MAPE lower than 2%. The model for
the total torque of all joints of the robotic manipulator achieves weaker regression scores, with the R2

score of 0.89 and MAPE slightly higher than 2%. The results show that the torsion models of each
individual joint, and of the entire manipulator, can be regressed using the described method, with
satisfactory accuracy.

Keywords: industrial robot dynamics; machine learning; synthetic dataset generation

MSC: 68T40

1. Introduction

Dynamic modeling of industrial robotic manipulators is one of the key steps in indus-
trial robotic manipulator design. In addition, it is key in various other applications such as
path planning and optimization [1]. Precise dynamics models are commonly needed for
any research concerning the realistic movement of industrial robotic manipulators. Still, the
process of determining the dynamics model of a robot manipulator can be complex, and
error-prone, exacerbated by the issue of dynamic models of individual robotic manipulators
rarely being readily available to researchers. Plancher et al. (2021) [2] discussed the applica-
tion of various optimizations for different hardware architectures, including CPU, GPU,
and FPGA, in order to accelerate the calculation of dynamic gradients. Some authors have
used artificial intelligence (AI) techniques to assist in determining the dynamic properties of
a robot. For example, Yovchev and Miteva (2021) [3] presented the application of a genetic
algorithm for determination of the dynamic parameter estimation, while Mitsioni et al.
(2021) [4] demonstrated the application of LSTM networks to determine the dynamics of a
single-action robot, namely, in the task of food cutting. There seems to be a lack of papers in
recent years focusing on dynamic model generation using the machine learning approach.

Mathematics 2022, 10, 1174. https://doi.org/10.3390/math10071174 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071174
https://doi.org/10.3390/math10071174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3015-1024
https://orcid.org/0000-0002-0314-243X
https://orcid.org/0000-0002-4101-4092
https://doi.org/10.3390/math10071174
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071174?type=check_update&version=2

Mathematics 2022, 10, 1174 2 of 17

Machine learning (ML) is a field within AI that allows for the creation of data-driven
models. The models achieved with ML tend to be very precise, but their main pitfall is
the need for large amounts of data to achieve not only precise models but models that
generalize well. For this reason, a number of researchers have lately focused on synthetic
dataset generation [5–7]. Synthetic dataset generation refers to the process of in silico
dataset generation, where computer models are used for the generation of data points. This
approach has a few benefits. Synthetic data generation can be used in instances where
there is a limited number of data points that can be collected, which is extremely common
when ML is applied in healthcare [8], where the patients exhibiting data belonging to
a certain class may be rare [9]. Another instance where synthetic data generation may
be utilized is for those cases where data collection may be extremely time-intensive [10];
this is a common application in engineering [11] and physics [12,13], as simulations in
those fields may take a long time, but can be significantly sped up using simulations in
high-performance computing environments. The final application of synthetic dataset
generation is when measurements may be hard or expensive to perform, and the virtual
generation of data points can serve to alleviate those concerns [14]. Robotics are mainly
affected by the last two points, as more complex simulations may be time-intensive and
require fairly expensive equipment, in the shape of the robotic manipulators themselves, as
well as sensors to be locked-up in the experiment for a long time [15].

In this paper, the authors aim to apply ML with a synthetic dataset on the problem
of dynamic modeling. The goal of the paper is to serve as a proof-of-concept in two areas:
the first is the utilization of the synthetically generated data in machine learning within
robotics; the second is the use of ML models for determination of the dynamic models
of robotic manipulators. The novelty presented by this paper is also two-fold, as there is
a lack of similar research in both the modeling of dynamic models using regressive ML
methods, and the creation and application of synthetic datasets for the given purpose.
These contributions may allow researchers to simplify the process of dynamic modeling, or
modeling in general, provided they have means to collect or synthetize the data. The paper
first discusses the usual process of dynamic modeling, followed by how those results have
been applied to generate the dataset, with ML methodology finally being discussed-with
the achieved results presented.

2. Materials and Methods

In this section, the methods used to generate the dataset are described along with
the ML methodology used by researchers, including the algorithm itself as well as the
evaluation process.

2.1. Dynamics Modeling

The dynamic model of the robot can be determined in various ways. In this paper,
two methods were applied—the Newton–Euler (NE) algorithm and Lagrange–Euler (LE)
algorithm. Two separate algorithms were used to cross-reference the obtained values and
assure that the obtained model is correct. The following subsections will first present the
kinematic model, which is necessary in both of the methods discussed, followed by the
description of both algorithms.

The calculations and modeling were performed using the industrial robotic manip-
ulator ABB IRB 120 manufactured by ABB Inc. (Zurich, Switzerland) for the basis of the
calculations, with the measurements used (distance between joints, centers of mass, ten-
sors of inertia) being determined using a manufacturer-provided CAD model [16]. The
visualization of the used manipulator is provided in Figure 1.

Mathematics 2022, 10, 1174 3 of 17

Figure 1. The modeled robotic manipulator ABB IRB 120 in isometric view [16].

2.1.1. Kinematic Model

The Dennavit–Hartenberg (DH) method was applied by setting an orthonormal coor-
dinate system in each of the robotic manipulator joints, where axis z matches the axis of
the joint. With the coordinate systems positioned, the parameters θk, αk, dk, and ak can be
determined based on the distances between the centers of the coordinate systems and the
relations between the axis [17]. The values can then be placed into a transformation matrix.
The transformation matrix between joints k− 1 and k is given as [18]

Tk
k−1 =

cos(θk) −cos(αk) · sin(θk) sin(αk) · sin(θk) αk · cos(θk)
sin(θk) cos(αk) · cos(θk) −sin(αk) · cos(θk) αk · sin(θk)

0 sin(αk) cos(αk) dk
0 0 0 q

 (1)

The transformation matrix of the entire manipulator is calculated using a product of
all the individual joint transformation matrices [19]:

Ttool
base = Πk

k−1Tk
k−1, (2)

resulting in a matrix given as [20]:

Ttool
base(q) =

[
R(q) p(q)
vT

1 σ

]
, (3)

where the tool orientation matrix R(w) = [r1r2r3] consists of the perpendicular vector r1,
movement vector r2, and approach vector r3 and p(q) represents the tool end position.
Values vT

1 and σ represent the perspective vector and the scaling coefficient, commonly set
to [000] and 1, respectively [21]. The calculated transformation matrices can then be used
within the NE and LE algorithms.

Mathematics 2022, 10, 1174 4 of 17

2.1.2. Lagrange–Euler

The basis of the LE algorithm is the definition of the differential equations that serve
to calculate the torque of joint i as τi using [22]

τi =
n

∑
j=1

[Dij(q)qj] +
n

∑
k=1

n

∑
j=1

[Ci
kj(q)qkqj] + hi(q) + bi(q), (4)

where ∑n
j=1[Dij(q)qj] defines the moments and the inertial forces, Coriolis forces are pre-

sented by the term ∑n
k=1 ∑n

j=1[C
i
kj(q)qkqj], gravity’s effect is given by hi(q), and bi(q) defines

the internal friction of the manipulator’s joint.
In the beginning of the LE algorithm, three values are defined. First is the iterator i

set to 1, followed with T0
0 , a 4× 4 identity matrix, and D(q), a 3× 3 zeroes matrix. The LE

algorithm then starts by calculating the tensor of inertia Di′(q) with [23]

Di′(q) =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

=

∫

Vk
(y2 + z2)ρdV −

∫
Vk

xyρdV −
∫

Vk
xzρdV

−
∫

Vk
xyρdV

∫
Vk
(y2 + z2)ρdV −

∫
Vk

yzρdV
−
∫

Vk
xzρdV −

∫
Vk

yzρdV
∫

Vk
(y2 + z2)ρdV

(5)

Following this, the vector z for the joint i− 1 is calculated as per [24]

zi−1(q) = Ri−1
0 (q) · i3, (6)

followed by the calculation of the homogeneous transformation between the base and the
current joint [25]:

Ti
0 = Ti−1

0 (q)Ti
i−1(q). (7)

To transpose the position of the center of mass in relation to the coordinate system of
the base, the following equation is used [26]:

ci(q) =

1 0 0 0
0 1 0 0
0 0 1 0

Ti
0(q)δci, (8)

with δci being the homogeneous coordinates of the robotic link i. The tensor of inertia in
relation to the base coordinate system can then be calculated:

Di(1) = Ri
0(q)Di′(q)[R

i
0(q)]

T . (9)

To correlate the infinitesimal movements of the manipulator joints and the infinitesimal
movements of the tool, the Jacobian matrix is defined [27]:

Ji(q) =
[

Ak(q)
Bk(q)

]
=

[
∂ci(q)

∂qi
· · · ∂ci(q)

∂qi
0 · · · 0

θ1z0(q) · · · θ1zi−1(q) 0 · · · 0

]
(10)

The total torsion of inertia can be calculated with [28]:

D(q) =
n

∑
i=1

[Ai(q)]Tmi[Ai(q)] + [Bi(q)]T Di(q)[Bi(q)], (11)

with mi being the mass of the current joint. If the tensors of inertia have not been calculated
for all the individual joints, the procedure is repeated for the next joint. If the calculation

Mathematics 2022, 10, 1174 5 of 17

has been performed, i is reset to 1, and the calculations are performed for each of the joints
for the speed connectivity matrix [29]:

Ci
kj =

∂Dij(q)
∂qk

−
∂Dkj(q)

∂qi
, 1 ≤ i, j, k ≤ n, (12)

gravity influence vector, as per

hi(q) =
3

∑
k=1

n

∑
j=1

[gkmj A
j
ki(q)], 1 ≤ i ≤ n, (13)

and finally, the friction is approximated using Tustin’s friction model [30]:

bk(q̇k) = bv
k q̇k + sgn(q̇k)[bd

k + (bs
k − bd

k)exp(
−|q̇k|

ε
)]. (14)

Once the second iteration of calculations is complete, each of the joints has an equation
calculated, relating to the joints torque defined using [31]:

τi =
n

∑
j=i

[Dij(q)q̈j]
′

3

∑
k=1

n

∑
j=1

[Ci
kj(q)q̇k q̇j] + hi(q) + bi(q̇). (15)

2.1.3. Newton–Euler

NE differentiates from LE in the fact that it has a forward (in the direction from the
base of the manipulator to the tool) and backward (from the tool to the base of the robotic
manipulator) calculation. In the forward calculation, the speeds and accelerations (linear
and angular) are calculated for each joint. In the backward calculation, the forces and
momenta on each of the links are calculated. At the start of the NE algorithm, initial values
need to be set [22]:

• T0
0 = I,

• f n+1 = − f tool ,
• nn+1 = −ntool ,
• v0 = 0,

• dv0

dt = −g,
• ω0 = 0,

• dω0

dt = −0, and
• i = 0.

The initial calculation step is the same as in LE—determining the vector z,

zi−1(q) = Ri−1
0 (q) · i3, (16)

followed by the calculation of the angular speed ω [32]:

ωk = ωi−1 + ζi ·
dqi
dt

zi−1(q), (17)

with ζi being set to 1 for the revolutional joint and to 0 for the linear joint. The angular
speed is calculated with [33]

ω̇i = ω̇i−1 + ζi[
d2qi
dt2 zi−1(q) + ωi−1 × dqi

dt
zi−1(q)]. (18)

The complex homogeneous transformation matrix is again determined as

Ti
0 = Ti−1

0 Tk
i−1, (19)

Mathematics 2022, 10, 1174 6 of 17

which allows for calculation of the vector [34]

δsi =

1 0 0 0
0 1 0 0
0 0 1 0

(Ti
0 − Ti+1

0)i4. (20)

The final value that needs to be calculated is the linear acceleration [35]:

dvi

dt
=

dvi−1

dt
+

dωi

dt
× δsi + ωi × (ω× δsi) + (1− ζi)[

d2qi
dt2 zi−1 + 2ωi × q̇izi−1]. (21)

This process is repeated for each of the joints, until the final joint of the robotic
manipulator is reached. At that point, the backward calculation begins, from the final joint
to the base. The first value to be calculated is the vector ri [36]:

δri =

1 0 0 0
0 1 0 0
0 0 1 0

Ti
0(δci − i4). (22)

The force acting on the joint i is calculated using [37]:

f i = f i+1 + mi[
dvi

dt
+

dωi

dt
× δri + ωi × (ωi × δri)]. (23)

The momentum of the joint can consequently be calculated according to [38]

ni = ni+1 + (δsi + δri)× f i − δri × f i + Ri
0Di′(Ri

0)
T dωi

dt
+ ωi × (Ri

0Di′(Ri
0)

Tωi) (24)

with Di′ defined as per Equation (5). With the force and the momentum calculated, we can
determine the joint actuator momentum using the following equation [39]:

τi = ζi(ni)Tzi−1 + (1− ζi)(fi)
Tzi−1 + bi(q̇i). (25)

The value of the iterator i is then lowered, and the calculation is repeated for the next
joint. Once the base of the robot manipulator is reached, the NE algorithm is completed.

2.2. Dataset Generation

The dataset was generated by taking the equations obtained using the methods de-
scribed in the previous section. As can be seen by observing Equations (15) and (25), the
inputs necessary to calculate the joint torsion are the joint position qi, the angular speed
of the joint q̇i, and the angular acceleration of the joint q̈i. Only the angular speeds and
accelerations are considered since all the joints in the modeled robotic manipulator are
rotational.

To generate the dataset, the values [qi q̇i q̈i]∀i ∈ [1, 6] are uniformly randomly generated.
The value of the τi∀i ∈ [1, 6] are then calculated using the equations obtained from the NE
algorithm and verified using the LE model. The ranges of variables for random generation
are set as given in Table 1. The values for the individual joints have been selected according
to the ranges provided by the manufacturer [40]. Values for the minimal and maximal joint
speeds and accelerations have been set uniformly for all joints, with the values selected as
being realistic speeds and accelerations that could be encountered during the operation of
the industrial robotic manipulator, to the ranges of [−1, 1] rad/s and [−1, 1] rad/s2 [40].

The total torque of all the joints is calculated as the sum of all the joint torques
τ = ∑i = 1n|taui| [41]. Q defines all the joint position values, Q̇ defines all the angular
speeds of joints, Q̈ defines the angular accelerations of the joints, and T are the values of

Mathematics 2022, 10, 1174 7 of 17

the joint torques; then, the values are written in a Comma-Separated Values (CSV) file in
the following shape: [

Q Q̇ Q̈ T τ
]
, (26)

where the input vector consists of [
Q Q̇ Q̈

]
. (27)

A total of 20,000 data points were generated in this manner. While the inputs are
generated uniformly and randomly, meaning their distribution is known, the outputs may
have a different distribution. For this reason, the histograms of the outputs are plotted and
shown in Figure 2. The analysis of the histograms was performed through distribution
fitting [42,43]; this analysis shows that the datasets generated for individual joints follow a
generalized normal distribution [44] centered around 0, while the data generated for the
total joint torque follows a reciprocal inverse Gaussian distribution [45].

(a) τ1 (b) τ2 (c) τ3

(d) τ4 (e) τ5 (f) τ6

(g) τall
Figure 2. Distributions of the synthetically generated outputs: (a–f) the distributions of the generated
values for individual joints; (g) the total torque of the robotic manipulator.

Mathematics 2022, 10, 1174 8 of 17

Table 1. The upper and lower bounds for all the randomly determined values during the process of
dataset generation.

Value Symbol Lower Boundary Upper Boundary Unit
Angle of joint 1 q1 −2.88 2.88 rad
Angle of joint 2 q2 −1.92 1.92 rad
Angle of joint 3 q3 −1.22 1.92 rad
Angle of joint 4 q4 −2.79 2.79 rad
Angle of joint 5 q5 −2.09 2.09 rad
Angle of joint 6 q6 0 6.28 rad
Speeds * ωi, q̇i −1.00 1.00 rad/s
Accelerations * ω̇i, q̈i −1.00 1.00 rad/s2

* For all joints, 1 through 6.

In a realistic application, the dataset would have instead been collected using a sen-
sor array that measures the aforementioned values on a robotic manipulator. Still, in
this instance, a synthetic approach was selected to test the validity of synthetic dataset
generation.

2.3. Machine Learning Approach

The ML algorithm selected for use in the presented research is the multilayer percep-
tron (MLP). MLP is a feed-forward type of artificial neural network, which is trained using
the processes of forward propagation and backpropagation.

Forward propagation refers to the process used by the MLP model to obtain the output
values. The model consists of neurons placed in layers, using a fully connected architecture
in which every neuron in one layer is connected to all the neurons in the subsequent layer,
using weighted connections. The value of each individual neuron—barring the ”input“
neurons in the first layer, which are set to the values of the inputs being modeled—is
calculated as the activated weighted sum of the values of neurons in the previous layer as
per [46,47]

xj
k = F(

n

∑
i0

w(i,j−1)→(k,j)
i · xj−1

i), (28)

where xj
k is the value of a given neuron, xj−1

i is the value of the neuron in the previous layer,

w(i,j−1)→(i,j)
i is the weight of the connection between the i-th neuron in the layer j− 1 and

the k-th neuron in the layer j, with F being the activation function—a predefined function
that serves to transform the output of the neuron by either eliminating the unwanted values
(ReLU) or limiting the output (sigmoid) [48].

To obtain a well-performing model, the weights connecting the neurons need to be
adjusted. This is performed in the backpropagation process. When the input neurons are
set to the value of desired inputs Xi, forward propagation is performed using Equation (28)
to generate the values for each of the layers. This process is repeated until the last layer,
consisting of a single neuron, is reached. The value of that neuron ŷi is used as the output
of the MLP model. Comparing that value with the expected output yi will yield a difference
that is the error of the model for the given weight W, commonly referred to as the cost
function, defined as [49]

J(W) =
1
n

n

∑
i=0
|yi − ŷi|. (29)

This error is then used to adjust the weights of the model using gradient-based
adjustment. If we define α as the learning rate—the value that specifies how fast the model
learns—then the weight adjustment between the new weight values in layer j-W ′j and old
values Wj can be defined using [50,51]

Mathematics 2022, 10, 1174 9 of 17

W ′j = Wj − α · ∂J(W)

∂Wj
. (30)

The introduced α is one of the so-called hyperparameters of the model. These are
values that define the model architecture, and obtaining correct values of those hyperpa-
rameters is the key to obtaining a quality model. A number of hyperparameters can be
tuned, and the ones that were adjusted in the presented research are as follows [52]:

• Hidden layer size—the number of neurons and layers, given as a tuple in which each
value presents a number of neurons in a given layer;

• Activation function—activation function to be used within all of the model’s neurons;
• Initial learning rate—the learning rate of the model;
• Learning rate type—the manner in which the learning rate is adjusted through the

training process, inversely to the elapsed training iterations, kept constant, or adapted
to the model error;

• Solver—the algorithm used for weight adjustment during training. The possible
solvers are Adam, Stochastic Gradient Descent (SGD), and Limited-Memory Broyden–
Fletcher–Goldfarb–Shanno (LBFGS);

• L2 regularization parameter—the value that controls the influence of the individual
inputs, preventing a single input from having too much influence on the output, to
provide models that have better generalization.

As previously mentioned, the hyperparameter tuning process is key in achieving a
well-performing model. The issue is that there are no set rules as to which hyperparameters
will perform well for a given problem [53]. For this reason, a randomized search (RS) is
defined [52]. Possible values of the hyperparameters are either set as a list, if discrete, or
given as a range if continuous, as shown in Table 2. The random search procedure then
randomly constructs a vector of hyperparameter values and uses that value to construct
a model that is then trained using the forward- and backpropagation process previously
described. The trained model is evaluated, and the process is repeated until satisfactory
scores are achieved, or the process is manually interrupted—in which case the best-achieved
model is presented. The evaluation procedure used is given in the subsection below.

Table 2. Possible hyperparameter values. In cases where the hyperparameter is selected from the list
(Hidden Layer Sizes, Activation Function, Learning Rate Type, and Solver), the possible values are
given, while in the cases where the values are selected randomly from a range (Initial Learning Rate,
L2 Regularization), the lower and upper bound are given.

Hyperparameter Values

Hidden Layer Sizes

(288), (288, 288), (288, 288, 288),
(288, 288, 288, 288), (288, 288, 288, 288, 288),

(144), (144, 144), (144, 144, 144),
(144, 144, 144, 144), (144, 144, 144, 144, 144),

(72), (72, 72), (72, 72, 72),
(72, 72, 72, 72), (72, 72, 72, 72, 72),

(36), (36, 36), (36, 36, 36),
(36, 36, 36, 36), (36, 36, 36, 36, 36),

(18), (18, 18), (18, 18, 18),
(18, 18, 18, 18), (18, 18, 18, 18, 18)

Activation Function ReLU, Logistic, Identity
Initial Learning Rate 0.0001 0.5
Learning Rate Type Constant, Adaptive, Inverse Scaling
Solver Adam, LBFGS, SGD
L2 Regularization Parameter 0.0001 0.5

Mathematics 2022, 10, 1174 10 of 17

It should be noted that the tuned hyperparameters, for the number of neurons per
layer, only affect the so-called hidden layers between the input and output neuron layers,
which are defined by the problem being modeled. While the output layer always consists of
one neuron, the number of input neurons depends on the problem that is being regressed.
In the presented case, the inputs consist of 18 values, these being the position of each joint,
angular speed of each joint, and angular acceleration of each joint. As there are six joints
present in the robot manipulator that is being modeled, with three values per joint, this
means that each model will have eighteen inputs. Since each of the models can only have
one input, only one value can be regressed at one time. For this reason, seven different
models are developed—one for the torque of each joint and one for the total torque.

Model Evaluation

The trained models were evaluated using two metrics: coefficient of determination (R2)
and mean absolute percentage error (MAPE). R2 compares two sets of data, the predicted
values ŷ and y, in terms of variance. R2 is calculated using [54]

R2 = 1− ∑n
i=0(yi − ŷi)

2

∑n
i=0(yi − 1

n ∑n
i=0 yi)2

(31)

and its value will be 1.0 in the case when there is no unexplained variance between two sets
(the desired outcome) and 0.0 when there is no explained variance between the datasets [55].
While being an effective and popular measure, R2 can be hard to directly interpret. For this
reason, MAPE is introduced as a secondary performance measure. MAPE is expressed as
the percentage of the value range that the average achieved absolute error is and can be
calculated using [56,57]

MAPE =
100%

n

n

∑
i=0
|yi − ŷi

y
|. (32)

Splitting the dataset into training and testing set in order to determine the performance
is an industry-standard practice in ML. In this approach, the dataset is split into two
parts, where the first part (training) is utilized in the training process described in the
previous subsection, while the evaluation is performed on the testing dataset, which is data
previously unseen by the model. This approach has certain issues. The main issue is that
the random training–testing split can be particularly positive for the model being evaluated.
This can lead to deceptively high-performance metrics for a model that happened to
obtained the right data but would perform poorly in a generalized environment with
new data provided to it [58]. For this reason, cross-validation was performed. Instead of
splitting the dataset into training and testing sets, the dataset was split into 10 equal parts,
so-called folds [59]. Then, the training–testing procedure was repeated ten times, each time
with a different data fold being used as the testing dataset, with the remaining folds being
used for training. The scores are then expressed as the average score across all folds, with a
standard error. This allows determining the performance of the model on the entirety of
the collected dataset [60].

3. Results and Discussion

The best-achieved results per each of the targets are given below in Table 3. The
models trained using RS were set to test new hyperparameters until the R2 value of 0.99
was reached, or for 10,000 iterations. None of the models achieved the R2 score necessary
to preemptively stop the execution and were trained for the full number of RS iterations.
Observing Table 3, it can be seen that all the individual joint torque models achieved R2

scores higher than 0.90 and MAPE below 2%. These scores indicate a successful regression,
especially considering the relatively high number of data points and the relatively complex
problem being modeled. Observing the individual joints, it can be seen that the first four
joints (in the direction from the base to the tool of the robotic manipulator) achieved R2

Mathematics 2022, 10, 1174 11 of 17

scores higher than 0.95, indicating high-quality models. All of the models exhibit very low
standard deviations, indicating that they are stable across various data folds.

For the first joint model τ1, the average R2 achieved across the folds is 0.96, with a
standard deviation of 0.01. The model in question also achieved the lowest MAPE, with
1.18% average error across folds and a standard error of 0.03%. A relatively large neural
network was used, with three hidden layers of 288 neurons activated using the logistic
activation function. The learning rate was set on the lower side of the range but was
adapted during the execution. The L2 regularization parameter was set high in comparison
with the other models and the selected solver algorithm was Adam. Similar values were
used for τ2, τ3, and τ4. Exceptions are that τ2 utilized a significantly smaller network
architecture consisting of three layers of 144 neurons, achieving an R2 score of 0.98 with
a standard error of 0.04 and MAPE of 1.16% with a standard error of 0.02, which are the
best scores achieved by any of the models on any of the joints. Observing τ3, it differs
by using a neural network with an additional layer of 288 neurons, a ReLU activation
function, and a constant learning rate. τ3 managed to achieve somewhat poorer, but still
very good scores of 0.95 ± 0.04 for R2 and 1.59 ± 0.03% for MAPE. Finally, τ4 achieved an
R2 of 0.96 ± 0.03 and MAPE of 1.81 ± 0.08, differing from its predecessors by using the
inverse scaling adjustment for the learning rate.

Models for τ5 and τ6 show somewhat weaker results, with R2 scores of 0.92 ± 0.05 and
0.93 ± 0.03, and MAPE scores of 1.91 ± 0.02 and 1.93 ± 0.03, respectively. The τ5 model
uses an ANN architecture with four hidden layers of 144 neurons and a hyperbolic tangent
activation function. The learning rate of the model is near the upper side of the range at
0.4375 and is not adjusted during the execution. The regularization parameter value was
set at 0.00184—significantly lower than other models’ regularization values. τ6 utilizes the
smallest of all the neural networks, with two layers of 144 neurons. The same activation
function was used as in τ5. This model uses a relatively high learning value but allows for
its adaptation. Both τ5 and τ6 models used the LBFGS solver algorithm.

Finally, we can observe the model for the total joint torque τall . This model is similar to
the first four joints, with three hidden layers of 288 neurons, activated with logistic function.
The inverse scaling learning rate is applied to the initial learning rate of 0.00951. Adam
regularization function is used, as in the best-performing models, for the first four joints. A
relatively high regularization value is used for the τall model.

For the ease of result comparison, the achieved scores per each goal are also given in
Figures 3 and 4. Figure 3 shows the comparison between the achieved R2 scores. The drop
in performance between the first four joints, the fifth and sixth joint, and the total torque
has already been noted. This is also noticeable in Figure 4, where the same trend can be
noticed with the increase in the error value.

The values that determine a high-quality solution vary depending on the problem at
hand. For example, models trained on larger datasets have a tendency to exhibit lower
scores due to a larger amount of variance in the dataset [58]. In the presented research, due
to the high number of data points and a complex problem that is attempting to be regressed
(robot dynamics are described by very large mathematical models), we can consider the
values of R2 ≥ 0.9 and MAPE ≤ 2% as indicative of a high-quality model.

Observing all the values, it can be seen that the RS process led to the selection of larger
network architectures. This indicates that the modeled problem is relatively complex re-
garding its ease-of-modeling using the MLP algorithm. Still, all the models achieved results
that can be regarded as satisfactory. It is interesting to note that the poorest performing
model is the only one that has a non-normal distribution, supporting a potential link to
modeling complexity.

Mathematics 2022, 10, 1174 12 of 17

Table 3. The best results achieved for all the torque targets, with the model hyperparameters used in
the best-performing models.

Target R2 σR2 MAPE σMAPE Hyperparameters

τ1 0.95774 0.01285 1.17815 0.03527

Hidden Layer Sizes 288, 288, 288
Activation Logistic
Initial Learning Rate Adaptive
Learning Rate Type 0.00923
Solver Adam
Regularization 0.12142

τ2 0.98306 0.04280 1.15615 0.02649

Hidden Layer Sizes 144, 144, 144
Activation Logistic
Initial Learning Rate 0.01656
Learning Rate Type Adaptive
Solver Adam
Regularization 0.01189

τ3 0.95162 0.03831 1.59342 0.03402

Hidden Layer Sizes 288, 288, 288, 288
Activation ReLU
Initial Learning Rate 0.01432
Learning Rate Type Constant
Solver Adam
Regularization 0.09456

τ4 0.96318 0.03493 1.80749 0.07908

Hidden Layer Sizes 288, 288, 288
Activation Logistic
Initial Learning Rate 0.00997
Learning Rate Type Inverse Scaling
Solver Adam
Regularization 0.010375

τ5 0.91787 0.04833 1.90698 0.01564

Hidden Layer Sizes 144, 144, 144, 144
Activation Tanh
Initial Learning Rate 0.04375
Learning Rate Type Constant
Solver LBFGS
Regularization 0.00184

τ6 0.92712 0.02718 1.93007 0.02965

Hidden Layer Sizes 144, 144
Activation Tanh
Initial Learning Rate 0.01992
Learning Rate Type Adaptive
Solver LBFGS
Regularization 0.12729

τall 0.89479 0.03945 2.04094 0.02421

Hidden Layer Sizes 288, 288, 288
Activation Logistic
Initial Learning Rate 0.00951
Learning Rate Type Inverse Scaling
Solver Adam
Regularization 0.10276

Mathematics 2022, 10, 1174 13 of 17

Figure 3. Best results achieved per goal, evaluated with R2 (higher is better).

Figure 4. Best results achieved per goal, evaluated with MAPE (lower is better).

4. Conclusions

The paper presents the utilization of NE and LE algorithms for the modeling of the
industrial robot manipulator dynamics. The obtained mathematical models are then used
to generate a synthetic dataset used for the training of ML-based models using the MLP
algorithm. The achieved results are promising and point towards two possibilities. The
first is the use of ML algorithms, namely, ANNs, for the dynamic modeling of industrial
robotic manipulators. It should be noted that in a realistic application scenario, the data
used would be collected from sensors. This leads to the second possibility investigated in
the paper—the use of the synthetically designed dataset in the area of robotics modeling,
which can assist in saving time and funds during research operations.

Future work in the field could include the application of different ML algorithms
with the goal of model quality improvement, and further testing on synthetic datasets in

Mathematics 2022, 10, 1174 14 of 17

robotics,such as investigating whether an improvement can be seen when real-world data
are mixed with synthetically generated data.

The paper presents the utilization of NE and LE algorithms for the dynamics model-
ing process of an industrial robotic manipulator. The paper also showcases the use of the
generated models in the creation of a synthetic dataset, which is used to train an ML-based
MLP algorithm. The torsion values were regressed for each of the six joints, as well as
the total torque. For the first joint, the MLP managed to achieve a model with scores of
R2 = 0.96± 0.01, MAPE = 1.18%± 0.04%. Scores for the second joint were R2 = 0.09± 0.04,
MAPE = 1.15%± 0.03%, and for the third, R2 = 0.95± 0.04, MAPE = 1.59%± 0.03%. The
scores for the fourth and fifth joint were R2 = 0.96± 0.03, MAPE = 1.81%± 0.08% and
R2 = 0.92± 0.05, MAPE = 1.91%± 0.02%, respectively. The best-achieved scores for the
sixth joint were R2 = 0.92± 0.03, MAPE = 1.93%± 0.03. Finally, the scores for the total
torque of the industrial robotic manipulator were R2 = 0.89± 0.04, MAPE = 2.04%± 0.02%.
All of the scores, except the score for the total torque, are above the set expected threshold
of R2 ≥ 0.9, MAPE ≤ 2.0%, indicating that they are high-quality models. The total torque
achieves somewhat poorer results, but could still be usable in practice. This means that the
goal of developing an ML system for predicting the torque values of a robotic manipulator
was successful. Additionally, the fact that the models were possible to regress with a low
standard error across folds, and that the generated dataset outputs have smooth distributions,
indicates that a synthetic dataset can be used to regress this kind of problem.

The advantages of the used approach for modeling the torque are that the modeling
process is less error-prone and user time-intensive in comparison with the classical methods.
Still, it is not as precise as deterministically determining the torque model and requires a
relatively powerful machine to be developed as the used neural networks are relatively
large. Of course, it has to be noted again that, in a realistic application, data used would
not be fully synthetic, but consist of either a mix of collected and synthetic data or only
collected data. Limitations of the approach are clear, as the models developed are only valid
for the used industrial manipulator and the modeling process would have to be repeated
for different robots. Still, the approach could be implemented in cases of geometrically
complex manipulators, especially ones with a higher number of degrees of freedom, in
such applications where a precise torque value is not necessary.

As for the synthetic dataset generation, a number of applications are possible, which
can be seen from the current research. It has to be noted that such data could have
differences compared with real data, either due to modeling errors or outside influences.
Still, if the process is verified, synthetic data generation can be used to generate new or
additional data points and expand the collected datasets, especially in cases where the data
collection is expensive or extremely time-consuming.

Future work in the field of dynamics modeling can rely on the process of generalizing
the models to multiple manipulators, especially similar ones, through the introduction
of additional input variables that pertain to the models in question, such as the mass
and geometry of the manipulator links. Additional network architectures, such as LSTM
networks, should also be tested, as they may be capable of fitting the data provided better.
In the case of synthetic dataset generation, future work relating to the dynamics data being
generated could focus on stricter comparisons of the synthetic data to the collected data in
order to determine the possible statistical differences between the generated sets.

Author Contributions: Conceptualization, S.B.Š. and N.A.; methodology, S.B.Š., N.A., M.Š. and H.M.;
software, S.B.Š.; validation, N.A., M.Š. and H.M.; formal analysis, M.Š. and H.M.; investigation, S.B.Š.
and N.A.; resources, S.B.Š.; data curation, N.A.; writing—original draft preparation, S.B.Š. and N.A.;
writing—review and editing, M.Š. and H.M.; visualization, S.B.Š.; supervision, M.Š. and H.M.; project
administration, M.Š. and H.M.; funding acquisition, N.A., M.Š. and H.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Mathematics 2022, 10, 1174 15 of 17

Informed Consent Statement: Not applicable.

Data Availability Statement: The equations obtained from the described procedure, as well as the
generated dataset, may be obtained through contact with the first author.

Acknowledgments: This research has been (partly) supported by the CEEPUS network CIII-HR-0108,
European Regional Development Fund under the grant KK.01.1.1.01.0009 (DATACROSS), project
CEKOM under the grant KK.01.2.2.03.0004, Erasmus+ project WICT under the grant 2021-1-HR01-
KA220-HED-000031177, University of Rijeka scientific grant uniri-tehnic-18-275-1447, and project
Metalska jezgra Čakovec (KK.01.1.1.02.0023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural Network
DH Dennavit–Hartenberg
LBFGS Limited-Memory Broyden–Fletcher–Goldfarb–Shanno
LE Lagrange–Euler
LSTM Long short-term memory
MAPE Mean Absolute Percentage Error
ML Machine Learning
LSTM Long short-term memory
MAPE Mean Absolute Percentage Error
ML Machine Learning
MLP Multilayer Perceptron
NE Newton–Euler
RS Random Search
R2 Coefficient of determination
SGD Stochastic Gradient Descent

References
1. Baressi Šegota, S.N.; Lorencin, I.; Saga, M.; Car, Z. Path planning optimization of six-degree-of-freedom robotic manipulators

using evolutionary algorithms. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420908076. [CrossRef]
2. Plancher, B.; Neuman, S.M.; Bourgeat, T.; Kuindersma, S.; Devadas, S.; Reddi, V.J. Accelerating robot dynamics gradients on a

CPU, GPU, and FPGA. IEEE Robot. Autom. Lett. 2021, 6, 2335–2342. [CrossRef]
3. Yovchev, K.; Miteva, L. Genetic Algorithm with Iterative Learning Control for Estimation of the Parameters of Robot Dynamics.

In IFToMM Symposium on Mechanism Design for Robotics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 226–235.
4. Mitsioni, I.; Karayiannidis, Y.; Kragic, D. Modelling and learning dynamics for robotic food-cutting. In Proceedings of the

2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), Lyon, France, 23–27 August 2021;
pp. 1194–1200.

5. Jordon, J.; Jarrett, D.; Saveliev, E.; Yoon, J.; Elbers, P.; Thoral, P.; Ercole, A.; Zhang, C.; Belgrave, D.; van der Schaar, M. Hide-and-
Seek Privacy Challenge: Synthetic Data Generation vs. Patient Re-identification. In NeurIPS 2020 Competition and Demonstration
Track; PMLR: New York, NY, USA, 2021; pp. 206–215.

6. Soltana, G.; Sabetzadeh, M.; Briand, L.C. Synthetic data generation for statistical testing. In Proceedings of the 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE), Champaign, IL, USA, 30 October–3 November
2017; pp. 872–882.

7. Dahmen, J.; Cook, D. SynSys: A synthetic data generation system for healthcare applications. Sensors 2019, 19, 1181. [CrossRef]
[PubMed]

8. Tucker, A.; Wang, Z.; Rotalinti, Y.; Myles, P. Generating high-fidelity synthetic patient data for assessing machine learning
healthcare software. NPJ Digit. Med. 2020, 3, 1–13. [CrossRef] [PubMed]

9. Chen, R.J.; Lu, M.Y.; Chen, T.Y.; Williamson, D.F.; Mahmood, F. Synthetic data in machine learning for medicine and healthcare.
Nat. Biomed. Eng. 2021, 5, 493–497. [CrossRef] [PubMed]

10. Raghunathan, T.E. Synthetic data. Annu. Rev. Stat. Its Appl. 2021, 8, 129–140. [CrossRef]
11. Eno, J.; Thompson, C.W. Generating synthetic data to match data mining patterns. IEEE Internet Comput. 2008, 12, 78–82.

[CrossRef]
12. You, H.; Yu, Y.; Trask, N.; Gulian, M.; D’Elia, M. Data-driven learning of nonlocal physics from high-fidelity synthetic data.

Comput. Methods Appl. Mech. Eng. 2021, 374, 113553. [CrossRef]

http://doi.org/10.1177/1729881420908076
http://dx.doi.org/10.1109/LRA.2021.3057845
http://dx.doi.org/10.3390/s19051181
http://www.ncbi.nlm.nih.gov/pubmed/30857130
http://dx.doi.org/10.1038/s41746-020-00353-9
http://www.ncbi.nlm.nih.gov/pubmed/33299100
http://dx.doi.org/10.1038/s41551-021-00751-8
http://www.ncbi.nlm.nih.gov/pubmed/34131324
http://dx.doi.org/10.1146/annurev-statistics-040720-031848
http://dx.doi.org/10.1109/MIC.2008.55
http://dx.doi.org/10.1016/j.cma.2020.113553

Mathematics 2022, 10, 1174 16 of 17

13. Hernandez, M.; Epelde, G.; Beristain, A.; Álvarez, R.; Molina, C.; Larrea, X.; Alberdi, A.; Timoleon, M.; Bamidis, P.; Konstantinidis,
E. Incorporation of Synthetic Data Generation Techniques within a Controlled Data Processing Workflow in the Health and
Wellbeing Domain. Electronics 2022, 11, 812. [CrossRef]

14. Tremblay, J.; Prakash, A.; Acuna, D.; Brophy, M.; Jampani, V.; Anil, C.; To, T.; Cameracci, E.; Boochoon, S.; Birchfield, S. Training
deep networks with synthetic data: Bridging the reality gap by domain randomization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 969–977.

15. Martinez-Gonzalez, P.; Oprea, S.; Garcia-Garcia, A.; Jover-Alvarez, A.; Orts-Escolano, S.; Garcia-Rodriguez, J. Unrealrox: An
extremely photorealistic virtual reality environment for robotics simulations and synthetic data generation. Virtual Real. 2020,
24, 271–288. [CrossRef]

16. ABB Group. IRB 120 CAD Models-Industrial Robots (Robotics). Available online: Https://new.abb.com/products/robotics/
industrial-robots/irb-120/irb-120-cad (accessed on 13 March 2022).

17. Lipkin, H. A note on Denavit-Hartenberg notation in robotics. In Proceedings of the International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, USA, 24–28 September 2005;
Volume 47446, pp. 921–926.

18. Corke, P.I. A simple and systematic approach to assigning Denavit–Hartenberg parameters. IEEE Trans. Robot. 2007, 23, 590–594.
[CrossRef]

19. Rocha, C.; Tonetto, C.; Dias, A. A comparison between the Denavit–Hartenberg and the screw-based methods used in kinematic
modeling of robot manipulators. Robot.-Comput.-Integr. Manuf. 2011, 27, 723–728. [CrossRef]

20. Hayat, A.A.; Chittawadigi, R.G.; Udai, A.D.; Saha, S.K. Identification of Denavit-Hartenberg parameters of an industrial robot. In
Proceedings of the Conference on Advances in Robotics, Pune, India, 4–6 July 2013; ACM: New York, NY, USA, 2013; pp. 1–6.

21. Gaidhani, A.; Moon, K.S.; Ozturk, Y.; Lee, S.Q.; Youm, W. Extraction and analysis of respiratory motion using wearable inertial
sensor system during trunk motion. Sensors 2017, 17, 2932. [CrossRef]

22. Yoshikawa, T. Foundations of Robotics: Analysis and Control; MIT Press: Cambridge, MA, USA, 1990.
23. Urrea, C.; Saa, D. Design and implementation of a graphic simulator for calculating the inverse kinematics of a redundant planar

manipulator robot. Appl. Sci. 2020, 10, 6770. [CrossRef]
24. Wang, N.; Xiang, X. A New Numerical Scheme with B-Spine Wavelet on the Interval for Transverse Vibration Problem of the

Tethered Deep-Sea Robot. J. Mar. Sci. Eng. 2022, 10, 317. [CrossRef]
25. Krakhmalev, O.; Krakhmalev, N.; Gataullin, S.; Makarenko, I.; Nikitin, P.; Serdechnyy, D.; Liang, K.; Korchagin, S. Mathematics

model for 6-DOF joints manipulation robots. Mathematics 2021, 9, 2828. [CrossRef]
26. Martínez, O.; Campa, R. Comparing methods using homogeneous transformation matrices for kinematics modeling of robot

manipulators. In International Symposium on Multibody Systems and Mechatronics; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 110–118.

27. Waldron, K.; Wang, S.L.; Bolin, S. A study of the Jacobian matrix of serial manipulators. J. Mech. Des. 1985, 107, 230–237.
[CrossRef]

28. Falkenhahn, V.; Mahl, T.; Hildebrandt, A.; Neumann, R.; Sawodny, O. Dynamic modeling of constant curvature continuum
robots using the Euler-Lagrange formalism. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2428–2433.

29. Falkenhahn, V.; Mahl, T.; Hildebrandt, A.; Neumann, R.; Sawodny, O. Dynamic modeling of bellows-actuated continuum robots
using the Euler–Lagrange formalism. IEEE Trans. Robot. 2015, 31, 1483–1496. [CrossRef]

30. Lu, J.; Wu, Z.; Yang, C. High-Fidelity Fin–Actuator System Modeling and Aeroelastic Analysis Considering Friction Effect. Appl.
Sci. 2021, 11, 3057. [CrossRef]

31. Roy, S.; Baldi, S.; Li, P.; Sankaranarayanan, V.N. Artificial-delay adaptive control for underactuated Euler–Lagrange robotics.
IEEE/ASME Trans. Mechatron. 2021, 26, 3064–3075. [CrossRef]

32. Kou, B.; Guo, S.; Ren, D. A New Method for Identifying Kinetic Parameters of Industrial Robots. Actuators 2021, 11, 2. [CrossRef]
33. Khosla, P.K.; Kanade, T. Parameter identification of robot dynamics. In Proceedings of the 24th IEEE Conference on Decision and

Control, Ft. Lauderdale, FL, USA, 11–13 December 1985; pp. 1754–1760.
34. Zhu, A.; Ai, H.; Chen, L. A Fuzzy Logic Reinforcement Learning Control with Spring-Damper Device for Space Robot Capturing

Satellite. Appl. Sci. 2022, 12, 2662. [CrossRef]
35. Featherstone, R. Robot dynamics algorithms. In Annexe Thesis Digitisation Project 2016 Block 5; ERA: Parsippany-Troy Hills, NJ,

USA, 1984.
36. Sutanto, G.; Wang, A.; Lin, Y.; Mukadam, M.; Sukhatme, G.; Rai, A.; Meier, F. Encoding physical constraints in differentiable

newton-euler algorithm. In Learning for Dynamics and Control; PMLR: New York, NY, USA, 2020; pp. 804–813.
37. Chen, Y.; Sun, Q.; Guo, Q.; Gong, Y. Dynamic Modeling and Experimental Validation of a Water Hydraulic Soft Manipulator

Based on an Improved Newton—Euler Iterative Method. Micromachines 2022, 13, 130. [CrossRef]
38. Featherstone, R.; Orin, D. Robot dynamics: Equations and algorithms. In Proceedings of the 2000 ICRA, Millennium Conference,

IEEE International Conference on Robotics and Automation, Symposia Proceedings (Cat. No. 00CH37065), San Francisco, CA,
USA, 24–28 April 2000; Volume 1, pp. 826–834.

39. Liang, P.; Gao, X.; Zhang, Q.; Gao, R.; Li, M.; Xu, Y.; Zhu, W. Design and stability analysis of a wall-climbing robot using
propulsive force of propeller. Symmetry 2020, 13, 37. [CrossRef]

40. Product Specification IRB-120. 2019.

http://dx.doi.org/10.3390/electronics11050812
http://dx.doi.org/10.1007/s10055-019-00399-5
Https://new.abb.com/products/robotics/industrial-robots/irb-120/irb-120-cad
Https://new.abb.com/products/robotics/industrial-robots/irb-120/irb-120-cad
http://dx.doi.org/10.1109/TRO.2007.896765
http://dx.doi.org/10.1016/j.rcim.2010.12.009
http://dx.doi.org/10.3390/s17122932
http://dx.doi.org/10.3390/app10196770
http://dx.doi.org/10.3390/jmse10030317
http://dx.doi.org/10.3390/math9212828
http://dx.doi.org/10.1115/1.3258714
http://dx.doi.org/10.1109/TRO.2015.2496826
http://dx.doi.org/10.3390/app11073057
http://dx.doi.org/10.1109/TMECH.2021.3052068
http://dx.doi.org/10.3390/act11010002
http://dx.doi.org/10.3390/app12052662
http://dx.doi.org/10.3390/mi13010130
http://dx.doi.org/10.3390/sym13010037

Mathematics 2022, 10, 1174 17 of 17

41. Garg, D.P.; Kumar, M. Optimization techniques applied to multiple manipulators for path planning and torque minimization.
Eng. Appl. Artif. Intell. 2002, 15, 241–252. [CrossRef]

42. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]

43. Haeussling Loewgren, B.; Weigert, J.; Esche, E.; Repke, J.U. Uncertainty analysis for data-driven chance-constrained optimization.
Sustainability 2020, 12, 2450. [CrossRef]

44. Nadarajah, S. A generalized normal distribution. J. Appl. Stat. 2005, 32, 685–694. [CrossRef]
45. Tweedie, M.C. Statistical properties of inverse Gaussian distributions. I. Ann. Math. Stat. 1957, 28, 362–377. [CrossRef]
46. Çolak, A.B. A novel comparative analysis between the experimental and numeric methods on viscosity of zirconium oxide

nanofluid: Developing optimal artificial neural network and new mathematical model. Powder Technol. 2021, 381, 338–351.
[CrossRef]

47. Šegota, S.B.; And̄elić, N.; Mrzljak, V.; Lorencin, I.; Kuric, I.; Car, Z. Utilization of multilayer perceptron for determining the inverse
kinematics of an industrial robotic manipulator. Int. J. Adv. Robot. Syst. 2021, 18, 1729881420925283. [CrossRef]

48. Wang, Y.; Li, Y.; Song, Y.; Rong, X. The influence of the activation function in a convolution neural network model of facial
expression recognition. Appl. Sci. 2020, 10, 1897. [CrossRef]

49. Shafiq, A.; Çolak, A.B.; Sindhu, T.N.; Al-Mdallal, Q.M.; Abdeljawad, T. Estimation of unsteady hydromagnetic Williamson
fluid flow in a radiative surface through numerical and artificial neural network modeling. Sci. Rep. 2021, 11, 1–21. [CrossRef]
[PubMed]

50. Zhao, F.; Hu, G.; Zhan, C.; Zhang, Y. DOA Estimation Method Based on Improved Deep Convolutional Neural Network. Sensors
2022, 22, 1305. [CrossRef] [PubMed]

51. Baressi Šegota, S.; Lorencin, I.; And̄elić, N.; Mrzljak, V.; Car, Z. Improvement of marine steam turbine conventional exergy
analysis by neural network application. J. Mar. Sci. Eng. 2020, 8, 884. [CrossRef]

52. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

53. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
54. Nagelkerke, N.J. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [CrossRef]
55. Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE,

MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [CrossRef]
56. Pavlicko, M.; Vojteková, M.; Blažeková, O. Forecasting of Electrical Energy Consumption in Slovakia. Mathematics 2022, 10, 577.

[CrossRef]
57. Lubis, A.R.; Prayudani, S.; Fatmi, Y.; Lubis, M. MAPE accuracy of CPO Forecasting by Applying Fuzzy Time Series. In

Proceedings of the 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Semarang,
Indonesia, 20–21 October 2021; pp. 370–373.

58. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;
Springer: Berlin/Heidelberg, Germany, 2009; Volume 2.

59. Cherradi, B.; Terrada, O.; Ouhmida, A.; Hamida, S.; Raihani, A.; Bouattane, O. Computer-aided diagnosis system for early
prediction of atherosclerosis using machine learning and K-fold cross-validation. In Proceedings of the 2021 International
Congress of Advanced Technology and Engineering (ICOTEN), Virtual, 4–5 July 2021; pp. 1–9.

60. Lorencin, I.; And̄elić, N.; Mrzljak, V.; Car, Z. Genetic algorithm approach to design of multi-layer perceptron for combined cycle
power plant electrical power output estimation. Energies 2019, 12, 4352. [CrossRef]

http://dx.doi.org/10.1016/S0952-1976(02)00067-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.3390/su12062450
http://dx.doi.org/10.1080/02664760500079464
http://dx.doi.org/10.1214/aoms/1177706964
http://dx.doi.org/10.1016/j.powtec.2020.12.053
http://dx.doi.org/10.1177/1729881420925283
http://dx.doi.org/10.3390/app10051897
http://dx.doi.org/10.1038/s41598-021-93790-9
http://www.ncbi.nlm.nih.gov/pubmed/34267255
http://dx.doi.org/10.3390/s22041305
http://www.ncbi.nlm.nih.gov/pubmed/35214207
http://dx.doi.org/10.3390/jmse8110884
http://dx.doi.org/10.1093/biomet/78.3.691
http://dx.doi.org/10.7717/peerj-cs.623
http://dx.doi.org/10.3390/math10040577
http://dx.doi.org/10.3390/en12224352

	Introduction
	Materials and Methods
	Dynamics Modeling
	Kinematic Model
	Lagrange–Euler
	Newton–Euler

	Dataset Generation
	Machine Learning Approach

	Results and Discussion
	Conclusions
	References

