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Abstract: The Internet of Things (IoT) is an interconnected network of computing nodes that can
send and receive data without human participation. Software and communication technology have
advanced tremendously in the last couple of decades, resulting in a considerable increase in IoT
devices. IoT gadgets have practically infiltrated every aspect of human well-being, ushering in a
new era of intelligent devices. However, the rapid expansion has raised security concerns. Another
challenge with the basic approach of processing IoT data on the cloud is scalability. A cloud-centric
strategy results from network congestion, data bottlenecks, and longer response times to security
threats. Fog computing addresses these difficulties by bringing computation to the network edge.
The current research provides a comprehensive review of the IoT evolution, Fog computation,
and artificial-intelligence-inspired machine learning (ML) strategies. It examines ML techniques
for identifying anomalies and attacks, showcases IoT data growth solutions, and delves into Fog
computing security concerns. Additionally, it covers future research objectives in the crucial field of
IoT security.
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1. Introduction

IoT devices have grown considerably, infiltrating practically every aspect of the hu-
man social world [1]. IoT devices usher in the smart environment in the form of smart
homes, intelligent industry, and smart healthcare in which everything is connected to the
Internet ubiquitously [2]. As an illustration, there are smart medical bio-sensors which not
only monitor health from remote locations but also administer medicines in a real-time
manner [3,4]. Other instances include smart bridges which can monitor vehicular load [5],
smart power grids for detecting disruptions and power management distribution [6], and
smart machinery which have built-in sensors for task automation. In addition to being
ubiquitous, IoT devices are actively employed in practically every aspect of life, and the
numbers are startling. The number of internet-connected devices surpassed the world’s
population of around 6.7 billion people in 2008. According to estimates, there will be
6.1 billion mobile phone users and 50 billion items linked to the Internet by 2022 [7].
By 2027, it is expected that industries will have 27 billion automated machines. When
the attention is shifted to the volume of data created, one may see the beginning of the
Zettabyte era [8]. In 2013, 3.1 zettabytes of data were created by devices connected to the
Internet. It was 8.6 zettabytes in 2014, and it is predicted to be close to 400 zettabytes by
2022 [9]. Though the life-changing advantages are numerous, the security and privacy
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problems of a system with a plethora of devices built separately and connecting via diverse
protocols, as well as generating zettabytes of data in the cloud, are significant [10]. It is
astonishing to learn what type of information is kept in the cloud and how easy hackers
can access it. According to the Global Cloud Index [11], which discusses the different cate-
gories of cloud-oriented data, 7.6% of research on file-sharing platforms included private
information. In 4.3% of all research articles, keywords related to personal information,
including tax ID numbers, phone numbers, addresses, and social security numbers, are
found. Moreover, payment-oriented data of debit card numbers, bank account information,
and credit card numbers are found in 2.3% of articles. Finally, protected health information
for patient diagnoses, record registration numbers, and treatments are found in 1.6% of
research articles. As the number of individuals using IoT devices increases, more people
become susceptible to fraudsters as the data collected by the IoT devices is vulnerable to
attacks. The amount of security breaches has risen considerably, with recent examples
including the hacking of a water treatment plant [12], the Saudi Aramco $50 Million Data
Breach (Source: https://purplesec.us/recent-cyber-security-attacks/ (2 February 2022)),
the Kaseya Ransomware Attack (Source: https://purplesec.us/recent-cyber-security-
attacks/ (2 February 2022)), phishing, ransomware, supply chain attacks (Source: https:
//purplesec.us/recent-cyber-security-attacks/ (2 February 2022)), and the planning of
robberies using data from wearable devices [13,14]. According to the Cybercrime Report
(Source: https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
(2 February 2022)), the cost of cybercrime consequences reached $6 trillion per year by 2021.

Conspicuously, the current article discusses the security and privacy issues that have
arisen as a result of the fast growth of IoT devices and the systems that enable them, i.e., Fog
computing. Figure 1 shows the basic framework model for IoT-Fog computing [15].

The paper is structured as follows: The fundamentals of IoT security are detailed in
Section 3. Artificial-intelligence-inspired ML strategies for securing IoT and Fog computing
systems are described in Sections 4 and 5, respectively. Section 6 provides future directions
in the current domain of study. Finally, in Section 7, the article is concluded.

https://purplesec.us/recent-cyber-security-attacks/
https://purplesec.us/recent-cyber-security-attacks/
https://purplesec.us/recent-cyber-security-attacks/
https://purplesec.us/recent-cyber-security-attacks/
https://purplesec.us/recent-cyber-security-attacks/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
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Figure 1. IoT-Fog computing framework.

2. Information Sources

Performing a literature review necessitates extensive searching of electronic sources.
To increase our chances of identifying the most relevant research publications, the following
databases have been identified and selected:

1. IEEE eXplore
2. ACM Digital Library
3. Wiley Interscience
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4. ScienceDirect
5. Springer
6. Semantic Scholar

Other Resources: In order to locate relevant papers not included in the scope of the
current systematic review, the following supplementary resources were accessed:

1. Bibliographies of primary research to find relevant articles
2. Reports on technical issues
3. Edited books and textbooks

2.1. Search Criteria

The most prominent scientific digital resources were considered for the investigation to
compile a list of relevant research publications. The articles have been fetched from various
digital libraries such as ScienceDirect, IEEE Xplore, Springer, Taylor and Francis (T&F),
ACM, Sage, Wiley, InterScience, and Google Scholar. Finding relevant research articles
from the literature relies heavily on “Search string construction” and “Search keywords
selection”. Fog computing, Security, Machine Learning, Framework, Application, and
Architecture were the most commonly used terms to characterize the search phrase. The
phrase was created by combining with the boolean operators AND and OR. The used string
is as follows:

(“Fog Computing” OR “Machine Learning (ML)”) (“Fog Computing” or “Security”)
AND (“Fog Computing” OR “Attacks” OR “Fog Application” OR “Architecture”)

Based on the aforementioned strings, more than 700 articles were selected, which
included redundancies, invalids, and editorials. Using the PRISMA (Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses) (Source: http://prisma-statement.
org/Protocols/ (2 February 2022)) approach for systematic literature review, numerous
restrictions were employed to refine the search criterion as mentioned ahead.

Restrictions

Research on Fog computing and Fog-based security is very recent, and few articles
were published before 2015. As a result, there were just a few studies before 2015. The first-
round paper selection criteria included non-peer-reviewed and non-ISI publications from
various journals and conferences, with over 520 papers selected. A research screening pro-
cedure was used to eliminate brief articles, non-peer-reviewed papers, book chapters, and
low-quality studies that could not provide any technical or scientific information. Eighty-
two peer-reviewed publications from high-impact journals and conferences were chosen
for this systematic review. For the final selection of high-quality papers, the following
criteria were adopted:

1. The journal and conference are included in the index.
2. A survey or review of research is introduced in the publications.
3. The papers are prepared in the English language.
4. The papers follow the peer-reviewed process.

Fog computing security is a large field of study, with several studies appearing in
various publications and conference proceedings. A quality assessment was conducted on
the remaining articles following the exclusion and inclusion criteria to identify the most
relevant research. External validity, internal validity, and bias were all evaluated. Quality
evaluation forms were used to ensure that only high-quality research publications were
considered for the current systematic review.

2.2. Extraction of Data

Data extraction from all of the 154 papers evaluated in the current review was assessed.
The following set of criteria was adopted for data abstraction.

http://prisma-statement.org/Protocols/
http://prisma-statement.org/Protocols/
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1. All of the 154 publications were evaluated by one of the writers to extract the necessary
information.

2. A random sample of data extraction was used to ensure that the data extraction was
consistent.

3. All disagreements that arose throughout the cross-checking process were dealt with
in a series of meetings.

3. Fundamentals of IoT Security and Privacy
3.1. Concerns

IoT security issues depict vulnerabilities at many locations in the IoT network and the
safeguards that are applicable at each tier based on the “IBM Point of View on IoT security”
(Source: https://www.ibm.com/in-en/cloud/internet-of-things (2 February 2022)).

1. Sensation module: Hackers are able to cause considerable harm when access is granted
to devices including healthcare sensors and pacemakers [16]. As a result, (1) unau-
thorized data acquisition, (2) device malware of unauthorized access, (3) malware for
incorrect data transmission, (4) Denial of Service (DoS) attacks, and (5) unauthorized
information acquisition are all potential risks in the sensation layer.

2. Networking module: The network’s manageability, scalability, and availability are
critical for IoT deployment. IoT devices become ineffective if monitoring applications
cannot obtain data in a time-sensitive manner. It is fairly usual to attack the network
by transmitting a large amount of data all at once to overload the network and allow
for DoS attacks.

3. Service module: The service module functions as a link for the hardware module and
the application module. Important functions, including information management
and device management, are impacted by an attack on the service module, resulting
in end users not being served. Service module security includes data integrity, user
authentication, communication security, and access control.

4. Application module: The application module is the most vulnerable aspect of the IoT
network since it sits at the IoT-Fog-cloud’s top-of-stack and serves as a gateway to
all the underneath modules. Specifically, the gateway reflects the application module
via which IoT devices can be accessed to initialize security attacks. If the interface’s
authentication and authorization methods are compromised, the ripple effects may
extend to the edge. Because attackers might obtain sensitive information through
phishing or related attacks, the end-user is a prospective attack method. In addition,
SQL injection, default credentials, cross-site scripting, and insecure password recov-
ery techniques are common on the web and application interfaces. The Open Web
Application Security Project (OWASP) summarizes the Top 10 IoT vulnerabilities [17].
A detailed description of corresponding vulnerability is shown in Figure 2 (Source:
https://owasp.org/www-project-internet-of-things/ (2 February 2022)).

Figure 2. OWASP Top 10 IoT Vulnerabilities; Source: https://www.appsealing.com/owasp-iot-top-
10/ (2 February 2022).

IoT Privacy Concerns

According to a 2015 Hewlett Packard Internet of Things research study (Source: https:
//www.hp.com/us-en/hp-news/press-release.html?id=2037386#.YjX4zepBzIU (2 February

https://www.ibm.com/in-en/cloud/internet-of-things
https://owasp.org/www-project-internet-of-things/
https://www.appsealing.com/owasp-iot-top-10/
https://www.appsealing.com/owasp-iot-top-10/
https://www.hp.com/us-en/hp-news/press-release.html?id=2037386#.YjX4zepBzIU
https://www.hp.com/us-en/hp-news/press-release.html?id=2037386#.YjX4zepBzIU
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2022)), 80% of IoT devices have privacy issues. Specifically, more than 249 vulnerabilities
have been identified, with about 31 per device. Many gadgets capture personal data
including name, payment information, birth-date, address, light and sound information,
health information, and activities within the house. Many IoT devices transfer information
unencrypted within the house network, and data is transmitted to the cloud, which is
vulnerable to expose data to the public. Lauren Zanolli [18] wrote in FastCompany on
the Internet of Things becoming a privacy hell. The Wall Street Journal [19] discusses legal
threats that are present in the IoT. Figure 3 depicts the fundamental IoT threat model. In
the presented work on privacy in the IoT [20], Ogonji et al. classify the privacy risks as
follows: (a) identification, (b) lifecycle transitions, (c) inventory attack, (d) privacy-violating
interaction and presentation, (e) localization, (f) profiling, and (g) linkage. Each of these
have been detailed ahead.

Figure 3. IoT threat model.

1. Identification: The threat of identifying an identifier, such as a name and location, with
an individual is known as identification.

2. Localization: The vulnerability of identifying and registering a person’s whereabouts in
space-time coordinates is known as localization. Most IoT devices collect information
which might disclose illnesses, vacation plans, work schedules, and personal details.

3. Profiling: Profiling is the danger of leveraging data from IoT devices to categorize indi-
viduals into groups. It might result in pricing discrimination, unwanted advertising,
social engineering, or erroneous automated choices.

4. Interaction and presentation that infringes on privacy: This is the risk of conveying
personal data in such a way that it is exposed to an unintended audience. For
illustration, anyone using a wristwatch on public transportation may unwittingly
allow passersby to read the SMSes because the data appear on the screen as they arrive.

5. Lifecycle transitions: Configurations and data are backed up and restored when smart
devices undergo lifecycle transitions. In the process, incorrect data may end up in the
wrong device, resulting in a privacy breach. For example, images and movies stored
on one device may be viewed on another.

6. Inventory attack: Hackers can query gadgets to generate an inventory of objects in a
certain area since smart things are queryable via the Internet. For example, hackers
can find whether a home has a smart meter, a smart thermostat, or smart lighting.

7. Linkage: This a technique in which data from several sources, acquired in various
situations, are combined to obtain insights about a subject.
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4. IoT Security Using ML

ML is widely employed in IoT data analysis. Tahsien et al. [21] highlights use cases
where ML is applied for the manufacturing, utilities, insurance, and healthcare industries.
Vital tasks in IoT security include pattern identification, determining outliers, value prediction,
and attribute abstraction. Table 1 lists some of the major ML techniques, including DBSCAN
(Density-Based Spatial Clustering of Applications with Noise), FFNN (Feed-Forward Neu-
ral Network), CCA (Canonical Correlation Analysis), CART (Classification And Regression
Trees), KNN (K-Nearest Neighbor), and PCA (Principal Component Analysis), which were
employed by global researchers for such tasks. The primary goal of most of the papers
examined is to detect a security breach. Conspicuously, Table 1 becomes extremely impor-
tant from a data protection standpoint. The use cases may be further separated into the
following categories when it comes to recognizing outliers: data anomaly detection, intrusion
detection, and malware detection are the three types of detection. Intrusion detection can be
defined as the ability to monitor and react to computer misuse [22]. Anomaly detection is
the identification of an undesired event or observation. On the other hand, malware indi-
cates when malicious software perpetrators dispatch to infect computing nodes. Because
anomaly detection is a classification issue, the most popular ML classification techniques
are used, such as Artificial Neural Networks (ANN), Support Vector Machines (SVM),
Bayesian Networks, Decision Trees, Random Forest, and Naive Bayes. Moreover, ANN
has been applied in a variety of innovative applications. However, ANN is not commonly
utilized for malware detection since training takes longer. By summarizing results from the
publications in the current domain on each ML technique, the use-case-based technique is
presented in Table 2.

Table 1. ML solutions for IoT Security.

Reference Use Case Algorithm Domain Limitations

[23] Pattern discovery DBSCAN Importance of using DBSCAN
technique for attack detection

It is not effective for data clusters
having similar densities

[24] Pattern discovery K-means Fundamentals of K-means are
discussed in security

It is effective only when data is
numerical

[25] Discovery of unusual
data points Random Forest Random forest technique for

security risk assessment A large delay was registered

[26] Discovery of unusual
data points PCA

PCA-based feature reduction
for remote sensing secure
applications

Minimal accuracy was registered

[27] Discovery of unusual
data points Naive Bayes Exploration of probabilistic

attack detection
Data dependence reduces the
accuracy

[28] Discovery of unusual
data points KNN The utilization of KNN for near-

est neighbor detection
The value of K should be fixed
initially

[29] Discovery of unusual
data points

Support Vector Ma-
chine Prediction-based attack detection It is less effective for time-

sensitive applications

[30] Prediction of values &
categories

Support Vector Re-
gression

The detection of UAV-specific
attacks

There was a delay and accuracy
was minimal

[31] Prediction of values &
categories FFNN Novel vision for data security in

smart soil application
The domain of applicability is
limited

[32] Prediction of values &
categories CART Uncertainty detection and

quantification for security
It is not reliable as it based on
probability

[33] Prediction of values &
categories Linear Regression Linear regression analysis for

data variability
The attack detection effective-
ness is limited

[34] Feature extraction CCA The fundamentals of feature
extractions are discussed Security is minimally addressed
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Table 2. ML techniques for outlier identification.

Use Case Reference ML Technique

Malware Detection [29] SVM
Malware Detection [25] Random Forest
Anomaly Detection [27] Naive Bayes
Anomaly Detection [35] ANN
Intrusion Detection [26] PCA
Intrusion Detection [28] KNN
Intrusion Detection [27] Naive Bayes

4.1. ML Techniques for IoT Security

1. Random Forest for malware detection: Agrawal et al. [36] employed the Random Forest
technique on Android data of 49,101 instances with 39 attributes in the proposed work
for detecting the Android virus. The major objective was to estimate Random Forest’s
accuracy for assessing Android applications and classifying them as nondangerous
or dangerous. The authors assessed the detection accuracy when the Random Forest
algorithm’s attributes were modified, such as the depth of each tree, the number of
trees, and the number of attributes. Based on six-fold cross-validation, the results
concluded that the Random Forest technique performed with enhanced efficacy, with
an overall accuracy of over 98.9% and an error rate of 0.2% for forests with more
than 39 trees. Moreover, a root mean squared error of 1.69% for forests with 160 trees
was registered.

2. SVM-based malware identification: Nakhodchi et al. [37] reviewed several techniques for
the identification of malware. These include taint-analysis-based, behavior-based, and
signature-based detection. It is depicted that Linear SVM is performed well among
ML techniques used for Android Malware Detection. Event information on the device
in a behavior-based identification framework, including storage utilization and power
consumption, is assessed. ML techniques are used to evaluate the data to discover
aberrant patterns.

3. PCA, Naive Bayes, and KNN Intrusion Detection: Saharkhizan et al. [38] presented
a new framework for detecting intrusion based on two-level dimension reduction.
Specifically, a two-tier categorization phase is described to detect malicious activities,
including remote-to-local and user-to-root attacks. To minimize the dimensions in the
dataset, the proposed framework employed Linear Discriminate Analysis (LDA) and
Principal Component Analysis (PCA). Moreover, the authors incorporated a two-tier
categorization phase with Naive Bayes to detect suspicious activities.

4. Classification-based anomaly detection: In the study on creating an IoT gadget for
women’s safety, Ramalingam [39] described a gadget that assesses whether or not
the wearer is in danger. The gadget sends information on the person’s physiology
and bodily posture. Body temperature and the galvanic skin response (GSR) are the
communicated physiological signals. The data from a 3D accelerometer are used
to estimate body position. The theory says that when a person is confronted with
a threatening scenario, adrenalin secretion impacts several physiological systems,
resulting in increased blood pressure, heart rate, and perspiration. As measured by
GSR, skin conductance rises as a result of this. A classifier examines the data to decide
whether or not the subject is in a risky scenario, such as rape.

4.2. Securing IoT Systems Using ANN

Yousefi et al. [35] discussed the utilization of ANN to anticipate the IoT element state
and how to minimize the expenses of IoT administration. The authors have depicted that
edge security setups are labor-intensive. A probabilistic neural network backed up by a
multilayered perception network was incorporated in the proposed methodology. The
research demonstrated that a probabilistic neural network could be utilized to detect the
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device’s status. Moreover, by employing a multilayer perceptive network, historical values
can be compared for enhanced accuracy. Bagaa et al. [40] suggested utilizing ML within
an IoT gateway to enable system security. The main objective was to employ ML-based
ANN techniques in the gateway to monitor subsystem modules and the complete system
in the application layer. After warming up the system with training data, the researchers
tweaked the sensors for 10 minutes to add incorrect data. The neural network recognized
the distinctions between the legitimate and incorrect input when it was run against the
system. It included a temporal instance between transmissions to simulate attacks. The
authors predicted if the data was genuine or invalid for the 259 samples. The authors
concluded that using ANN is extremely useful for providing enhanced security.

5. Secure Fog Computing

While most of the assessment and ML for IoT details is conducted in the cloud servers,
there is a growing tendency to move the computation at the node-edge. As a result, the
current section focuses on using ML techniques for the Fog computing framework.

5.1. Fog Computing: Fundamentals

According to the OpenFog Reference Architecture for Fog Computing (Source: https://site.
ieee.org/denver-com/files/2017/06/OpenFog_Reference_Architecture_2_09_17-FINAL-1.pdf
(accessed on 2 February 2022)), Fog computing is defined as an edge-level framework for decentral-
izing control, storage, and computation capabilities at the user edge. Wired or wireless access, low
latency, and location awareness are vital aspects of Fog computing platforms. There are various
advantages, including:

1. Analytics in real time: The instances where time-sensitive analysis is required are
increasing as IoT adoption develops. For illustration, a security camera may catch
a possible burglar loitering at a residence or a fraudster obtaining data regarding
unauthorized accounts. It may be too late when data are loaded to the cloud and
examined. In these cases, near-instant intelligence is required, which Fog computing
may supply.

2. Increased security: Because Fog is closer to the edge, it may establish security that is
specific to devices and their operations. Furthermore, security choices on whether or
not to deny access during a breach may be made instantly.

3. Edge data thinning: Fog absorbs raw data and makes judgments or delivers insights
based on it. It only delivers pertinent, condensed data up the chain of command. As a
result, the data quantity sent to a centralized repository is drastically reduced.

4. Cost savings: Due to the scattered nature of installations, Fog may have greater setup
costs. However, the whole system’s operational expenses and prolonged advantages
would be substantial.

5.2. ML for Secure Fog Computing

Secure Fog computing has been researched considerably for privacy, access control,
and authorization. Table 3 has been formulated to depict the state-of-the-art comparative
analysis in the current domain of study. The analysis is prediction-oriented and reaction-
oriented at the Fog computing nodes. Because greater computer power is required, the
Fog nodes closest to the user will employ reaction-oriented analysis, whereas the nodes
further away from the edge will most likely have predictive analytics. The underlying
idea is that computer power is greatest in the cloud and decreases as one moves down the
information processing hierarchy. ML techniques can be executed on nodes with sufficient
computing power to perform that layer’s task. Models for ML are built at edge nodes closer
than the cloud. To aid execution, the models might be assessed as intermediary nodes.
Table 4 [41] depicts a collection of ML methods utilized in Fog computing in various sectors.
Zhang et al. [42] described a hierarchical decentralized Fog computation framework to
integrate a large number of infrastructure components and services in future smart cities.
The author’s design is a three-layered model, with the cloud as the first layer and the sensors

https://site.ieee.org/denver-com/files/2017/06/OpenFog_Reference_Architecture_2_09_17-FINAL-1.pdf
https://site.ieee.org/denver-com/files/2017/06/OpenFog_Reference_Architecture_2_09_17-FINAL-1.pdf
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as the final layer. The Fog layer is the second layer. The Fog layer comprises computing
nodes to receive raw data from the sensors. The Fog computing layer serves two vital tasks.
One task uses ML techniques to identify possible danger patterns in incoming data streams
from sensors, while the other uses feature extraction to reduce the quantity of data supplied
upstream. The publication [42] depicts the inclusion of anomaly identification. Anomaly
detection techniques, such as DBSCAN, Random Forest, Naive Bayes, and KNN, have
been employed. Fog nodes receive data from nodes below them, and the data comprise
information from hundreds of sensors spread over several places. The MAP (maximum
aposteriori) and HMM (hidden Markov model) techniques are utilized in the study to
classify and notify if a dangerous event occurs. The techniques discussed in the preceding
section for IoT security are equally applicable to Fog computing. Malware detection using
SVM by Agrawal [36], malware detection using Random Forest by Nakhodchi et al. [37],
and intrusion detection by Saharkhizan et al. [38] may all be conducted on Fog nodes
rather than on the cloud. Anomaly detection using ANN by Yousefi et al. [35] specifically
mentions using ML at the gateway layer. Table 5 shows another comparative analysis of
the state-of-the-art literature review for IoT security using ML techniques.

Table 3. ML use cases for Fog computing environment.

Use Case ML Technique

Industry Predictive models
Industry Anomaly detection
Industry Optimization technique
Retail Time series clustering
Retail Statistical technique
Self-Driving Cars Reinforced learning
Self-Driving Cars Anomaly detection
Self-Driving Cars Image processing

Figures 4–6 depict the VOS visualization for the publications in IoT-Fog computing,
IoT-machine learning, and IoT-Fog-machine learning environments from a security perspec-
tive. VOSviewer is a software tool for constructing and visualizing bibliometric networks
(Source: https://www.vosviewer.com/ (2 February 2022)). Specifically, 2010–2021 was
considered for assessing the research publications. Moreover, for abstracting research
papers in the current domain, the Web of Science repository was utilized, as it is the most
widely adopted research publication repository. Summarizing the aspects as mentioned
above, some of the common Fog vulnerabilities are depicted in Figure 7 (Source: Puthal, D.,
Mohanty, S. P., Bhavake, S. A., Morgan, G., & Ranjan, R. (2019). Fog computing security
challenges and future directions (energy and security) are also discussed (IEEE Consumer
Electronics Magazine, 8 (3), 92–96.)

Table 4. State-of-the-art comparative analysis.

Ref. Highlights Trust Privacy Auth Accessible Confidential Integral

[43] Proposed a risk-based trust model for the IoT environ-
ment. Y N N N Y N

[44] Performed a Fog-based hierarchical trust mechanism. Y N N N Y Y

[45] A broker-based trust mechanism approach in Fog. Y N N N N N

[46] Secured trust establishment among vehicles. Y N N N Y Y

[47] Reliable and lightweight trust evaluation mechanism. Y N N N N N

[48] A data protection scheme was used for Fog computing. Y N N N N N

[49] Fog-based public cloud computing N Y N N N Y

https://www.vosviewer.com/
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Table 4. Cont.

Ref. Highlights Trust Privacy Auth Accessible Confidential Integral

[50] Introduced secure positioning protocols by preserving
location privacy. N Y N N Y Y

[51] Data confidentiality and location privacy were focused
on. N Y N N Y Y

[52] Fog-based vehicular ad hoc network (VANET). N Y N N N N

[53] Preservation of the privacy of the end users over a
radio network. N Y N N N N

[54] An efficient and secure mutual authentication method
for the cloud-Fog-edge system architecture. N N Y N N N

[55] Fine-grained access control and privacy were provided
for Fog computing. N N N Y Y Y

[56] Fog devices’ security can be ensured through key man-
agement and authentication schemes. N N Y N Y Y

[57] Introduced policy-based resource management in the
Fog network. N N Y N Y Y

[58] Ensured secure communication among the various IoT
devices. N N Y N Y Y

[59] Introduced anonymous mutual authentication
amongst the Fog users and Fog servers. N N Y N Y Y

[60] Highlighted privacy preservation and security meth-
ods for Fog-based image processing applications. N N Y N Y Y

[61]
An efficient and elliptic cryptographic-based mu-
tual authentication technique for IoT-based resource-
constrained devices.

N N Y N Y Y

[62] CP-ABE-based multiauthority data access control
scheme in Fog-cloud computing systems. N N N Y Y Y

[63] Employing a lightweight privacy preserving data ag-
gregation method for Fog and IoT systems. N Y N N Y Y

[64] A promising CP-ABE-based access control method for
a Fog computing environment. N N N Y N N

[65] Fog-based decentralized multiauthority attribute-
based data access control. N N N Y N N

[66] A distributed multitenancy approach to access control. N N N Y N N

[67]
Deliberated two-factor lightweight and privacy
preserving authentication method for resource-
constrained IoT devices.

N N Y N N N

[68] A hybrid and fine-grained access control solution. N N N Y Y Y

[69] Access control mechanisms proposed for Fog comput-
ing and ad hoc MCC. N N N Y Y Y



Mathematics 2022, 10, 1298 12 of 20

Table 5. ML techniques for IoT threat reduction. Y, Yes; –, No.

Reference Year ANN CNN RNN AF RBM DBN GAN EDL Threat

[70] 2015 Y – – – – – – – Routing attack detection

[71] 2014 – – Y – – – – – Malicious behavior detection

[72] 2009 Y – – – – – – – Data tampering

[73] 2013 Y – – – – – – – Spoofing attack detection

[74] 2017 – – – Y – – – – Malware detection

[75] 2015 Y – – Y – – – – Impersonation attacks

[76] 2018 – – – Y – – – – Impersonation attacks

[77] 2016 Y – – – – – – – Cyber attacks

[78] 2017 – – – Y – – – – Cyber attacks

[79] 2017 Y – – – – – – – DDoS attack detection

[80] 20N6 – – – – – Y – – Malicious attack detection

[81] 2017 Y – – – – – – – Authentication

[82] 2016 – Y – – – – – – Malware detection

Figure 4. IoT-machine learning publication analysis from 2010 to 2021.
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Figure 5. IoT-fog computing publication analysis from 2010 to 2021.

Figure 6. IoT-machine learning-Fog computing publication analysis from 2010 to 2021.
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Figure 7. Fog computing challenges.

6. Research Directions

There are several important issues that Fog computing must deal with in a security
context. Finally, a summary of possible study directions is provided.

6.1. Management of Trust

Identifying reliable Fog nodes in the Fog platform is difficult. Malicious activity is
usually a good indicator of whether or not a Fog node is trusted or untrusted. For a Fog
node, the malevolent nature is not specified. Therefore, defining and categorizing all of
the Fog system’s harmful properties is critical. The system can be vulnerable to regulation
if one or more Fog nodes are trusted or seen as suspicious. That is why a high-level trust
management model is a must in today’s business environment. Cloud-Fog-IoT systems
necessitate mixing dispersed and central environments, which presents another research
challenge. As a result, the IoT environment necessitates using a Fog platform for trust
management. As a result, it remains a difficult study topic. Even more importantly, the
architecture and service delivery methods of the Fog and cloud computing platforms
necessitate alternative trust management systems. Fog is widely dispersed, but the cloud
is concentrated. Because the cloud platform has its security architecture, deploying trust
management in that environment is easier than deploying trust management in the Fog
platform, which is more open and lacks in-place security mechanisms. Because of this, the
Fog environment is prone to malicious attacks. Additionally, trust in the cloud environment
is one-way, but trust in the Fog environment is two-way. As part of the Fog platform, the
Fog node and the IoT devices must have a trusting connection before communicating. Since
the Fog and the IoT platforms are intertwined, creating an appropriate trust mechanism for
both is very problematic.

6.2. Confidentiality Assessment

The Fog nodes are located close to the end users, so they store sensitive or private
information. As a result, it is not easy to provide a safe connection between Fog and
IoT devices and create a secure computing environment. Before transmitting it to the
Fog nodes, we might consider encrypting any user-sensitive data. Traditional encryption
and decryption procedures need a lot of CPU power, but IoT devices confront difficulties
encrypting and decrypting users’ sensitive data because of their resource limits. One Fog
node may be able to handle sensitive data from several Fog users or multiple applications.
After the data aggregation stage, there is a potential that diverse sources of data will be
mixed up. At the Fog API or middleware level, correct data encapsulation strategies may
be enforced to solve this issue. End-user devices, which are commonly involved in sharing
sensitive resources such as location and personal information with other spatially linked
devices, have another difficult challenge in the Fog environment: providing context-aware
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services. Therefore, data protection must be in place in such a situation. Because of this,
it is difficult to maintain the anonymity of one’s identity and whereabouts in the Fog
environment.

6.3. Authentication

Strong authentication and secure communication protocols are lacking from the Fog
platform, which limitation is a blatant reality. An unsettling warning has been sent out
to the scientific community. There has not been much investigation into authentication
techniques in Fog computing. The Fog platform is still unable to be dealt with. To build
and construct a new authentication technique for Fog computing, one must consider the
following requirements and how they can work seamlessly with the Fog platform.

1. Users, end devices (IoT), applications, and service providers must all be able to use
the same authentication mechanisms on the cloud-Fog platform.

2. IoT devices have a limited number of resources and must be able to scale up and
down with a secure, environmentally friendly, efficient, and scalable solution. Con-
ventional authentication procedures are inefficient. Different context-specific devices
and applications demand high levels of security and performance.

3. Nodes in the Fog network depart and join dynamically. Hence, this need must
consider the dynamic behavior of the Fog environment.

4. As a result, the Fog network’s scalability must be ensured using low-complexity-
based authentication.

5. A dynamic approach to authentication and reauthentication must be maintained.
6. The Fog system and IoT devices should use a cryptographic lightweight encryption

technique that can easily handle the low processing capacity of IoT devices as an
efficient authentication mechanism.

7. In exchange for its high usability and low cost, authentication should be user-friendly.

6.4. Access Management

Access control approaches in the Fog computing environment have not received much
attention from researchers. However, there has already been much research conducted in
this area. This means that we must continue developing an effective strategy for creating
the correct sort of access and control models to provide a safe platform for heterogeneous
Fog devices. Several access control models were discussed in the description section, each
with a specific set of features or qualities while also highlighting several disadvantages
and limits specific to the Fog environment. Cloud, Fog, and IoT security experts agree
that attribute-based encryption (ABE) is a viable option for securing access to data in these
types of settings. The ABE method should be reconstructed due to the heterogeneous
Fog system features to minimize the primary issues (latency, policy management, fine-
grained quality, and being enforced by the cryptographic technique) among cloud-Fog-IoT
computing environment users. On the other hand, in the Fog system, data originate and
are encrypted and decrypted by small, low-power devices. Deploying systems for limiting
access to these devices would be a significant burden, necessitating a significant amount of
processing power. In the meantime, Fog devices are being installed near the end devices.
On the other hand, the Fog devices are far more powerful than the end-user IoT gadgets.
ABE-based access control with outsourced capacity might work in the Fog environment to
get over the constraints of IoT devices. For example, dynamic Fog computing has many
devices joining and exiting simultaneously. As a result, the policy and characteristics of the
users would be dynamically re-evaluated. ABE-based access control systems must aid in
generating, changing, and canceling user characteristics. Designing the revocation process
for ABE-based access control would provide new difficulties, and how Fog works with the
cloud environment throughout the revocation process would require more research. As a
result, the following criteria must be taken into account while creating a new access control
technique for the Fog platform:
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1. Fog is a completely virtualized platform by design, and it allows a wide range of
settings for the Fog network to operate.

2. Due to the nature of sharing resources across untrusted tenants, a side-channeled
attack may occur in this instance. As a result, a top priority is building an access
control system that can work effectively and securely in a virtualized platform and
multitenant environment.

3. Access control for the Fog environment must be safe, efficient, and attribute-based,
considering minimal computation with outsourced capabilities and characteristics
that can regulate user revocation capability.

4. A lightweight and fine-grained access control mechanism is needed because of the
resource limits faced by IoT devices.

As a result, an access control mechanism must operate in a both central and dispersed
architectural context correctly.

6.5. Attacks and Threats

As we discussed before, there are several security and privacy concerns with Fog com-
puting. Because of the large number of interconnected devices and the spread architecture
of the network, an attack or threat is always a possibility. Several dangers and attacks and
their influence on the Fog environment have previously been mentioned in the descriptive
section. The dynamic computing environment of Fog would make it difficult to detect,
identify, and mitigate these risks and attacks. Research gaps and a lack of security solutions
to detect and identify these risks and attacks need to be solved to establish a trustworthy
Fog platform. As a result of our research into a variety of threats and attacks, we have
identified the following concerns that must be addressed:

1. Complex trust issues and insecure authentication and authorization systems are to
blame for these problems.

2. Fog nodes, or servers in the Fog layer, may be dynamically created, deleted, joined,
and left.

3. Fog nodes constantly leave and rejoin, making detecting malicious or rogue nodes a
difficult operation.

4. Creating a large-scale, geographically dispersed IDS implementation with low-latency
need and high mobility Fog computing system is a difficult challenge.

5. It is necessary to use hybrid detection approaches to catch malicious activity in a
dispersed context.

6. Designing high-security and low-cost threat and attack detection in the Fog envi-
ronment is a major challenge because of Fog devices’ resource limits. For example,
we must be able to identify and prevent attacks from both Fog nodes and Fog users
simultaneously.

6.6. Secure 5G Fog Network

The 5G network will be used to link Fog gadgets. New security difficulties arise
when connecting Fog devices to the 5G network, particularly in the authentication process.
The old one-way or mutual authentication technique is no longer relevant because of
how authentication works between the user and service. We need a mixed authentication
strategy in this situation. In the future, Fog will be important for communicating with
gadgets and objects that use 5G. Suppose a resident in a smart city or smart house requires
an ambulance to take him to a nearby specialist hospital where he may undergo remote
surgery. It is necessary to use a hybrid security method to protect the entire application
environment, as numerous parties are engaged in this procedure. Authentication in an
emergency such as this needs a robust system. A 5G-enabled Fog computing environment
is especially critical since user data may flow via numerous third-party devices, network
equipment, and access networks that the user does not trust. As a result, in a 5G-enabled
Fog network, we must look at hybrid authentication approaches and privacy protection.
Some of the thematic open research challenges are depicted in Figure 8.
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Figure 8. Fog computing: open research issues.

7. Conclusions

Through examining state-of-the-art research works on IoT security vulnerabilities,
the current paper has addressed multiple ML approaches utilized in IoT security. First,
the article lay out the backdrop for IoT expansion, including several instances of usage,
scalability, and the massive quantity of data created. It then went over the most pressing
security concerns with IoT devices and the underneath network. The focus then shifted
to IoT security using ML approaches. First, the study defined the core ML tasks used in
protecting IoT systems by evaluating various papers and websites. It then summarized
publications on ML for IoT security, emphasizing anomaly detection, intrusion detection,
and malware detection. The paper then went into Fog computing and ML approaches for
the Fog environment. By being more context-aware, being able to spot concerns, and having
reaction-oriented processing, ML at Fog nodes makes the IoT network more secure. For
future works, IoT and Fog computing security mechanisms, compression approaches for
IoT data, resource management of edge and Fog computing systems, and cloud computing
would be among the priorities.
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