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Abstract: We analyse spatial dependence between the risks of stock markets. An alternative definition
of neighbour is used and is based on a proposed exogenous criterion obtained with a dynamic Google
Trends Uncertainty Index (GTUI) designed specifically for this analysis. We show the impact of
systemic risk on spatial dependence related to the most significant financial crises from 2005: the
Lehman Brothers bankruptcy, the sub-prime mortgage crisis, the European debt crisis, Brexit and the
COVID-19 pandemic, which also affected the financial markets. The risks are measured using the
monthly variance or volatility and the monthly Value-at-Risk (VaR) of the filtered losses associated
with the analysed indices. Given that the analysed risk measures follow non-normal distributions
and the number of neighbours changes over time, we carry out a simulation study to check how
these characteristics affect the results of global and local inference using Moran’s I statistic. Lastly, we
analyse the global spatial dependence between the risks of 46 stock markets and we study the local
spatial dependence for 10 benchmark stock markets worldwide.

Keywords: systemic risk; uncertainty index; spatial dependence; stock market; non-normality

MSC: 62F40; 62H20; 62F05

1. Introduction

Our aim is to analyse if systemic risk is reflected in an increase in the spatial de-
pendence between market risks, i.e., whether the detrimental and/or favourable effects
of systemic risk are similar between markets with certain neighbourhood characteristics
related to similar economic uncertainty. In our analysis, the market risk is approximated by
the variance (volatility) and by the metric given by the Value-at-Risk (VaR) associated with
the potential losses of stock markets. The losses are calculated from the negative logarithm
of stock returns (hereinafter log-returns) (the loss function is defined in [1]). The differences
between the volatility and the VaR as measures of risk is that the former takes into account
both tails of the distributions, i.e., losses at right tail and profits at left tail, while the latter
focuses on the right tail of the distribution, i.e., on the losses.

The global Moran’s I statistic (see [2]) and its local version proposed by Anselin [3]
allow us to carry out inference on global and local spatial dependence, respectively. Both
statistics are based on the assumption that the data are normal, independent and identically
distributed and they have a known asymptotic normal distribution that is used to test
the positive statistical significance of the spatial dependence, understood in our case as
having similar behaviour between financial markets. Regarding non-normality, Griffith [4]
concludes that the assumption of normality is not essential for the asymptotic properties
of the global Moran’s I statistic. However, for the local statistic, the non-normality of the
data causes errors in the inference based on the normal distribution. Given that our risk
data clearly have a non-normal distribution, are right skewed and have extreme values,
a simulation study is carried out to check how the global and local inference on spatial
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dependence is affected. The simulation study provides new results regarding the global
Moran’s I test based on normal distribution when the data have heavy-tailed distribution,
i.e., the study proves that spatial econometrics can be applied to the special nature of
financial data.

Various studies have used bootstrap inference for testing global spatial dependence. In
relation to the analysis that we present here, we highlight some studies that give robustness
to our results. For example, in a regression context Yang [5] studied the consistency of
the inference through a set of LM (Lagrange Multiplier) statistics using the residual-based
bootstrap methods for testing spatial dependence, a special case being the global Moran’s
I statistic used in this study. This author proves the consistency theoretically as well as
through a simulation study where results are obtained for normal, normal mixture and
log-normal. Jin and Lee [6] also analysed the consistency of bootstrap inference of global
Moran’s I statistic in the spatial econometric model context and carried out a simulation
study for normal and chi-square distributions. Focusing on local spatial dependence,
Mei et al. [7] proposed a bootstrap method to approximate the distribution under the null
hypothesis of the local Moran statistic proposed by Anselin [3]. These authors demonstrate
that the asymptotic normal approximation sometimes fails.

Another important consideration of this article is the definition of neighbourhood be-
tween financial markets. Geographical distances have been the most widely used measure
for calculating the spatial dependence between regions but, as shown by Acuña et al. [8],
this criterion is not valid for determining the neighbours of each stock market. An alterna-
tive criterion consists of using the number of overlapping operating hours of stock markets
as a measure of trading synchronisation, as proposed by Flavin et al. [9] as a proxy for
the ease of trading. Acuña et al. [8] showed that overlapping operating hours criterion
improves the spatial dependence results obtained using geographical distances. However,
the latter is a static criterion and it is conceivable that, when the evolution of financial
markets is analysed, the neighbours may change over time depending on the expectations
and on the positioning of investors. For this reason, we propose the use of uncertainty
indices that are exogenous to the markets themselves to give dynamism to our analysis.

Uncertainty indices have been used recently in the literature because, either through
official reports or internet searches, they reflect the concerns of economic and financial
agents as well as the general public about events that affect the behaviour of the country’s
economy. Ahir et al. [10] obtained a quarterly index of uncertainty, called the World
Economic Uncertainty Index (WUI), which was based on counting the number of times
that the words “uncertainty” and its variants appeared in the Economist Intelligence Unit
(EIU, https://www.eiu.com/n/) for 143 countries. These authors concluded that the level
of uncertainty is significantly higher in developing countries, and it is positively associated
with economic policy uncertainty and stock market volatility and negatively with GDP
growth. Baker et al. [11] calculated a monthly index of Global Economic Policy Uncertainty
(GEPU) that was based on the raw count of terms in three categories (economy, policy and
uncertainty) divided by the total number of articles in the newspapers of 16 countries that
included these terms, the searches being done in the respective native language. Using
a similar process, Ghirelli et al. [12] obtained their specific Uncertainty Index for Spain.
By using the Google Trends tool, Weinberg [13] proposed an Economic Policy Uncertainty
Index for the largest economies in the European Union (Germany, France, Italy and Spain).
Previously, Castelnuovo and Tran [14] obtained an economic Google Trend Uncertainty
Index for the United States and Australia.

In this study, we use an ad-hoc Google Trend Uncertainty Index (GTUI) to select the
monthly neighbours of the 46 stock indices and to carry out the spatial dependence analysis.
First, we use the global Moran’s I statistic to analyse the changes of spatial dependence
between stock markets. Second, we carry out a local spatial dependence, focusing on the
following countries: Spain, Germany, France, Italy, UK, US, Argentina, Brazil, Japan and
Hong Kong. In both analyses we identify the months with significant spatial dependence
throughout the analysed period and study if during the financial crisis periods of the

https://www.eiu.com/n/
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Lehman Brothers bankruptcy, the US sub-prime mortgage crisis, the European debt crisis,
Brexit and the COVID-19 pandemic spatial dependence was more frequent compared to
non-crisis periods. The proposed global spatial dependence index is an indicator of market
linkages; taking this into account, our analysis answers the following three questions:

1. Are months with risk positive spatial dependence during financial crisis periods more
frequent than during the non-financial crisis period?

2. Is positive spatial dependence just as common in all periods of crisis?
3. Are there differences between volatilities with positive spatial dependence and VaRs

with positive spatial dependence?

Furthermore, the analysis of local spatial dependence allows one to determine which
countries have more weight in contagions during the analysed period and, therefore, which
countries are the causes of them.

There are many studies that analyse market linkages, in terms of contagion effects
between markets and during crisis periods, using different statistic methodologies. Below,
we summarise some examples in relation to the markets that are studied in this article.
Related to the global financial crisis, Dimitriou et al. [15] used a multivariate time series
model for the mean, variance and correlation of log-returns called “Multivariate AR(1)-
FIAPARCH-DCC process” (FIAPARCH-fractionally integrated asymmetric power ARCH
and DCC-dynamic conditional correlation) to investigate the contagion effects between the
five largest emerging equity markets: Brazil, Russia, India, China and South Africa (BRICS)
and the US, through different phases of the crisis, and they conclude that this contagion is
increased from early 2009 onwards and is greater during bull periods. In Lien et al. [16],
the indirect effects of volatility between the stock markets of the US and eight East Asian
countries were analysed before and during the Asian currency crisis and the sub-prime
credit crisis. Among other results, these authors show how the US market is the transmitter
and its volatility spills over to other markets during both crisis periods. However, between
the East Asian countries, Japan and Hong Kong are markets in which volatility spills over
from multiple markets during the sub-prime credit crisis period but not during the Asian
currency crisis. Mohti et al. [17] used copula models that were fitted to the ARMA-GARCH
filtered log-returns to investigate the contagion effects of the sub-prime financial crisis in
18 frontier markets; in relation to countries analysed in this article, these authors found that
for the US and Argentina the effects were more pronounced during booms than during
busts. Tilfani et al. [18], using log-returns, analysed the time cross-correlations between
the US and eight other stock markets (the rest of the G7 plus China and Russia) before,
during and after the financial crisis (2007–2008) and found, among other results, that in
the period immediately before the crisis the levels of correlation with the US stock market
increased, which could be understood as an overheating of the markets or perhaps an
increase in contagion due to systemic risk. After the crisis, the results point to a contagion
effect. The effect of the European debt crisis on different stock markets around the word
was analysed by Samarakoon [19], who showed that the Asian markets do not present
pervasive evidence of contagion from the European debt crisis (see [20] for an analysis on
the European economy).

In relation to the impact of Brexit, Breinlich et al. [21] used the abnormal returns
to analyse the stock market reaction to the outcome of the 2016 UK referendum on EU
membership and showed that the impact would depend on the nature of post-Brexit UK-EU
relations. Alternatively, using the log-returns data, Ameur and Louhichi [22] analysed
the impact of Brexit on the dependency between UK, France and Germany stock markets
and found that volatility and the total spillover effects increased in line with Brexit press
releases regarding negotiations on the future relationship between the EU and the UK. A
similar analysis is presented in Li [23] in which Italy, Poland and Ireland are also included.
Burdekin et al. [24] presented an extended analysis of the Brexit effect, worldwide, using an
econometric model based on log-return and abnormal log-returns to quantify the negative
impact of Brexit on different stock markets. Their results showed that the Eurozone was the
hardest hit, and the impact was felt the most by the so-called PIIGS group (Portugal, Ireland,
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Italy, Greece and Spain) due to their poor fiscal positions. On the contrary, the BRICS nations
(Brazil, Russia, India, China and South Africa) fared much better than average, experiencing
positive abnormal returns despite negative gross returns. In addition to these studies, it is
clear that the subsequent COVID-19 pandemic has affected the development of events and
has made it difficult to analyse the final effect of Brexit on financial markets.

More recently, various studies have analysed the impact of the COVID-19 pandemic on
financial markets. For example, Chopra and Mehta [25] used a multivariate DCC-GARCH
model of log-returns to compare the presence of contagion for the Asian stock markets
during the four main financial crises: the Asian financial crisis, the US sub-prime crisis,
the Eurozone debt crisis and the COVID-19 pandemic. The results showed that the US
sub-prime crisis was the most contagious for the Asian stock markets, while the impact of
the COVID-19 pandemic was the least contagious. Li et al. [26] investigated whether the
uncertainty index proposed by Baker et al. [27], referred to as IDEMV (Infectious Disease
Equity Market Volatility), had additional predictive power for stock market volatility in
France, Germany and the UK during the COVID-19 pandemic. The results showed that the
IDEMV had stronger predictive power for French and UK stock market volatility during
the COVID-19 pandemic; however, the VIX (Volatility Index) had superior predictive power
for the three European stock markets. Using a VARMA(1,1)-DCC-GARCH model for the
log-return, Akhtaruzzaman et al. [28] analysed the financial contagion between China and
the G7 countries. The results showed that China and Japan appeared to be transmitters
during the COVID-19 pandemic.

In general, the studies that have analysed the contagion between financial markets
used alternative multivariate time series models with log-returns series. In this study, we
present an alternative analysis focused on the risk and use spatial dependence statistics
to analyse linkages between the financial market’s volatility and its VaR metric, consid-
ering distances between the markets uncertainty levels measured by the GTUI instead of
geographical distances.

The remainder of the study is organised as follows. Section 2 presents the procedure to
test global and spatial dependence using asymptotic normal distribution and the bootstrap
method. In Section 3, the results of a simulation study are presented that compare the
asymptotic inference with bootstrap inference carried out with the global Moran’s I statistic
and local Moran statistic and assuming different distributions. In Section 4, we describe the
data and the spatial dependence results. In Section 5, we summarise the main conclusions.

2. The Spatial Dependence Model and Statistics for Testing

Let Yt = (Y1t, . . . , Ynt)′ be a vector with data of n countries at period t = 1, . . . , T. It
is assumed that Y1, . . . , YT are independent and identically distributed (iid). The spatial
autoregressive (SAR) model at period t is defined as:

Yt = µt + ρtWtYt + εt, (1)

where µt is a vector with deterministic means that can be estimated separately, ρt is the
spatial autocorrelation at period t and εt is a vector with n Normal iid errors with mean 0
and variance σ2

εt . The weights matrix at period t, Wt, is n× n and identifies the neighbours
for each i = 1, . . . , n. In financial analysis, a fundamental component of the model defined
in (1) is the weights matrix Wt, given that the geographical distance criterion does not work.
So, a specific dynamic criteria based on internet searches from economic agents is defined.

2.1. Google Trends Uncertainty Index

Google Trends is a Google Lab that uses the Google search engine to find information
related to the frequency with which a search for a particular term is carried out in various
regions of the world and in various languages. The available monthly data range is from
2004 to present.

The GTUI is based on the idea that economic agents, represented by internet users,
search for information online when they are not sure. This implies that the frequency of
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searching for terms that may be associated with future and possible bad events is high
when the level of uncertainty is high. To obtain the specific index for each country, we
select a broad set of keywords that are often cited in the Federal Reserve Beige Book for the
US and the Reserve Bank Statement on Monetary Policy. English is chosen as the common
language since it is the mostly widely used in the world. A total of 10 economic terms of
interest are selected: “austerity”, “bankruptcy”, “dollar”, “financial crisis”, “recession”,
“risk”, “stock exchange”, “share price”, “stock market” and “uncertainty”. These terms are
related to financial markets and the crisis events that have occurred in recent years and
the Google Trends tool enables us to find the frequency of searches using each of them by
country and month.

We selected the 10 economic terms mentioned above based on the dictionary proposed
by Castelnuovo and Tran [14]. Others studies that used similar indices are Weinberg [13]
and Baker et al. [11]. The selected words are the most common among the dictionaries
proposed for each measure of uncertainty mentioned by the previous authors, since these
are the words that best reflect the interest of the internet users in response to an important
economic world event.

Let fhit be the frequency of terms h in country i at period t, so the uncertainty index is
defined as:

GTUIit =
10

∑
h=1

fhit. (2)

It must be remembered that the vocabulary determines the construction of the uncer-
tainty index.

2.2. Weights Matrix Definition

To calculate the elements of Wt we use the criteria defined by Asgharian et al. [29]
based on constructing a contiguity matrix Ct between markets. This matrix indicates
how contiguous market i to market j is at period t, according to a measure of distance
(or similarity) between both countries. We then define the matrix Ct using the following
distance criterion between uncertainty index values:

Dijt = |GTUIit − GTUIjt|, ∀i 6= j t = 1, . . . , T. (3)

Let Cijt be the element of Ct that is the contiguity measure between country i (row)
and country j (column), which is given by:

Cijt = 1−
Dijt −minj Dijt

maxj Dijt −minj Dijt
∀ i 6= j t = 1, . . . , T.

This definition of contiguity ensures that all elements of Ct lie between 0 and 1; if Cijt
is near 0 the longest distance is from country i to country j and if Cijt is near 1 the shortest
distance is between country i and country j. Moreover, Cijt is not necessarily symmetric
(i.e., Cijt 6= Cjit); it could be that country j is an important neighbour for country i (i.e., Cijt
is close to 1) but country i may be unimportant for country j (i.e., Cijt is close to 0). The
linkages matrix or spatial weights in the matrices Wt are obtained from Cijt through row
standardisation. By construction, there are zeros on the diagonal of Wt; a market cannot be
a neighbour to itself. Then:

Wijt =
Cijt

∑n
j=1 Cijt

, ∀i 6= j t = 1, . . . , T, (4)

such that, for each row i, ∑n
j=1 Wijt = 1.

In order to determine with more precision which markets are neighbours, the continu-
ity matrix is discretised, i.e., values 0 or 1 are assigned based on whether two elements are
considered neighbours or not. The criterion can be based on a value c of the continuity ma-
trix C, for example, c can be equal to the median or to a quantile. Let C∗t be the discretised



Mathematics 2022, 10, 1317 6 of 23

continuity matrix, so C∗ijt = 1 if Cijt ≥ c and C∗ijt = 0 to the contrary. In practice, the weight
matrix is obtained from the row standardisation of C∗t .

Taking into account that the sum of the rows of C∗t is the number of neighbours nit for
each market, each row in the weight matrix has an element equal to 1

nit
or 0. Considering the

SAR model defined in (1), the coefficients associated with the neighbours of the market i are
ρt

1
nit

. Therefore, the larger the number of neighbours is, the weaker the spatial dependency
relation between markets.

2.3. Global Moran’s I Statistic

The Moran’s I statistic at period t is defined as the following, see [2]:

It =
n

S0t

∑n
i=1 ∑n

j=1 Wijt(Yit − Ȳt)
(
Yjt − Ȳt

)
∑n

i=1(Yit − Ȳt)
2 , (5)

where Ȳt is the sample mean and S0t = ∑n
i=1 ∑n

j=1 Wijt. Note that for standardised row
weight matrix S0t = n. Hereafter, the sub-index t is eliminated to simplify notation. Using
matrix notation:

I =
n

S0t

Ỹ′WỸ
Ỹ′Ỹ

, (6)

where Ỹ = Y− Ȳ1n is a column vector with the n centred data, where 1n is a column vector
with n ones. The asymptotic distribution of Moran’s I statistic is normal. Under the no
spatial autocorrelation null hypothesis, the expectation is:

E(I) = − 1
n− 1

. (7)

The variance can be calculated under normality assumption and under unknown
distribution. For the former, the result is:

VN(I) =
1

(n− 1)(n + 1)S2
0

(
n2S1 − nS2 + 3S2

0

)
− (E(I))2 (8)

and for the latter it is:

V(I) =
n
[(

n2 − 3n + 3
)
S1 − nS2 + 3S2

0
]
− k
[(

n2 − n
)
S1 − 2nS2 + 6S2

0
]

(n− 1)(3)S2
0

− (E(I))2, (9)

where k is the sample kurtosis coefficient, S1 = 1
2 ∑n

i=1 ∑n
j=1
(
Wij + Wji

)2,

S2 =
1
2

n

∑
i=1

n

∑
j=1

(
n

∑
j=1

Wij +
n

∑
j=1

Wji

)2

and (A)(b) = A(A− 1) . . . (A− b + 1).
The inference suggested by the global Moran’s I statistic is based on the assumption

that the data are independent and identically distributed (iid).
Inference on positive global spatial dependence can be based on the statistic

ZI = I−E(I)
V(I) ∼ Normal(0, 1), for a given significance level p, which is a value near 0;

the null hypothesis of no spatial dependence is rejected if P(Z > ZI) ≤ p, where Z is a
standard normal random variable.

Regarding non-normality, Griffith [4] concluded that this is not essential for the asymp-
totic properties of the Moran’s I statistic. So, the inference based on the asymptotic normal
distribution of the global Moran’s I statistic works. We analyse to what extent this property
is true by comparing normal based inference with the non-parametric inference based on
bootstrap samples. Let Ỹ∗(1), . . . , Ỹ∗(B) be a set of B bootstrap random samples of size n



Mathematics 2022, 10, 1317 7 of 23

that are selected with replacement. For each bootstrap sample, the Moran’s I statistic is
calculated as:

I∗(l) =
n
S0

Ỹ∗′(l)WỸ∗(l)
Ỹ∗′
(l)Ỹ

∗
(l)

, l = 1, . . . , B. (10)

The inference on positive global spatial dependence can be based on the empirical distri-
bution of bootstrap samples; the null hypothesis of no spatial dependence is rejected if
∑B

l=1 i
(

I∗
(l)>I

)
B ≤ p, where i(a) = 1 if condition a between parentheses is true. Jin and Lee [6]

proved the consistency of bootstrap inference based on Moran’s I statistic.

2.4. Testing Local Spatial Dependence

The global spatial dependence analysis indicates whether there are linkages between
all markets, or not, but it does not allow us to identify which markets are linked or which
have spatial dependence with their neighbours and, therefore, which are linked in terms of
similar risk. With the aim of analysing the local spatial dependence we use the local Moran
test proposed by Anselin [3], defined as:

Ii =
n(Yi − Ȳ)

∑n
i=1(Yi − Ȳ)2

n

∑
j=1

Wij
(
Yj − Ȳ

)
. (11)

Note that I = ∑n
i=1 Ii. The expectation of local Moran statistic is:

E(Ii) = −
Wi

n− 1
, (12)

where Wi = ∑n
j=1 Wij. The variance is:

V(Ii) =
W(2)

i (n− k)
n− 1

+
2W(hm)

i (2k− n)
(n− 1)(n− 2)

− (E(Ii))
2, (13)

where W(2)
i = ∑i 6=j W2

ij and 2W(hm)
i = ∑h 6=i ∑m 6=i WihWim. Although, asymptotically the

distribution of Ii is normal, in practice the exact distribution of this statistic is unknown
and normal based inference does not work. Furthermore, given that local inference implies
carrying out multiple tests using the same sample, we will need to modify the significance
level, for example, using Bonferroni correction. For a given significance level p, if the
number of multiple tests are r, the true significance level will be p/r. Similarly to the global
Moran’s I test, we compare normal inference with bootstrap inference using the B bootstrap
samples defined above. Mei et al. [7] proved the consistency of bootstrap inference for local
Moran statistic.

3. Simulation Study

In this section we analyse the results of the inference based on the global Moran’s
I and the local Moran statistics in the finite sample. We simulate the values Cij of the
continuity matrix to obtain the weight matrix W, and we also simulate the values of the
random variable Y in the SAR model defined in (1). We obtain 1000 samples of sizes n = 50
and n = 200, respectively. To simulate the values in W, we analyse the behaviour of the
Cijt used in the application presented in this article and we see that these values have
a behaviour similar to a random variable with distribution Beta(4.7, 3). To simulate the
values of the random variable Y, we use the following results from the SAR model:

Y = (In − ρW)−1(µ + ε), (14)

where In is the identity matrix of order n. To generate data from (14) we assume µ = 0 and
the value of ε are generated following alternative distributions that have different shapes
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and tail behaviour. These distributions are: normal with parameters µ = 0 and σ = 0.25;
a Student’s t with 3 degree of freedom, µ = 0 and σ = 0.25√

3
; a log-normal with µ = 0 and

variance 0.5; and a log-logistic with µ = 0 and variance 0.5. Note that these distributions
have alternative shapes that can be found when risk variables are analysed.The normal
and the Student’s t are symmetric, the second having heavier tails than the first. The
log-normal and log-logistic are right skewed and the second has a heavier right tail than
the first. Furthermore, log-logistic distribution is a asymptotically Pareto-type right-tailed
distribution. For each distribution, the values ρ = 0.9, 0.5, 0.1 are used.

In addition to the alternative distributions, the simulation study also analyses the effect
on the test results depending on the number of neighbours. With this aim, the continuity
matrix is discretised using different criteria for obtaining c (remember C∗ij = 1 if Cij > c and
C∗ij = 0 on the contrary): the median (second quartile) of the values Cij, their quantile at
75% confidence level (third quartile) and their quantile at 90% confidence level. Note that a
higher quantile means a smaller number of neighbours. So, spatial dependence is stronger
as ρ increases and the number of neighbours decreases.

In Table 1 the results of inference at 5% significance level using the global Moran’s I
statistic are shown. On the 1000 replicates of each sample, we calculate the percentage of
rejection of the null hypothesis of spatial independence from the alternative hypothesis of
positive spatial dependence. For every replicate, the test is carried out using asymptotic
inference based on normal distribution (N) and with the finite inference based on 1000 boot-
strap random samples (B) with replacement and the same size of the original samples.
For normal distributions, Student’s t and log-normal, the results with N and B are similar
in all cases. When the spatial dependence is clear, i.e., ρ = 0.9 and the neighbourhood
criterion is based on the quantile at 90% confidence level, the percentage of rejections is
practically equal to 1 in all cases. When the number of neighbours increases this percentage
decreases and it is similar when the value ρ decreases. For the log-logistic distribution,
again, the results for N and B are very similar when the neighbourhood criterion is based
on the quantile at 90% confidence level and ρ = 0.9 or ρ = 0.5. However, when the number
of neighbours is at its highest and ρ < 0.9, the percentage of rejection with N is greater
than that obtained with B. Compared with the alternative distributions, for the log-logistic,
which is Pareto tailed, the asymptotic inference based on Normal distribution will have
larger type I error, i.e., the null hypothesis could be rejected with more probability when
this is true.

Tables 2–4 show the results for local spatial inference using the local Moran statistic.
The results for three observations with different number of neighbours (maximum, median
and minimum) are, respectively, analysed. In general, as expected, the results of local
inference indicate that the percentage of rejections of the null hypothesis of spatial indepen-
dence is much lower than in the global test, this finding having already been presented by
Anselin [3]. However, in our simulation study we find some novel results, described below.

In the same way as for the global Moran’s I, with the local Moran statistic we also
observe that as the number of neighbours increases the null hypothesis is not rejected with
more frequency. Furthermore, as Table 2 shows, concerning the results for the case with the
maximum number of neighbours with each criterion, by using asymptotic inference (N) we
obtain a higher percentage of rejection than with bootstrap (B). In contrast, in Tables 3 and 4,
where the cases with median and minimum neighbours are analysed, respectively, the
percentage of rejection tends to be the highest with B, i.e., bootstrap inference has clearly
more power than asymptotic inference based on normal distribution. In other words, fewer
errors are made when rejecting the null hypothesis of independence.
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Table 1. Simulation results for global Moran’s I statistic using asymptotic inference (N) and bootstrap
inference (B), both at 5% significance level.

α = 0.1 Normal Student’s t Log-Normal Log-Logistic

n Quantile ρ N B N B N B N B

0.9 0.461 0.456 0.543 0.527 0.536 0.520 0.728 0.663
50 0.5 0.268 0.275 0.306 0.290 0.298 0.275 0.495 0.299

0.1 0.126 0.121 0.133 0.127 0.116 0.108 0.176 0.094

0.9 0.806 0.808 0.879 0.874 0.877 0.868 0.956 0.952
50 75 0.5 0.456 0.457 0.521 0.507 0.504 0.474 0.737 0.635

0.1 0.133 0.131 0.155 0.149 0.151 0.140 0.228 0.108

0.9 0.999 0.999 0.996 0.996 0.997 0.997 1.000 0.999
90 0.5 0.815 0.813 0.850 0.846 0.858 0.844 0.957 0.936

0.1 0.198 0.206 0.193 0.186 0.196 0.183 0.293 0.156

0.9 0.498 0.503 0.498 0.507 0.536 0.528 0.710 0.665
50 0.5 0.285 0.286 0.298 0.297 0.300 0.297 0.501 0.347

0.1 0.134 0.133 0.131 0.126 0.145 0.140 0.203 0.100

0.9 0.838 0.840 0.833 0.830 0.858 0.857 0.951 0.937
200 75 0.5 0.495 0.502 0.496 0.483 0.504 0.488 0.684 0.596

0.1 0.141 0.143 0.160 0.154 0.162 0.157 0.222 0.104

0.9 0.993 0.993 0.998 0.998 0.998 0.998 1.000 1.000
90 0.5 0.842 0.844 0.818 0.814 0.829 0.820 0.961 0.952

0.1 0.191 0.192 0.211 0.203 0.209 0.200 0.294 0.149

α = 0.05 Normal Student’s t Log-Normal Log-Logistic

n Quantile ρ N B N B N B N B

0.9 0.341 0.341 0.402 0.384 0.403 0.368 0.640 0.482
50 0.5 0.168 0.172 0.189 0.183 0.187 0.163 0.381 0.174

0.1 0.069 0.069 0.067 0.067 0.061 0.058 0.109 0.048

0.9 0.705 0.704 0.776 0.765 0.790 0.759 0.923 0.900
50 75 0.5 0.318 0.316 0.361 0.344 0.383 0.319 0.611 0.354

0.1 0.075 0.077 0.087 0.078 0.093 0.074 0.161 0.050

0.9 0.993 0.991 0.992 0.992 0.994 0.993 0.999 0.999
90 0.5 0.711 0.708 0.760 0.740 0.758 0.705 0.887 0.787

0.1 0.109 0.108 0.118 0.116 0.116 0.095 0.222 0.073

0.9 0.353 0.355 0.380 0.375 0.410 0.394 0.610 0.525
50 0.5 0.182 0.192 0.178 0.178 0.209 0.201 0.393 0.202

0.1 0.068 0.068 0.072 0.069 0.067 0.060 0.108 0.036

0.9 0.726 0.724 0.708 0.710 0.752 0.748 0.901 0.867
200 75 0.5 0.350 0.342 0.350 0.344 0.370 0.349 0.569 0.336

0.1 0.086 0.087 0.084 0.085 0.096 0.088 0.158 0.052

0.9 0.987 0.986 0.993 0.993 0.995 0.994 1.000 1.000
90 0.5 0.987 0.986 0.709 0.700 0.750 0.728 0.892 0.817

0.1 0.100 0.099 0.127 0.121 0.121 0.112 0.215 0.063

Analysing the results of local inference for alternative distributions, we observe that
the differences between N and B are the lowest for normal and Student’s t distributions.
For log-normal and log-logistic distributions the asymptotic inference barely detects spatial
dependence in those cases where it could be stronger, i.e., minimum number of neighbours
with neighbourhood criteria based on the quantile at 90% confidence level and with ρ = 0.9.
In these cases the bootstrap inference considerably improves normal based inference.
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Table 2. Simulation results for local Moran statistic with maximum number of neighbours using
asymptotic inference (N) and bootstrap inference (B), both at 10% significance level.

α = 0.1 Normal Student’s t Log-Normal Log-Logistic

n Quantile ρ N B N B N B N B

0.9 0.144 0.143 0.152 0.153 0.141 0.153 0.204 0.148
50 0.5 0.119 0.119 0.124 0.124 0.120 0.123 0.184 0.129

0.1 0.099 0.099 0.105 0.097 0.098 0.101 0.161 0.098

0.9 0.181 0.186 0.217 0.204 0.190 0.193 0.229 0.175
50 75 0.5 0.132 0.140 0.157 0.156 0.137 0.139 0.141 0.139

0.1 0.091 0.100 0.127 0.107 0.092 0.087 0.083 0.080

0.9 0.304 0.289 0.318 0.275 0.309 0.282 0.272 0.155
90 0.5 0.203 0.197 0.200 0.203 0.192 0.195 0.181 0.173

0.1 0.132 0.122 0.112 0.109 0.085 0.105 0.063 0.080

0.9 0.114 0.108 0.110 0.120 0.110 0.092 0.126 0.141
50 0.5 0.103 0.101 0.102 0.112 0.097 0.079 0.116 0.113

0.1 0.097 0.088 0.094 0.096 0.089 0.073 0.119 0.099

0.9 0.134 0.131 0.132 0.137 0.122 0.136 0.163 0.137
200 75 0.5 0.114 0.108 0.113 0.117 0.100 0.115 0.102 0.116

0.1 0.096 0.087 0.099 0.094 0.085 0.086 0.081 0.081

0.9 0.186 0.190 0.171 0.187 0.175 0.183 0.185 0.193
90 0.5 0.137 0.154 0.131 0.132 0.132 0.140 0.127 0.130

0.1 0.102 0.118 0.099 0.096 0.098 0.101 0.053 0.060

α = 0.05 Normal Student’s t Log-Normal Log-Logistic

n Quantile ρ N B N B N B N B

0.9 0.071 0.076 0.077 0.084 0.079 0.089 0.103 0.078
50 0.5 0.051 0.064 0.064 0.065 0.061 0.065 0.087 0.065

0.1 0.040 0.048 0.054 0.045 0.052 0.051 0.071 0.041

0.9 0.108 0.111 0.125 0.116 0.101 0.109 0.106 0.102
50 75 0.5 0.059 0.078 0.089 0.078 0.064 0.065 0.062 0.070

0.1 0.040 0.049 0.060 0.057 0.040 0.040 0.033 0.036

0.9 0.205 0.195 0.210 0.183 0.208 0.178 0.191 0.155
90 0.5 0.125 0.127 0.110 0.112 0.103 0.107 0.120 0.077

0.1 0.074 0.067 0.050 0.064 0.029 0.046 0.032 0.033

0.9 0.054 0.053 0.048 0.071 0.054 0.050 0.054 0.071
50 0.5 0.049 0.049 0.044 0.065 0.046 0.045 0.048 0.056

0.1 0.049 0.042 0.043 0.058 0.041 0.039 0.049 0.043

0.9 0.066 0.075 0.066 0.075 0.072 0.081 0.062 0.069
200 75 0.5 0.054 0.060 0.060 0.061 0.053 0.067 0.039 0.055

0.1 0.048 0.045 0.054 0.050 0.045 0.049 0.030 0.039

0.9 0.096 0.121 0.095 0.098 0.102 0.101 0.126 0.107
90 0.5 0.071 0.093 0.067 0.068 0.066 0.075 0.087 0.054

0.1 0.057 0.062 0.040 0.047 0.042 0.045 0.022 0.030
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Table 3. Simulation results for local Moran statistic with medium number of neighbours using
asymptotic inference (N) and bootstrap inference (B), both at 10% significance level.

α = 0.1 Normal Student’s t Log-Normal Log-Logistic

n Quantile ρ N B N B N B N B

0.9 0.148 0.170 0.166 0.161 0.153 0.161 0.169 0.160
50 0.5 0.123 0.129 0.139 0.130 0.123 0.122 0.133 0.126

0.1 0.103 0.098 0.114 0.106 0.100 0.090 0.099 0.084

0.9 0.177 0.186 0.161 0.188 0.182 0.207 0.212 0.174
50 75 0.5 0.139 0.144 0.144 0.137 0.129 0.151 0.130 0.117

0.1 0.110 0.111 0.117 0.094 0.102 0.103 0.057 0.073

0.9 0.277 0.286 0.254 0.290 0.267 0.293 0.206 0.275
90 0.5 0.203 0.201 0.164 0.199 0.162 0.194 0.143 0.190

0.1 0.128 0.132 0.099 0.101 0.083 0.121 0.051 0.069

0.9 0.118 0.128 0.105 0.112 0.128 0.139 0.112 0.129
50 0.5 0.114 0.117 0.096 0.106 0.118 0.118 0.104 0.108

0.1 0.105 0.105 0.092 0.092 0.113 0.105 0.104 0.078

0.9 0.119 0.121 0.135 0.155 0.127 0.150 0.149 0.120
200 75 0.5 0.108 0.109 0.110 0.125 0.107 0.129 0.094 0.087

0.1 0.095 0.082 0.088 0.102 0.093 0.093 0.049 0.048

0.9 0.171 0.190 0.154 0.171 0.161 0.180 0.131 0.187
90 0.5 0.141 0.147 0.136 0.137 0.118 0.148 0.095 0.126

0.1 0.112 0.119 0.099 0.107 0.084 0.103 0.027 0.048

α = 0.05 Normal Student’s t Log-Normal Log-Logistic

n Quantile ρ N B N B N B N B

0.9 0.081 0.095 0.091 0.091 0.083 0.087 0.070 0.090
50 0.5 0.064 0.066 0.073 0.071 0.059 0.064 0.048 0.066

0.1 0.048 0.051 0.055 0.051 0.041 0.050 0.034 0.042

0.9 0.101 0.114 0.100 0.101 0.112 0.113 0.108 0.084
50 75 0.5 0.075 0.085 0.081 0.077 0.069 0.081 0.066 0.063

0.1 0.052 0.053 0.057 0.049 0.046 0.052 0.021 0.037

0.9 0.167 0.189 0.151 0.192 0.154 0.198 0.137 0.169
90 0.5 0.107 0.124 0.101 0.111 0.093 0.117 0.113 0.121

0.1 0.066 0.073 0.059 0.050 0.050 0.059 0.033 0.040

0.9 0.064 0.063 0.047 0.057 0.064 0.070 0.046 0.070
50 0.5 0.059 0.056 0.044 0.051 0.061 0.064 0.042 0.054

0.1 0.053 0.045 0.042 0.043 0.059 0.048 0.037 0.034

0.9 0.056 0.064 0.071 0.080 0.053 0.084 0.091 0.056
200 75 0.5 0.048 0.056 0.056 0.065 0.048 0.056 0.054 0.040

0.1 0.039 0.041 0.047 0.049 0.037 0.036 0.021 0.026

0.9 0.091 0.110 0.093 0.104 0.093 0.115 0.091 0.111
90 0.5 0.077 0.087 0.068 0.076 0.060 0.088 0.076 0.072

0.1 0.059 0.066 0.045 0.053 0.037 0.057 0.017 0.025
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Table 4. Simulation results for local Moran statistic with minimum number of neighbours using
asymptotic inference (N) and bootstrap inference (B), both at 10% significance level.

α = 0.1 Normal Student’s t Log-Normal Log-Logistic

n Quantile ρ N B N B N B N B

0.9 0.168 0.180 0.173 0.173 0.176 0.198 0.195 0.180
50 0.5 0.133 0.152 0.139 0.139 0.141 0.152 0.111 0.123

0.1 0.106 0.125 0.113 0.108 0.116 0.120 0.081 0.069

0.9 0.184 0.212 0.210 0.246 0.172 0.228 0.167 0.237
50 75 0.5 0.130 0.161 0.161 0.182 0.121 0.164 0.119 0.164

0.1 0.094 0.110 0.121 0.110 0.075 0.107 0.041 0.056

0.9 0.212 0.309 0.147 0.300 0.099 0.313 0.066 0.252
90 0.5 0.175 0.224 0.125 0.209 0.078 0.222 0.064 0.156

0.1 0.123 0.111 0.086 0.118 0.046 0.116 0.043 0.062

0.9 0.122 0.141 0.147 0.119 0.125 0.153 0.127 0.143
50 0.5 0.110 0.126 0.129 0.107 0.119 0.132 0.095 0.114

0.1 0.099 0.114 0.111 0.091 0.107 0.112 0.085 0.080

0.9 0.131 0.160 0.120 0.135 0.147 0.180 0.139 0.180
200 75 0.5 0.119 0.139 0.104 0.115 0.130 0.145 0.088 0.110

0.1 0.105 0.122 0.091 0.094 0.110 0.114 0.033 0.055

0.9 0.179 0.193 0.163 0.183 0.141 0.227 0.095 0.203
90 0.5 0.145 0.155 0.128 0.138 0.100 0.162 0.077 0.141

0.1 0.114 0.118 0.100 0.093 0.071 0.105 0.023 0.044

α = 0.05 Normal Student’s t Log-Normal Log-Logistic

n Quantile ρ N B N B N B N B

0.9 0.097 0.123 0.102 0.101 0.101 0.123 0.069 0.091
50 0.5 0.077 0.090 0.085 0.077 0.059 0.094 0.044 0.052

0.1 0.052 0.064 0.065 0.056 0.049 0.066 0.026 0.032

0.9 0.099 0.142 0.125 0.165 0.081 0.134 0.120 0.152
50 75 0.5 0.064 0.096 0.092 0.106 0.052 0.092 0.102 0.088

0.1 0.043 0.062 0.068 0.067 0.033 0.050 0.028 0.029

0.9 0.115 0.220 0.077 0.176 0.058 0.181 0.058 0.142
90 0.5 0.082 0.134 0.077 0.134 0.055 0.124 0.053 0.088

0.1 0.059 0.064 0.056 0.058 0.033 0.058 0.038 0.045

0.9 0.062 0.071 0.073 0.065 0.055 0.089 0.040 0.072
50 0.5 0.055 0.065 0.059 0.057 0.048 0.077 0.025 0.048

0.1 0.052 0.058 0.051 0.052 0.044 0.060 0.022 0.024

0.9 0.066 0.102 0.067 0.077 0.081 0.115 0.106 0.088
200 75 0.5 0.055 0.086 0.055 0.059 0.068 0.092 0.070 0.047

0.1 0.045 0.071 0.052 0.046 0.055 0.072 0.016 0.026

0.9 0.092 0.123 0.106 0.102 0.086 0.140 0.074 0.119
90 0.5 0.072 0.088 0.076 0.076 0.054 0.083 0.068 0.085

0.1 0.048 0.057 0.058 0.054 0.031 0.046 0.021 0.019

4. Data Analysis

In our study, 45 countries and 46 stock indices (USA has two: Standard & Poor’s
500 and Dow Jones) are analysed monthly. These countries and stock indices are listed
in Table A1 in Appendix A. Each country is labelled using the two digits notation. The
frequencies of words per country and month were added to obtain our proposed GTUI. The
period analysed is from January 2004 to March 2021. The four sub-periods distinguished,
containing the most important financial crises in the 21st century to date, are as follows:
the US sub-prime period between 31 August 2007 and 30 June 2009; the Euro debt crisis
between 30 June 2010 and 30 June 2014; Brexit between 30 June 2016 and 31 January 2020;
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and the COVID-19 pandemic between 29 February 2020 and 31 March 2021. To obtain the
results of spatial dependence, the criterion for defining the neighbours was the median.
The criteria based on the most extreme quantiles used in the simulation study of Section 3
led to a very small number of neighbours, possibly even equal to zero in some periods,
which causes difficulties in calculating the statistics for testing spatial dependency.

The initial data are the monthly value of market indices MIti, t = 1, . . . , 207 and
i = 1, . . . , 46. We used monthly data because the information from Google Trends necessary
for the construction of the uncertainty index is available monthly. The monthly losses
are lti = −log

(
MIti

MI(t−1)i

)
, where for t = 1 we obtain the value of t− 1 = 0. In total, we

have 46 series of losses, described in Table A1 of Appendix A. The Shapiro–Wilk test for
small samples and the Kolmogorov–Smirnov test for large samples are used to study the
normality of the risk series; we omit normal inference results and for all the series the
normality assumption is rejected. For each monthly loss series, we study its stationarity
in mean and variance and filter the series with the fitted ARMA-GARCH models that
are shown in Table A2 in Appendix A. The series of losses called lti and the standardised
residuals rti of ARMA-GARCH models, called filtered series, are plotted in Figure 1. Three
main positive peaks are prominent in the plot on the left. The first corresponds to October
2010 in the middle of the Euro debt crisis, where Iceland reached losses of more than 50%,
followed by Peru, Argentina and Russia, whose indices lost 20% of their value. The second
peak is in August 2019 and corresponds to the economic crisis in Argentina, a country
whose stock index lost more than 23% of its value. The third is in March 2020, coinciding
with the health crisis of the COVID-19 pandemic which has affected the whole world and
during which, for example, Austria, Spain, Italy and Greece in the Eurozone lost more
than 10% of their stock index value. In the plot on the right, showing the standardised
residuals of the ARMA-GARCH fitted model, the four crisis periods are reflected with
greater instability in the series.

Figure 1. Losses (left) and standardised residuals of filtered losses (right) for the 46 stock indices.

With the filtered data we estimate the monthly risk with two alternative measures, the
volatility and the VaR at 99% confidence level, using the rolling method with a window of
12 months. This window is selected considering that we work with long monthly series and,
in addition to the volatility, where a window of 6 is very common, we must estimate the VaR
at 99%, in this case a window of 12 provides less sensitive results. The first year of data was
not available, leaving us with information for 195 months, from January 2005 to March 2021.
Let rit be the standardised residual of stock market i and month t, the volatility is estimated

with the known formula for the variance, σ̂2
it =

∑t
s=t−12(ris−r̄it)

2

12 , where r̄it =
∑t

s=t−12 ris
12 . The

VaR is estimated using the formula that takes into account the deviations from the normal
distribution, i.e., the modified VaR MVaR. Due to the non-normality of the data and the
diversity of the 46 analysed series, parametric and Monte Carlo approaches do not make
sense, the MVaR is the most consistent estimation in our case, and it is:

MVaRit = l̄it + ZCFσ̂it.
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In the MVaR formula, the term

ZCF = Zα +

(
Z2

α − 1
)
S

6
+

(
Z3

α − 3Zα

)
K

24
−
(
2Z3

α − 5Zα

)
S2

36

is the Cornish Fisher approximation of the α quantile, where S and K = k − 3 refer to
skewness and the excess of kurtosis of the data. Our variables, therefore, in formulas (5)
and (11) for global and local Moran statistics are Yit = σ̂2

it and Yit = MVaRit. In Figure 2
both risk measures for the 46 indices are plotted, including their means (magenta long
dashed line) and medians (yellow short dashed line) throughout the analysed period. In all
the figures that are shown in this section, the crisis periods are shaded.

Figure 2 shows that throughout the analysed period the mean of the risk variable is
greater than its median, which reflects the skewness of the data due to the presence of
extreme risks, especially during the sub-prime period. In the exercise of simulation of
Section 3, Table 1 shows that in these cases, when spatial dependence is not significant,
normal inference tends to reject the null hypothesis more frequently than bootstrap infer-
ence, i.e., the normality assumption increases the error type I. This result is reflected in our
analysis in Figure 3 where, along with the value of the global Moran’s I statistic, its upper
limits at 95% confidence level are plotted, estimated with normal distribution (thin dashed
line) and bootstrap (thick dashed line), with the former always below the latter.

Figure 2. Volatility (left) and MVaR at 99% confidence level (right). The crisis periods are shaded.
Mean values plotted in magenta long dashed line and median in yellow short dashed line.

In Figure 3, we observe that positive spatial dependence for volatility is more frequent
than for MVaR. This is justified given that the former takes into account both tails of the
loss distribution and the latter is focused on the right tail. So, on the right we plot positive
spatial dependence between extreme losses. For the volatility, the period with more positive
spatial dependence is the sub-prime crisis, followed by the Euro debt crisis; however, for
the MVaR, the sub-prime period remains the one that causes the greatest positive spatial
dependence between extreme losses but is followed by Brexit. Similar results on the US sub-
prime crisis have been obtained in recent work by Chopra and Mehta [25], these authors
showed that the sub-prime crisis was the most contagious for the Asian stock markets.
In addition, previous works also showed the contagion of this crisis in different financial
markets around the world, see [16,17].
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To complete the results of Figure 3, in Table 5 we show the test of differences of
proportions of months with significant positive spatial dependence between each crisis
period and the non-crisis period. The results of Table 5 allow us to answer the three
questions posed in the Introduction of this study. For volatility, in the four crisis periods the
proportion of the months with positive spatial dependence is greater than for the non-crisis
period. However, the differences are significant for the sub-prime and Euro debt crises. In
contrast, for the spatial dependence estimate with the MVaR, the proportion of months
for Euro debt crisis is lower than that for the non-crisis period, although the difference is
not significant at the 5% significance level. In this case, the Brexit period reflects a stronger
spatial dependence than the Euro debt period. In relation to the COVID-19 pandemic,
the results with volatility and MVaR do not show significant differences compared to the
non-crisis period. In response to the first question, we can affirm that the volatility spatial
dependence, that takes into account the two tails of the distribution (losses and profits),
is clearly more frequent in periods of crisis, i.e., spatial dependence occurs in boom and
bust periods. Regarding the second and third questions, we observe that there are clear
differences between the spatial dependence detected in the different periods of crisis and
between spatial dependence criteria (volatility and MVaR).

Figure 3. Global Moran’s I statistic for Volatility (left) and for MVaR at 99% confidence level (right).
The crisis periods are shaded. Upper limits at 95% confidence level that have been estimated with
normal distribution (thin dashed line) and bootstrap (thick dashed line).
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Table 5. Frequencies and proportion of months with significant positive global spatial dependence
and test at 5% significance level of difference between proportion of months with significant positive
spatial dependence in each crisis period, with respect to the non-crisis period.

Volatility MVaR

Volatility Frequency Proportion p-Value Frequency Proportion p-Value

Sub-prime 22 0.957 0.001 13 0.565 0.010
Euro Debit 42 0.857 0.002 12 0.245 0.287
Brexit 30 0.682 0.239 22 0.500 0.014
COVID-19 6 0.429 0.901 5 0.357 0.316

Total crisis 100 0.769 0.012 52 0.400 0.070

Total no crisis 40 0.615 19 0.292

Next, we analyse the local spatial dependency for the market indices of the following
countries: Spain, Germany, France, Italy, UK, US, Argentina, Brazil, Japan and Hong Kong,
in total 11 indices, given that the US has two. The upper confidence limits are carried out
with Bonferroni correction for multiple null hypothesis (11 in our case). In Figure 4, the
monthly number of neighbours for different groups of countries is plotted. It is in Japan
and Hong Kong where the trend shows an increase. In the EU, Italy has the greatest number
of neighbours throughout almost all of the period, followed by Spain, while Germany is
the EU country with the fewest neighbours of uncertainty. Argentina is below Brazil and
the UK has a more unstable behaviour in terms of number of neighbours than the US.

Figure 4. Number of neighbours.

The graphs from Figures 5–9 plot the local spatial dependence statistics (solid line)
and the bootstrap upper limits at 95% confidence level (dashed line) for testing significant
positive local spatial dependence. These figures are obtained focusing on the right tail of
the loss distribution, i.e., using MVaR for the 11 indices. Specifically, Figure 5 shows the
results for Argentina and Brazil, Figure 6 for the four EU markets, Figure 7 for the UK,
Figure 8 for the US and, finally, the local spatial dependence results for Japan and Hong
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Kong are shown in Figure 9. The results obtained with the volatility are omitted; similar
to global spatial dependence, these show a somewhat stronger dependence. A significant
local spatial dependence implies that the country spreads its situation of extreme losses
to its neighbouring countries, i.e., neighbours with similar uncertainty. These linkages
between stock market losses are apparent for some countries and for certain specific periods.
Figure 5 shows a significant local positive spatial dependence for Argentina just before the
Brexit referendum and at the end of this period. With regard to the EU countries, Figure 6
shows that it is the French stock market that shows a significant spatial dependence before
and during the sub-prime period, as well as some months with strong local dependency
during the Brexit and COVID-19 period. The UK shows similar results to France, although
the period of strong local spatial dependence before and after the Brexit referendum is
particularly prominent. The US indices are those that show more frequent local spatial
dependence in all the crisis periods apart from during the COVID-19 pandemic. Finally,
the two Asian stock markets have significant local spatial dependence in the sub-prime
period and more so in Japan.

Figure 5. Local Moran statistic for MVaR at 99% confidence level (solid line) and bootstrap upper
limits at 95% confidence level (dashed line). The crisis periods are shaded. Results for Argentine and
Brazil stock indices.
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Figure 6. Local Moran statistic for MVaR at 99% confidence level (solid line) and bootstrap up-
per limits at 95% confidence level (dashed line). The crisis periods are shaded. Results for EU
stock indices.

Figure 7. Local Moran statistic for MVaR at 99% confidence level (solid line) and bootstrap upper
limits at 95% confidence level (dashed line). The crisis periods are shaded. Results for UK stock index.
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Figure 8. Local Moran statistic for MVaR at 99% confidence level (solid line) and bootstrap upper
limits at 95% confidence level (dashed line). The crisis periods are shaded. Results for US stock indices.

Figure 9. Local Moran statistic for MVaR at 99% confidence level (solid line) and bootstrap upper
limits at 95% confidence level (dashed line). The crisis periods are shaded. Results for Japan and
Hong Kong stock indices.

We observe that between non-EU countries, Argentina has a certain level of contagion
both in the sub-prime crisis and due to Brexit, but it is relatively lower compared to the
EU countries analysed. It is interesting to note that countries such as Germany and Spain
have financial markets relatively isolated from the others, since they do not have relevant
spatial correlation.

With respect to the other countries analysed, there are certain relevant impulses: the
US indices clearly felt an impact from the Brexit crisis due to their interconnection with
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the UK economy; France, curiously, has connections for all crises except Brexit, since it has
somehow benefited from it.

With regard to the possibility of detecting crises in advance, through relevant impacts
on the spatial correlation, we see that the Euro debt crisis does not show any sign of impact,
nor does Brexit, but the sub-prime crisis does show in almost all countries an increase in the
relevant spatial correlation. We could perhaps consider that the type of crisis can influence
contagion before or during it and that the markets adjust their expectations differently
depending on what they are like.

5. Conclusions

This article presents a complete study of the analysis of global and local spatial
dependence with Moran statistics in the context of financial markets and their uncertainty.

A simulation study is presented which shows how, when there are extreme values in
the right tail of the distribution, the inference with global and local Moran statistics based
on the normal distribution increases the type I error. The same tests are also done based on
the bootstrap resampling technique.

Following the analysis of the data, there are some interesting findings. The period of
the global financial crisis of the sub-prime is the one that caused more linkages between
the extreme losses of the analysed stock indices. We can therefore conclude that systemic
risk in this period caused more losses than in the others periods. The Euro debt period
is the one with less global spatial dependence between extreme losses, followed by the
COVID-19 pandemic period. Between the 10 countries whose local spatial dependences
were analysed, those that were contagious for their neighbours of uncertainty in certain
months were Argentina, France, the US, the UK, Japan and Hong Kong.

The impact of the financial crisis of the sub-prime is the most visible in our study such
that it presents a greater presence of joint or systemic risk, where the most extreme losses are
greater. However, the opposite is seen in two other crises analysed, Euro debt and COVID-
19. We consider that a possible justification for this comes from the fact that their impact
was more indirect on the markets and more adequate management tools were created.
With regard to Brexit, which was consolidated little by little, we see that there are no signs
of contagion before it, but there are during it in the countries with more interconnected
economies: the US, Hong Kong, Japan and, of course, the UK. Finally, we would like to
mention a degree of isolation of certain countries in terms of contagion—Germany, Spain,
Italy and Brazil—this may because these countries have different structures than those that
are more closely related. The greater variability of the Local Moran indicator itself could be
an early indicator of the crises themselves, and detecting which markets are more sensitive
to them could be a way of preparing the latter for any adjustments needed.
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Appendix A

Table A1. Descriptive statistics of stock market losses.

Country Label Index Mean STD Min Median Max Skew Kurtosis

Argentina AR MERVAL −0.80% 4.66% −10.66% −0.58% 23.28% 0.952 3.988
Australia AU S&P-ASX200 −0.15% 1.76% −4.12% −0.46% 10.34% 1.467 5.467
Austria AT ATX −0.15% 2.96% −9.44% −0.47% 14.38% 1.420 5.567
Belgium BE BEL20 −0.11% 2.14% −8.10% −0.47% 10.46% 1.155 4.372
Brazil BR BOVESPA −0.34% 2.95% −6.81% −0.35% 15.43% 1.009 4.153
Canada CA S&PTSX −0.17% 1.70% −4.61% −0.38% 8.48% 1.480 6.016
Chile CL IPSA −0.24% 2.05% −6.48% −0.18% 7.27% 0.043 0.727
Czech Rep CZ PX −0.10% 2.62% −7.43% −0.28% 13.74% 1.276 5.344
Denmark DK OMX −0.37% 2.09% −8.04% −0.48% 9.04% 0.819 3.385
Egypt EG EGX 30 −0.48% 3.96% −13.54% −0.47% 15.05% 0.281 1.842
Finland FI OMXH25 −0.24% 2.27% −9.86% −0.47% 8.10% 0.413 2.400
France FR CAC40 −0.10% 2.10% −7.96% −0.38% 8.20% 0.535 1.768
Germany DE DAX −0.27% 2.27% −6.73% −0.57% 9.25% 0.822 2.233
Greece GR ATH 0.21% 3.91% −11.19% −0.21% 14.19% 0.661 1.242
Hong Kong HK HANG SENG −0.18% 2.54% −6.85% −0.52% 11.05% 0.687 1.855
Hungary HU BUX −0.33% 2.83% −7.97% −0.52% 14.52% 0.871 3.816
Iceland IS ICEX 0.00% 4.64% −7.14% −0.43% 54.52% 8.187 90.454
India IN BSE SENSEX 30 −0.45% 2.82% −10.81% −0.50% 12.92% 0.957 4.191
Indonecia ID IDX −0.47% 2.53% −7.97% −0.73% 16.38% 1.655 9.189
Ireland IE ISEQ 20 −0.09% 2.48% −7.74% −0.37% 10.24% 1.099 2.886
Israel IL TA35 −0.24% 2.04% −4.74% −0.47% 8.72% 0.985 2.479
Italy IT FTSE MIB 0.03% 2.63% −8.97% −0.32% 11.04% 0.500 1.908
Japan JP NIKKEI 225 −0.21% 2.39% −6.09% −0.48% 11.82% 0.902 2.505
Malaysia MY KLCI −0.14% 1.51% −5.52% −0.28% 7.17% 0.513 2.941
Mexico MX IPC −0.35% 2.09% −5.38% −0.39% 8.54% 0.718 2.012
Netherlands NL AEX −0.14% 2.12% −5.50% −0.49% 9.54% 1.192 3.654
New Zeland NZ S&PNZX10 −0.34% 1.48% −3.64% −0.46% 6.05% 1.088 2.725
Norway NO OSEAX −0.37% 2.42% −6.09% −0.60% 11.88% 1.432 5.196
Pakistan PK KARACHI100 −0.49% 3.09% −8.78% −0.79% 19.49% 1.707 8.665
Peru PE IGBVL −0.47% 3.57% −14.13% −0.43% 20.26% 0.597 6.057
Philippines PH PSEI −0.33% 2.33% −6.06% −0.57% 11.96% 1.192 4.825
Poland PL WIG20 −0.05% 2.64% −8.18% −0.21% 11.59% 0.455 1.706
Portugal PT PSI20 0.07% 2.32% −6.71% −0.14% 10.14% 0.714 1.893
Russia RU RTSI −0.20% 4.08% −11.59% −0.41% 19.51% 0.815 2.730
Singapore SG STI −0.11% 2.18% −8.38% −0.39% 11.88% 1.019 5.996
Slovakia SK SAX −0.15% 2.16% −12.63% −0.22% 8.89% −0.685 6.303
South Korea KR KOSPI200 −0.28% 2.29% −5.80% −0.39% 11.43% 0.743 3.155
Spain ES IBEX35 −0.02% 2.49% −9.75% −0.31% 10.91% 0.395 2.892
Sweden SE OMXS30 −0.25% 2.00% −6.81% −0.37% 8.02% 0.817 2.266
Swiss CH SMI −0.14% 1.54% −4.19% −0.38% 5.22% 0.536 0.560
Taiwan TW TWII −0.21% 2.24% −6.07% −0.42% 9.06% 0.689 1.876
Thailand TH SET −0.14% 2.50% −7.13% −0.41% 15.60% 1.384 7.275
Turkey TR BIST100 −0.44% 3.31% −8.94% −0.75% 11.42% 0.417 0.500
UK GB FTSE100 −0.08% 1.68% −5.06% −0.35% 6.45% 0.730 1.604
USA US DOWJONES −0.23% 1.76% −4.86% −0.36% 6.58% 0.806 2.064
USA US S&P 500 −0.26% 1.82% −5.19% −0.52% 8.06% 0.892 2.487
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Table A2. Fitted ARMA-GARCH models.

Label Index Model
AR MERVAL ARMA(0, 0) - GARCH(1, 1)
AU S&P-ASX200 ARMA(0, 0) - GARCH(1, 1)
AT ATX ARMA(1, 0) - GARCH(0, 0)
BE BEL20 ARMA(1, 0) - GARCH(0, 0)
BR BOVESPA ARMA(0, 0) - GARCH(0, 0)
CA S&PTSX ARMA(0, 0) - GARCH(1, 1)
CL IPSA ARMA(0, 0) - GARCH(1, 1)
CZ PX ARMA(1, 0) - GARCH(0, 0)
DK OMX ARMA(1, 0) - GARCH(0, 0)
EG EGX30 ARMA(1, 0) - GARCH(0, 0)
FI OMXH25 ARMA(1, 0) - GARCH(0, 0)
FR CAC40 ARMA(0, 0) - GARCH(1, 1)
DE DAX ARMA(0, 0) - GARCH(0, 0)
GR ATH ARMA(1, 0) - GARCH(0, 0)
HK HANG SENG ARMA(0, 0) - GARCH(1, 1)
HU BUX ARMA(1, 0) - GARCH(0, 0)
IS ICEX ARMA(1, 0) - GARCH(0, 0)
IN BSE SENSEX30 ARMA(0, 0) - GARCH(1, 1)
ID IDX ARMA(1, 0) - GARCH(0, 0)
IE ISEQ20 ARMA(1, 0) - GARCH(0, 0)
IL TA35 ARMA(0, 0) - GARCH(1, 1)
IT FTSE MIB ARMA(0, 0) - GARCH(0, 0)
JP NIKKEI225 ARMA(0, 0) - GARCH(1, 1)
MY KLCI ARMA(0, 0) - GARCH(0, 0)
MX IPC ARMA(0, 0) - GARCH(0, 0)
NL AEX ARMA(0, 0) - GARCH(1, 1)
NZ S&PNZX10 ARMA(0, 0) - GARCH(0, 0)
NO OSEAX ARMA(1, 0) - GARCH(0, 0)
PK KARACHI100 ARMA(0, 0) - GARCH(0, 0)
PE IGBVL ARMA(1, 0) - GARCH(0, 0)
PH PSEI ARMA(0, 0) - GARCH(0, 0)
PL WIG20 ARMA(0, 0) - GARCH(1, 1)
PT PSI20 ARMA(1, 0) - GARCH(0, 0)
RU RTSI ARMA(1, 0) - GARCH(0, 0)
SG STI ARMA(0, 0) - GARCH(0, 0)
SK SAX ARMA(1, 0) - GARCH(0, 0)
KR KOSPI200 ARMA(0, 0) - GARCH(0. 0)
SP IBEX35 ARMA(0, 0) - GARCH(0, 0)
SE OMXS30 ARMA(0, 0) - GARCH(0, 0)
CH SMI ARMA(0, 0) - GARCH(1, 1)
TW TWII ARMA(1, 0) - GARCH(0, 0)
TH SET ARMA(1, 0) - GARCH(0, 0)
TR BIST100 ARMA(0, 0) - GARCH(0, 0)
UK FTSE100 ARMA(0, 0) - GARCH(1, 1)
US DOWJONES ARMA(0, 0) - GARCH(1, 1)
US S&P 500 ARMA(0, 0) - GARCH(1, 1)
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