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Abstract: The present paper was inspired by recent developments in laboratory experiments within
the framework of cancer-on-chip technology, an immune-oncology microfluidic chip aiming at study-
ing the fundamental mechanisms of immunocompetent behavior. We focus on the laboratory setting
where cancer is treated with chemotherapy drugs, and in this case, the effects of the treatment admin-
istration hypothesized by biologists are: the absence of migration and proliferation of tumor cells,
which are dying; the stimulation of the production of chemical substances (annexin); the migration of
leukocytes in the direction of higher concentrations of chemicals. Here, following the physiological
hypotheses made by biologists on the phenomena occurring in these experiments, we introduce
an agent-based model reproducing the dynamics of two cell populations (agents), i.e., tumor cells
and leukocytes living in the microfluidic chip environment. Our model aims at proof of concept,
demonstrating that the observations of the biological phenomena can be obtained by the model on
the basis of the explicit assumptions made. In this framework, close adherence of the computational
model to the biological results, as shown in the section devoted to the first calibration of the model
with respect to available observations, is successfully accomplished.

Keywords: differential equations; cellular automata; mathematical biology; cell migration;
microfluidic chip; biased random walks

MSC: 65M06; 68Q80; 92B05; 92C17; 82C22; 60K37

1. Introduction

Computational models are applied in biology for understanding, explaining and
predicting experimental data obtained in laboratory experiments and then translating them
into possible control approaches to system behavior.

The computational model proposed in the present work is inspired by recent develop-
ments in cancer-on-chip (COC) technology [1–5], the availability of data from laboratory
experiments using this preparation in order to test and understand the complex mechanisms
behind cell dynamics and the interaction between immune and tumor cells. Inferential
methods to treat COC data can be found in [6].

The migration of individuals has been a widely studied topic in mathematical model-
ing and has been described at different scales: microscopic, with the movement of single
cells formulated with agent-based or ODE modeling but also at a macroscopic scale, through
PDE modeling describing cell density or chemical gradient variations, see for instance
classical models [7,8]. The evolution over time of chemical gradients in the environment
can also be formulated with ODEs or PDEs, or by cellular automata incorporating local
reaction–diffusion dynamics. A variety of mathematical models for biological phenomena,
including dynamics of cells and amoeboid organisms and the evolution of chemical stimuli
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in the tumor microenvironment, can be found in the literature [9–18]. A kind of modeling
known as “hybrid” multiscale consists in combining the macroscopic approach expressed
by PDEs with the microscopic approach expressed by ODEs [19–24]. Comprehensive
literature reviews on hybrid models exist [25].

In recent publications by one of the authors, macroscopic modeling of COC experiment,
ad hoc transmission conditions for chip geometry and related estimation techniques for
model parameters were proposed, describing long-range dynamics of immune cells driven
by the chemical substances secreted by cancer cells in the chip environment [26,27]. A
discrete-in-continuous hybrid approach was also formulated as a PDE reaction–diffusion
partial model for the evolution of the chemicals, coupled with an ODE particle model for
cell motion, with simulations reproducing the dynamics in only on a small portion of the
right chamber and not on the whole area observed in video footage [28].

Based on biological hypotheses, we propose here a proof-of-concept hybrid agent-
based model describing immune cell (leukocyte) dynamics as driven by the (gradient of the)
chemical signal produced by tumor cells (TCs). The production, diffusion and consumption
of the chemicals released by TCs in the environment is described by a discretization of a
reaction–diffusion partial differential equation, along the lines of the Keller–Segel model [8].
The exploration of the environment by leukocytes and their migration is described by a
discrete, nonisotropic Brownian motion equation, reflecting randomness in their movement
as well as their sensing the chemical signal gradient in the chip.

1.1. Original Contribution of the Present Paper and Sketch of the Methodology

From the mathematical and computational viewpoint, we deal with a challenging
issue arising in chemotaxis modeling of cell interaction.

Considering the modeling here proposed in comparison with previous works on the
same topic, the original contribution of the present paper is the development of a rather
general, easy to implement mathematical model, able to reproduce the main features of the
observed COC experiments such as cell migration driven by a chemical stimulus, as well
as possibly short- and long-range interactions between immune cells. Differently from the
approaches mentioned above, our framework, based on cellular automata approach, does
not require the development of dedicated numerical schemes for the approximation of the
transmission conditions at the microchannels connecting the left and right chambers.

Another advantage of this agent-based approach, besides its ability to reproduce
complex system-level emergent behavior with simple rules, is the flexibility and autonomy
of each modeled agent, which allow an easy extension of the model to take into account
heterogeneity of the environment, chemical substances and cell species. We perform a first
validation of the model by visually calibrating the model parameters against aggregated
real data (using time of transition from right- to left-compartment and fraction of leukocytes
in the chip’s compartments as indicators). A schematization of the proposed approach is
reported in the next Figure 1, where we provide an overview on the proposed framework
with a flowchart showing the general structure of our approach.

1.2. Plan of the Paper

The plan of the paper is as follows. In Section 2 we describe the biological framework
that inspires our study. In Section 3, the mathematical formulation of the COC agent-
based model is illustrated, while in Section 4, the numerical simulations obtained with
the algorithm are reported and the results of the calibration of the model parameters are
displayed. Section 5 is devoted to a discussion of the results obtained and, finally, Section 6
concludes our work.
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Figure 1. Flowchart schematizing the procedure applied in the present work.

2. Biological Framework

Biological in vitro experiments are performed to mimic in vivo phenomena with re-
duced complexity. This simplification gives experimentalists the possibility of analyzing
such phenomena when isolated from the organism in order to gain a deeper understanding
of the underlying mechanisms. Recent studies on biofilm formation, bacteria, cell filamen-
tation and multicellular pattern formation can be found in [29–33]. It can be challenging
to extrapolate in vitro results to in vivo because the overall effects of an experiment on a
living subject may be affected by factors which are not present in vitro.

Motivated by the need to gain a better understanding of the immune system’s response
in the context of toxicity testing, organs-on-chip technology was recently developed and
engineered [1,34,35] to recreate, as realistically as possible, the mechanical and physio-
chemical environment surrounding living and active cells. This technology increases the
complexity of in vitro systems, better allowing the experimenter to approximate in vivo
tissue response, largely avoiding the typical disadvantages of conventional cell cultures
and allowing the maintenance of the normal physiological functions of cells and tissues
over long periods of time.

Among different types of cancer investigations, immuno-oncology represents a hot
topic in current research, as can be seen from relevant works on cancer-immune models
developed in this context [34–36]. This modeling enables the use of a synthetic biology
approach in which important molecular, biophysical, cellular and tissue components can
be varied individually or in combination in a controlled manner to understand the deter-
minants of disease progression. In this framework, many research groups have recently
analyzed how microenvironmental factors influence tumor cell responses to anticancer
therapies. In particular, COC experiments are used to study the interaction between cancer
and immune cells within the context of immune competence and genetic mutations. This
sheds light on the response of cancer to therapies when the immune system is healthy.
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Figure 2. Diagonal trajectories driven by the chemical signal of immune cells from the right chamber to
the left chamber, crossing the microchannels. Credit: Crop of picture in Agliari et al. (2014), Reference [6].

In order to show immune cells’ migration, an image of the diagonal paths from the
left to the right chamber covered by leukocytes following the chemical signal secreted by
tumor cells is depicted in Figure 2. It is worth noting that in Figure 2, a subarea of the
domain reported in Figure 3 is shown. For this reason, some cell trajectories appear in the
diagonal-lower part of the picture.

Figure 3. Video frame representing the microfluidic chip area under observation. The migration of
leukocytes from the right to the left chamber is traced. Credit: Crop of an image in Vacchelli et al. [2]
edited by AAAS.

Setting of the Real Experiment

The COC experiment consists of three main culture chambers for plating adherent
TCs and floating leukocytes, connected by a bridge of microchannels allowing chemical
and physical contacts. The immune population is composed of different cell species, such
as T and B lymphocytes, dendritic cells and monocytes.

In Figure 4, a picture of the two boxes or compartments is shown. Since in the video
footage the experiment is recorded at a fixed height, the third spatial dimension in our
framework is neglected.
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Figure 4. Microfluidic chip environment. Panel (A): schematics of the 3-D configuration of the whole
chip. Panel (B): schematics of the central, active portion of the chip. Panel (C): 2D-representation of
the active, central portion of the chip as modeled. Panel (D): actual photograph of the microfluidic
device. Credit: Businaro et al. (2013) [1], edited by The Royal Society of Chemistry.

Here, we refer to the experiment of two main culture chambers (a tumor compartment
and an immune cell compartment), see [2], connected via 31 narrow capillary migration
microchannels having a width and length of δ =12 µm and LC = 500 µm, respectively. The
whole dimension of the chip visualized in the video footage of the experiment, including
culture chambers and microchannels, is 1362 µm (vertical height) × 1702 µm (horizontal
width). We have, therefore, two microfluidic chambers of the same size, one on the left
and the other on the right of the microchannels. The complete domain is denoted as
Ω, including all of the architecture excepting the obstacles of a width of about 33 µm
separating the microfluidic channels. Note that leukocytes measure approximately 10 µm
in diameter [37], while TCs measure about 20 µm in diameter [38]. The microchannels have
a width of 12 µm.

In the experimental set-up, the time-lapse observation area includes the complete
domain Ω, with leukocytes progressively being loaded into the right-hand compartment.
Our goal consists in modeling the long-range migration of leukocytes towards the TCs,
taking into account the different factors influencing these cells.

At the beginning of the experiment, the left chamber is populated with only about
60 cancer cells, pretreated with doxorubicin hydrochloride and immersed in a suitable
culture medium. Initially, no leukocytes are present in the left compartment. Passive
migration of leukocytes from the reservoirs to the right compartment occurs progressively
during the first 24 h.

Due to the treatment of TCs with the chemotherapy drug, no migration nor prolifera-
tion of cancer cells occurs during the experiment. The chemotherapy administered to tumor
cells at the beginning of the experiment not only depresses their replication and movement
but also stimulates them, producing a host of chemoattractants, of which annexin is the
main representative.

Since tumor cells are progressively dying, the chemical signal is not produced at the
same rate throughout the experiment, but no quantitative information about the chemical
gradients, which are established in the environment, is experimentally available. This fea-
ture is not considered in the present version of the model.

In the first 24 h, leukocytes only appear to explore the right-chamber environment;
after that time they appear to progressively migrate through the microchannels, reaching
the tumor cells located in the left chamber, presumably in response to the chemoattractant
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gradient that is being progressively established throughout the domain. In Figure 3,
an image of the chip environment for the observation of interactions between immune
and cancer cells is depicted, where migration of leukocytes from the right to the left
compartment occurs.

3. The Hybrid Agent-Based Cellular Automata Model

The mathematical modeling of biological processes and mechanisms, i.e., the develop-
ment of “in silico” models, allows computer simulations to be performed in order to obtain
insight into the mechanisms and features behind the experimentally observed phenomena.
At the same time, computer simulations may give rise to hypotheses, which can in turn be
tested in vitro for the validation and improvement of the mathematical interpretation of
what is happening.

Inspired by the biological framework described in Section 2, we developed an agent-
based model which mimics the behavior of living cells, i.e., leukocytes and TCs, in the
microfluidic chip environment, see Figure 3. Since in this laboratory experiment tumor
cells are treated with chemotherapy, which stimulates the production of chemoattractants,
we replicate this phenomenon in our model, with the main goal of verifying whether
the establishment of a gradient of chemoattractant, and the hypothesized sensitivity of
the leukocytes to it, are consistent with their observed migration, at least conceptually.
The model parameters describing production, consumption and diffusion of the chemoat-
tractant secreted by TCs need to be calibrated in order to replicate quantitatively the
observed migration.

We describe here the general formulation of our model that is detailed in the following.
First, let us introduce the computational domain Ω composed of the two chambers and
the microchannels [0, Lx]× [0, Ly], with the exclusion of the space occupied by obstacles,
and the time-dependent position of each leukocyte l defined as Xl and characterized by
the coordinates of its center, i.e., Xl(t) = (xl , yl), with (xl , yl) ∈ Ω, l = 1, . . . , NL(t). The
equation for the motion of each leukocyte could generically be written as:

Xl(t) = f (A, θ), l = 1, . . . , NL(t), (1)

with NL(t) the number of leukocytes at time t ∈ [0, Tf ]. The function f depends on A(t),
the time- and space-varying concentration of the main extracellular diffusing molecule
annexin, which is influenced by the number, positions and production rates of tumor cells
T, as well as on a vector θ of parameters that is specified in the Section 3, independent of t
and of the positions {Xl}.

Note that in the formulation here proposed we are not considering the possible state
S of the agents (e.g., activated vs. not activated), nor are we considering their death.
However, additional features such as these can be easily added to the model. We also
remark that, for the sake of simplicity, only a single type of extracellular diffusing molecule
is considered, whereas multiple diffusing molecules could also be similarly represented.
Always in keeping with the simplification approach adopted, the current particle model
only describes leukocytes, since neither tumor proliferation nor migration or death occur
as a consequence of chemotherapy.

The time evolution of annexin in the whole domain during the experiment is modeled
by a discrete formulation of a reaction–diffusion equation, similar to a classical chemotaxis
model [8]:

∂A(x, y, t)
∂t

= D4A(x, y, t)− kXA A(x, y, t) + kA(x, y), (2)

for (x, y, t) ∈ Ω× [0, Tf ], with Tf the final observation time of 48 h. We denote by D the
isotropic diffusion coefficient, and kXA and kA are the rate coefficients, respectively, for
elimination (linear in annexin concentration) and production (fixed over time but only
associated to locations where tumor cells are alive).
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The first step of our modeling effort therefore consists in obtaining a field of concen-
tration of chemicals, here represented by annexin, a ligand that binds to the FPR1 (Formyl
Peptide Receptor 1) receptor expressed by leukocytes, in particular by dendritic cells.

Looking at the experimental trajectories of leukocytes, we observe that the migration
does not appear to occur in the first 24 h. A time delay of 24 h seems to be necessary
for the production of a sufficient quantity of chemicals and their diffusion through the
microchannels to finally reach the leukocytes accruing to the right chamber and stimulate
their movement.

3.1. The Mathematical Model

The representation here developed is a hybrid cell automaton (for the production and
diffusion of annexin) and agent-based (for the movement of leukocytes) computational
model. While the domain is represented as a 2D lattice in the plane, the methodology here
presented can be easily extended to a three-dimensional model.

From the biological point of view, cell migration involves complex mechanisms: in-
tracellular signaling, adhesion and repulsion forces and cytoskeleton remodeling. More-
over, the searching behavior of leukocytes is based on their basal movement pattern,
an amoeboid-like crawling [39] with intermittent walk and zigzag turning preferences [18].

Here, we model leukocytes migration as a biased random walk to express the two
driving forces responsible for leukocytes dynamics: the natural stochastic movement of
cells (the random exploration of the environment) and the anisotropic, directed migration
in response to the chemical signal, known as chemotaxis. Two-dimensional Brownian
motion, characterized by steps of random direction and length, is inherently appropriate
to express the zigzag pathways of leukocytes. The possible random absence of detectable
movement is also represented in the model. This modeling approach therefore captures the
idea of generalized Lévy walks, which contemplate run and pause phases, already proved
to be successful in reproducing cell dynamics [40,41]. As a first approach to the problem,
the stochastic model used here seems to be effective in reproducing the migration rate of
leukocytes from the right to the left compartment, as confirmed by the comparison with
the statistics on real data reported in the Section 4.

Notice that we do not take into account frictional forces exerted by the fluid on cell
motion, nor do we consider inertia or acceleration of the leukocytes. For the current analysis,
the time between observations is sufficiently long and the speed of the cells and their mass
are sufficiently small to make the active movement of leukocytes in response to the chemical
gradient preponderant in the model representation. In fact, spontaneous, random motion
of the leukocytes is biased by the local concentration of the chemoattractant (denoted by A
below) produced by TCs. The chemical then diffuses and degrades in the environment and
is modeled on a continuum scale as a parabolic reaction–diffusion equation:

∂A(x, y, t)
∂t

= D4A(x, y, t)− kXA A(x, y, t) + kA

NT

∑
k=1

χBk (x, y, RT), (3)

where D is the isotropic diffusion coefficient, kXA is the extracellular degradation rate
(assumed apparently linear), kA is the density of production rate at a point where tumor
cells are present, NT is the number of tumor cells and Bk is the (two-dimensional) ball
representing the kth tumor cell of center (xk, yk) ∈ [0, Lx]× [0, Ly] and radius RT (the same
for all tumor cells in the present version of the model); the indicator function χBk (x, y, RT)
has value 1 if the point (x, y) belongs to the ball Bk, otherwise it is 0. Notice that the annexin
production at each point would be proportional to the number of tumor cells superposed
at that point: while in the present implementation of the model we seed the left chamber
with nonsuperposing tumor cells (hence each point in space here belongs to at most one
tumor cell); the term in Equation (3) would be correct in the case of multiple tumor cells
superimposed at some point.
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In order to avoid misunderstandings, we henceforth use the term “pixel” to indicate the
grid cells of the cellular automaton (whose size is determined by the spatial discretization
step of the considered domain), reserving the term “cell” to leukocytes and TCs. Let us
therefore denote by pn the pixel identified by grid coordinates (in, jn) (row and column
coordinates). Let Mpl = {pn centered at (in, jn)|

√
(xn − xl)2 + (yn − yl)2 ≤ RL} be the set

of Moore neighbors of the pixel pl where the lth leukocyte center is located, and where
RL is the radius of leukocytes (assumed all of the same size in the present version of the
model). Furthermore, let the cardinality of Mpl be Npl = |Mpl | . In the present model
version, movement of the leukocytes is observed at discrete time steps and track is kept not
of the exact position (x, y) but only of the pixel it occupies in the grid (p = (i, j)).

Our model for leukocyte movement is thus discretized in time (observing the position
of the cell at successive separate instants) and in space. We may describe the next position
of the lth leukocyte as depending on the previous one, on annexin concentrations and on
model parameters:

pl(t + ∆t) = f (A(Mpl , t), γ, λ, pl(t)), t ∈ [0, Tf ], l = 1, ..., NL(t). (4)

where pl = (il , jl) is the pixel occupied by the center of the leukocyte, A(Mpl , t) is the
annexin concentration in a Moore neighborhood of the considered leukocyte at time t,
λ ∈ R+ in an amplification parameter expressing the tendency of leukocytes to migrate to-
wards higher annexin concentrations, γ > 1 is a threshold parameter regulating leukocytes
migration (the lower the value of γ, the higher the neighboring annexin concentrations
needed for the leukocyte to move) and NL(t) is the total number of leukocytes at time t.

The function f is a random function that depends on the probability that the leukocyte
moves at all and, if so, would take into account the direction where the leukocyte is more
likely to move, depending on the neighboring annexin concentrations.

Indicating with p the (central) pixel where the leukocyte resides at time t and with
pn, a generic neighboring pixel in the Np-sized Moore neighborhood of p, we define the
(uncorrected) total concentration of annexin in the area (including the central pixel) as:

AMp(t) =
Np(t)

∑
n=1

A(pn, t) + A(p, t),

and with

A∗Mp
(λ, t) =

Np(t)

∑
n=1

A(pn, t)λ + A(p, t)λ

the λ-corrected total concentration of annexin in the area (including the central pixel),
depending on λ ≥ 1.

First of all, if sufficient annexin concentrations in the neighborhood of the leukocyte
are not attained, no (net) movement is appreciable, therefore, the probability of moving at
all is computed as

PM(p,t) = exp(−γTA(λ)).

In case the leukocyte moves, we define the probability P(pn) of its movement to the
neighboring pixel pn at time t as:

P(pn, t) =
A(pn, t)λ

TA(λ)
, n = 1, . . . , Np(t).

We can then compute the probability of remaining in place as

P(p, t) = 1− PM(p,t)
∑

Np(t)
n A(pn, t)λ

TA(λ, t)
.
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Finally, in the spirit of biased random walks, the time-dependent equation governing
the lth leukocytes motion between time t and time t + ∆t can be formulated as:

pl(t + ∆t) =

{
pln(t), with probability PM(p,t) · P(pn, t), n = 1, . . . , Np(t),
p(t), with probability P(p, t).

(5)

Notice that in the present case, the coupling between annexin kinetics and leukocytes
dynamics is only in one direction, since the evolution of Equation (3) is independent on the
position of the leukocytes. On the contrary, the governing equation of leukocyte motion (5)
depends on the quantity and distribution of the chemical product computed in (3).

3.2. Numerical Algorithm

The simulation environment used is Matlab c© R2020a. We consider movement of the
cells only on the microchip plane, hence we apply a discretization of the 2D computational
domain Ω given by the two chambers and the intervening channels. The whole chip is
thus represented by a matrix M of square computational cells assuming the space mesh
size to be ∆x = ∆y = 4 µm over a rectangle of size Lx × Ly µm (Lx = 1702 µm and
Ly = 1362 µm), when simulating the entire chip (with the full complement of NC = 31
horizontal microchannels), we deal with a pixel matrix of size Nr × Nc, with Nr = 340 rows
and Nc = 425 columns.

The radius of each tumor cell is assumed to be RT = 10 µm, while the radius of
leukocytes is fixed as RL = 4 µm. We used a time discretization step ∆t = 0.1 min, with

Nt = [(ceil)
Tf
∆t ] + 1, so that we compute concentrations and positions at the discrete times

tm, m = 0, 1, . . . and Nt − 1.
The computational time required for a simulation of this chip architecture is approx-

imately of 1 day per microchannel on an Intel(R) Core(TM) i7-3630 QM CPU 2.4 GHz.
Parallelization of the code is possible and will be considered in our future work.

The simulation algorithm based on the mathematical model is composed of three
main parts:

1. Definition of chip geometry and random positioning of TCs and leukocytes in the
computational domain at initial time, avoiding superpositions;

2. Evolution in time and space of the chemoattractant (elimination/production/diffusion);
3. Migration of the leukocytes, characterized by biased random walk.

3.2.1. Part 1: Creation of the Chip Environment

The NT TCs are static and are placed in the lower part of the left chamber, each of them
being identified by the coordinates of its center Xk ≡ (xk, yk), k = 1, . . . and NT , occupying
all those pixels whose center falls within the ball Bk = B(Xk, RT). Each leukocyte is
identified by initial coordinates Xl(t) ≡ (xl , yl), l = 1, . . . and NL(t) (notice that the number
and the positions of leukocytes vary with time) and occupies the pixels whose centers fall
into the ball Bl = B(Xl(t), RL).

In the present version of the algorithm, we hypothesize that each agent (cancer cell
or leukocyte) has a center coinciding with the center of a pixel. Therefore, there is a
correspondence between the matrix grid coordinates (row r, column c) and the physical
coordinates (x and y in µm) given by:

(x, y) =
(

∆x
2
(2c− 1),

∆y
2
(2(Nr − r) + 1)

)
, r = 1, . . . , Nr, c = 1, . . . , Nc.

In order to take into account the presence of other cells and obstacles conditioning
the placement or movement of TCs or leukocytes, we introduce an occupancy labeling
function O(x, y) for each point in the computational domain (x, y) ∈ [0, Lx]× [0, Ly] in
such a way that:
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• O(x, y) = 1 if ∃k ∈ [1, ..NT ] : (x, y) ∈ B(Xk, RT);
• O(x, y) = 2 if ∃l ∈ [1, ..NL(t)] : (x, y) ∈ B(Xl , RL);
• O(x, y) = −1 if the point (x, y) falls on an obstacle separating two consecutive channels;
• O(x, y) = 0 otherwise, i.e., if the point (x, y) is free from obstacles and is not occupied

by either cancer cells or Leukocytes.

We remark that, since we introduce a random inflow of leukocytes in the right chamber
across time, such occupancy function needs to be updated at each time step of the simulation.

3.2.2. Part 2: Production/Diffusion/Elimination of Annexin

In the scheme below, we describe the second part of the algorithm, concerned with the
production, diffusion and elimination (decay) of annexin over the chip. Tumor cells start
secreting the chemical signals, of which annexin is taken as representative, since the initial
time t = 0. Secreted annexin then diffuses throughout the environment and progressively
decays over time.

Denote by pj = (rj, cj) the jth grid cell or pixel, centered at Xj = (xj, yj), j = 1, . . .
and NA = Nr×Nc. Denote as Am the matrix of annexin concentrations at time tm, m = 0, . . .
and Nt − 1, where A0 is the zero matrix. We index the matrix as Am

j = Am(rj, cj) for

compactness. Let χT
j denote whether the jth pixel is occupied by a tumor cell or not, i.e.,

χT
j =

{
1 (O(xj, yj) = 1)
0 otherwise.

For each time step tm we proceed as follows:

1. Linear elimination: for each pixel pj, Am+1
j = Am

j (1− kXA∆t);

2. Linear production: for each pixel pj, Am+1
j = Am+1

j + χT
j kA ∆t;

3. Diffusion among the n = 1, . . . , Nj Moore neighbors pn
j ∈ M(pj) of the pixel pj.

Note that, since we build a two-dimensional square lattice here, we consider as the
neighborhood structure of a pixel p the Moore neighborhood M(p), composed of the (up to)
eight cells surrounding it, excluding the central cell.

In more detail, the diffusion is implemented as follows. We denote the nth neighboring
pixel of the pixel pj as pn

j ∈ M(pj), n = 1, . . . and Nj; Nj = |M(pj)| . Notice that the central
pixel pj does not belong to its neighborhood as defined. Notice also that the number of
pixels in the neighborhood depends on the position of the central pixel pj (in the interior
of the map, on the border and in a corner). It is actually computationally useful to define
a function k(j, n), returning the index of a given neighborhood pixel: pk = pn

j , with
k = k(j, n). We compute the euclidean distance between the coordinate center of the jth
pixel pj and the center coordinates of its neighbors pn

j :

dn
j = ‖pj − pn

j ‖, n = 1, . . . , Nj.

In order to compute the amount of annexin diffusing between pixels, we use a tem-
porary storage matrix C initialized at zero at the beginning of each time step. We thus
compute ∀j ∈ 1, . . . and NA

dj =

Nj

∑
n=1

dn
j

aj = min(Aj, Aj∆tD)

Ck = Ck +
dn

j

dj
aj, k = k(j, n), n = 1, . . . , Nj

and
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Cj = Cj − aj.

Once finished looping over all pixels in the domain, we can update the annexin matrix

Am+1 = Am+1 + C.

We underscore that the diffusion of annexin in the environment is not allowed in the
regions where the obstacles between the channels are placed. This is easily performed by
simply excluding these pixels from the relevant neighborhoods.

3.2.3. Part 3: Leukocyte Migration

The chemical field is created from the initial time as annexin spreads out from the
tumor cells. As soon as leukocytes sense sufficient amounts of annexin in the neighborhood,
their erratic movement becomes anisotropic and they begin migrating, on the average,
towards higher annexin concentrations (biased random walk on a 2D lattice). Notice that
new leukocytes keep appearing in the right-hand chamber, flowing in from other (depot)
regions of the chip.

At each time step, each leukocyte (centered at pl) may change the location of its center,
switching to the center of one of the neighboring pixels (pn

l for some n).
The algorithm for updating the position of each leukocyte l at each time step tm

proceeds as follows:

1. Find the n = 1, . . . and Nl neighboring pixels pn
l belonging to M(pl), disregarding the

pixels occupied by obstacles and the pixels outside the map;
2. Compute the total peripheral quantity of annexin aP

l = ∑Nl
n=1 Am

k , ... and k = k(l, n),
summing over the neighboring cells and excluding the central one, as well as the total
quantity of annexin al = aP

l + Am
l , including the central pixel;

3. Compute a threshold probability value σ = 1− exp(−γ al), with γ > 1, so that for
small values of annexin in and around the central pixel the probability of the leukocyte
moving at all is low. Pass to the next step only if u1 ≤ σ, with u1 ∈ (0, 1), u1 ∼ U([0, 1])
a uniformly distributed random variable;

4. Move to neighboring pixel k = k(l, n) with probability Pk =
Am

k
al

, n = 1, . . . and

Nl . This is performed by computing cumulative probabilities Fn = ∑n
r=1

Am
k

al
, k =

k(l, n), n = 1, . . . and Nl , generating another uniformly random variable u2 ∈
(0, 1), u2 ∼ U([0, 1]) and picking as next pixel position the pixel k = k(l, n) if
Fn−1 ≤ u2 < Fn, with the obvious stipulation that F0 = 0. Notice that even in
this case (having decided that movement is possible), it may happen (with probability

Pl =
Am

l
al

) that the destination pixel is the same as the current pixel, i.e., that the
leukocyte does not move at all.

4. Results

In the present section, we show the development of the annexin concentration field
and the behavior of leukocytes as reproduced by the simulation algorithm.

Using the parameter values reported in Table 1 we obtain the dynamics in this mi-
crochip subdomain: the main features of the leukocytes dynamics observed in the video
footage of the experiment are well reproduced.

As initial data for the simulation at time t = 0, we assume:

A(x, y, 0) = 0,

and NL(0) = 0. We consider a continuous inflow of leukocytes, randomly placed in the
right chamber, with the probability of adding a new leukocyte in the discretization time
step ∆t being proportional to the size of the domain, PL = kL∆t.
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Table 1. Parameters of the model.

Parameter Description Units Value Ref.

∆t discretization time step min 0.1 design
D Diffusivity of chemoattractant µm2/min 1.5 calibration
kA production rate of chemicals µm2min−1 4× 10−1 calibration

kXA consumption rate of chemicals min−1 5× 10−3 calibration
γ threshold value for migration - 1000 calibration

λ
parameter enforcing migration

towards high concentration - 1 calibration

Lc length of the channels µm 500 datum
Lx horizontal size of the box µm 1702 datum
Ly vertical size of the box µm 1362 datum

NC
number of microchannels in the

video footage - 31 datum

δ width of each microchannel µm 12 datum
ω width of obstacles µm 33 datum
Tf observation time min 48× 60 datum
RL radius of leukocytes µm 4 [37]
RT radius of tumor cells µm 10 [38]
NT number of tumor cells µm ∼60 datum

kL
normalized rate of new

leukocyte accrual min−1 0.15 calibration

N f
number of frames of the
laboratory experiment - 1440 datum

In the next Figure 5, the evolution over time of the annexin concentration field and
of leukocytes positions is shown. In Panel (A), in particular, we can see the situation after
4 h, with the (nonmoving) TCs already placed in the left chamber, with a small quantity
of chemoattractant secreted and diffused over the domain, no leukocytes having yet been
placed in the right chamber. Successive panels show the situation at later times (B) after
15 h, (C) after 25 h and (D) at about 36 h: the chemical gradient is established, leukocytes
accumulate in the right chamber and, as annexin concentrations increase, leukocytes
migrate along the concentration gradient through the microchannels towards the TCs’ area
from the top right towards the bottom left. Leukocytes are depicted with tails, so as to
make it evident what their movement is. As it happens in the actual video recording of the
experimental preparation, leukocytes accumulate in the TCs area, which was situated in the
lower left region, and to do so diagonally cross the left chamber. It must be appreciated in
this simulation that once leukocytes reach the very high annexin concentration region in the
left chamber, immediately proximal to the microchannels, they meet an essentially constant
annexin concentration and have thus no incentive to move towards TCs situated further
to the left. This phenomenon occurs because in the present version of the simulation no
actual damage is produced by the leukocytes to the neighboring TCs, and therefore annexin
production continues unabated even in the area where leukocytes are numerous. A different
simulative behavior would be produced if leukocytes damaged TCs, decreasing their
annexin production; in this case, the evolving annexin gradient would induce leukocytes
to further move to the left, towards as yet untouched TCs.

Qualitative Calibration of the Model

In order accomplish a first calibration of the model with respect to available ob-
servations, we compared the dynamics observed in the laboratory experiment with the
dynamics obtained by the model-based simulation algorithm. In practice, we tuned the
key parameters of the model ( kA, kXA and D ) to reproduce, at least qualitatively, the
observed migration rate of leukocytes from the right towards the left chamber. Given the
heavy computational load of obtaining even one complete model simulation, and given
the stochasticity of each simulated trajectory of the system, we avoided the use of stan-
dard optimization algorithms (e.g., Nelder–Mead or similar), attempting instead to guide
successive calibration attempts by a physical understanding of the simulated experiment.
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Figure 5. Evolution in time of annexin secreted by chemical sources (TCs) and of leukocyte dynamics
computed by the model (3)–(5). Panel (A): situation at time of about 4 h with TCs (depicted as yellow
balls) located in the right chamber, and the presence of some leukocytes (depicted as magenta balls)
migrated passively from another location of the chip towards the right chamber. Panel (B): formation
of chemical field (in yellow) after 15 h and migration of leukocytes by crossing the microchannels
and following the chemical gradient in the left chamber. Panel (C): situation after 25 h, with some
leukocytes migrated in the left chamber. Panel (D): configuration after 35 h, with leukocytes distributed
in the left and right chamber. Both in Panel (C,D) it can be observed that leukocytes in the left chamber
accumulate in the zone with higher concentration of annexin.

To be more precise, we considered as target solutions in the calibration procedure the
percentage of leukocytes in the right chamber across the time window [0, 48] h, correspond-
ing to N f = 1440 frames (the time frame between two images is 2 min). Such percentage
was determined counting the occupancy of the chambers by leukocytes as observed in the
images extracted from the video footage of the experiment. Then, suitably tuning model
parameters, the percentage of leukocytes in the right chamber reproducing qualitatively
laboratory observations was obtained by the simulation algorithm. Notice that the migra-
tion of leukocytes from the right to the left compartment takes place essentially in the time
window [24, 48] h. During the first 24 h, accrual of the leukocytes in the right chamber
is observed without any significant movement to the left chamber. This happens in all
likelihoods because sufficient chemoattractant concentrations have not yet been established
in the right chamber. Over the second day, when the number of leukocytes is observed to
be around 200, the migration takes place, as observed from cell trajectories extracted from
the video footage of the experiment [2]. The percentage of leukocytes occupying the right
chamber of the microchip computed using the model (in magenta line) vs experimental
data (in blue dotted line) is depicted in Figure 6. It is worth noting that the percentage of
leukocytes in the right chamber does not drop to zero but stabilizes to around 40% because
of the continuing arrival of leukocytes into the right chamber. Even then, the right-chamber
occupation percentage would not stabilize unless leukocyte mortality (not considered in
the present version of the model) were explicitly incorporated.
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Figure 6. Plot of the percentage of leukocytes in the right chamber detected experimentally (blue
dotted line) vs the percentage of leukocytes in the right chamber obtained by once simulating the
mathematical model (3)–(5), (magenta line).

5. Discussion

We underscore first of all that the present work, inspired by previous contributions [1,35],
is intended as a first step towards the construction of a complete simulation tool, based
on a hybrid agent-based model, for the description of the dynamics observed experimen-
tally in the microfluidic chip environment. The ultimate use of such a tool would be to
assess the effect of different experimental conditions on the parameters underlying the
observed dynamics.

In order to quantitatively approximate the behavior of the experimental system with
a model, it is necessary to decide on some statistics, which can be computed both on the
observations and on the simulations, based on which a distance or merit or loss functional
can be optimized. In the present approach, we look at the percentage of leukocytes
occupying the right chamber of the microchip, which is a quantity that can be retrieved
from videos recorded on the chip, see Figure 6. It should be underlined that, conversely,
chemoattractant concentration is not observable. In particular, it is not observable in a
position-dependent way on the microchip preparation. The chemoattractant gradient,
which is the main signal for chemotaxis, is thus inferred from the actual movement of the
leukocytes responding to it.

Given the chosen statistics, the adaptation of the model to the observed data (see
Figure 6) is here assessed in a completely empirical fashion. While qualitatively the two
time courses (observed and simulated) are matched, a better quantitative fit could be
hypothesized. There are several considerations to be made in this respect. First of all, we
are observing a single realization of a biological stochastic system and, due to computational
cost, are showing a single realization of the corresponding in silico stochastic system. For
both of them, due to this stochasticity, appreciably different trajectories are expected to
be produced. Furthermore, the stochastic system that we are observing is inherently non-
Markovian: the behavior of the future observations of leukocyte positions does not depend
only on observed current positions but on the developing annexin concentration field. In a
future development of this model, assuming for instance an effect of leukocytes on TCs, the
system would not even be quantifiable as hidden Markovian but would depend essentially
on the past history of the process. In other words, the stochastic system would be nonlocal,
and for such nonlocal systems, to the best of our knowledge, available statistical parameter
estimation approaches are very computationally expensive, if at all practicable. This is an
area where progress is sorely needed.

The development of a reliable simulation algorithm, able to reproduce and forecast
the immunocompetent dynamics observed in the chip, also requires addressing the heavy
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computational cost that such simulations entail, in particular if iterative model computation
and functional optimization procedures are needed for the statistical estimation of the
model parameters against available data. From this point of view, it should be noted that
this type of model lends itself naturally to a parallelized implementation; this is another
area of necessary future work.

From the biological point of view, the current model only embodies the very basic
elements of chemoattractant production, diffusion and elimination and of leukocytes move-
ment following its gradient. Important elements of the real situation have not yet been
considered, such as the toxic effect of leukocytes on TCs, thereby decreasing the chemoat-
tractant concentration, gradient and the mortality of leukocytes. Both of these effects, in
combination with the continuing inflow of leukocytes into the right chamber, would in
fact contribute to an earlier convergence to some asymptotic value of the proportion of
right-compartment leukocytes over the total, as observed in the experiments.

Notwithstanding all of the above limitations, the present work represents a different,
possibly more natural and direct approach, with respect to other works on the same
topic published in the past by one of the authors [26,28]. The relatively straightforward
implementation of the model, not requiring special numerical treatment at the boundaries
of the chip domain or a separate, ad hoc formalization of the movement of cells through the
microchannels, allows the direct representation of this and other possible geometries, with
a unified understanding, throughout the whole domain, of the meaning of the relatively
few parameters representing chemical dynamics and cell behavior.

6. Conclusions and Future Aims

In the present work, we show that a simulation tool based on a hybrid agent-based
model is able to mimic the experimentally observed behavior in a microchip coculture
of wildtype leukocytes and treated TCs. The model describes both the establishment of
a concentration field of chemoattractants secreted by TCs and the migration of leuko-
cytes along the gradient of chemical stimulus. The reliability of our approach depends
on the following aspects: firstly, we represent directly the physiological hypotheses made
by biologists (migration of leukocytes following the direction of higher concentration of
chemical gradients generated by tumor cells which the production of chemoattractant
stimulated by chemotherapy drug), and this implies a close adherence of the model to bio-
logical understanding; secondly, this approach produces forecasts consistent with available
experimental observations.

It should be noted that this work does not aim to provide accurate statistical estimates
of key model parameters (production/consumption/diffusion of chemical gradients);
to perform this, we would need a whole correct statistical framework, which, at least for
nonlocal, non-Markovian dynamical models, is not yet available. Our paper conversely
establishes proof of concept, demonstrating that the required behavior can in fact be
obtained on the basis of the explicit assumptions made.

In order to allow model identification, our future work will include parallelizing the
computations and using applicable parameter estimation techniques to fit the model to the
data. Furthermore, the model may be enriched by introducing different immune cell species
or possibly different chemicals as well as tumor cell death caused by leukocyte aggression,
immune cell death and possible interaction between different immune cell species. The
final goal is to build a good model of the observable dynamics in the microchip so as to
understand and reproduce the complex mechanisms behind the interaction between the
immune system and cancer in different experimental conditions.
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