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Abstract: This paper provides a rationale for the commonly observed numerical efficiency of stag-
gered C-grid discretizations for solving the inviscid shallow water equations. In particular, using
the key concepts of nonstandard calculus, we aim to show that the grid staggering of the primitive
variables (surface elevation and normal velocity components) is capable of dealing with flow dis-
continuities. After a brief introduction of hyperreals through the notion of infinitesimal increments,
a nonstandard rendition of the governing equations is derived that essentially turns into a finite
procedure and permits a convenient way of modeling the hydraulic jumps in open channel flow. A
central result of this paper is that the discrete formulations thus obtained are distinguished by the
topological structures of the solution fields and subsequently provide a natural framework for the
staggered discretization of the governing equations. Another key of the present study is to demon-
strate that the discretization naturally regularizes the solution of the inviscid flow passing through
the hydraulic jump without the need of non-physical dissipation. The underlying justification is
provided by analytically studying the distributions of the flow variables across an infinitesimal thin
hydraulic jump along with the use of hyperreal Heaviside step functions. This main finding is shown
to be useful to comprehend the importance of the application of staggered finite difference schemes to
accurately predict rapidly varying free-surface flows. A numerical experiment is provided to confirm
this result.

Keywords: shallow water equations; hydraulic jump; staggered discretization; nonstandard calculus;
regularization

MSC: 26E35; 46F30; 65M22; 76B99; 76M20

1. Introduction

The inviscid shallow water equations describe the behavior of a shallow incompress-
ible and inviscid fluid layer and are suitable to model hydrodynamics in coastal seas,
estuaries, lakes and rivers. They are derived from the depth-integrated Euler or Navier–
Stokes equations under the hydrostatic pressure assumption. Since both these equations
and the Euler equations of gas dynamics have a similar mathematical structure, reflecting
the resemblance between the hydraulic jumps and shock waves in compressible flow, con-
ventional high resolution schemes for treating shocks are likewise a commonplace tool in
the numerical modeling of rapidly varying shallow water flows.

The theory of weak solutions is the traditional approach in the framework of numerical
analysis of nonlinear hyperbolic partial differential equations [1,2]. This theory necessitates
these equations to be expressed in conservation form, and has thus created a natural ground
for the development of finite volume methods [3,4]. However, such methods often cannot
prevent the obtained solutions from being unphysical when subjected to discontinuities
(entropy-violating solutions), and heuristic attempts are then made to adequately recover
the discontinuous behavior. Shock-capturing techniques, usually with an entropy fix [5,6],
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and well-balanced methods are particularly appealing in addressing such needs. They
routinely regularize the governing equations by some degree of non-physical dissipation.

For example, applications of approximate Riemann solvers to shallow water equations
are found in, e.g., [7–9]. They aim to exploit the hyperbolicity property of the conserva-
tion laws with source terms, which is, however, substantially problematic to master the
development of numerical codes. The lack of well-balancing in the resulting numerical
schemes is perhaps the most prominent one [10]. This imbalance typically leads to artificial
flow transitions over discontinuous bed topography in water initially at rest. Although
the design of well-balanced Riemann solvers has been frequently reported in the litera-
ture with varying degrees of success, one may still encounter the risk of approximating a
non-physical solution, even though by refining the grid.

Alternative methods have been proposed that avoid the necessity to solve a Riemann
problem, such as the central-upwind methods [11,12], the artificial viscosity approach [13–16],
and the energy-stable schemes using numerical diffusion operators based on entropy vari-
ables [17], just to mention a few. Though this abundance of methods may have proven to be
a reasonable means of predicting the evolution of shock waves, their mathematical theory
does in general not constitute a conclusive approach, as it provides no clear-cut measures to
regularize the inviscid flow equations in a physically consistent manner. It remains to be seen
whether any of such discretizations will produce the physically realistic solution, especially
when it is highly nonlinear and rapidly varying.

An example involves the introduction of artificial viscosity into a space-centered
discretization. Although artificial viscosity has a direct analogy to physical dissipation, it
poses a major problem for overall physical accuracy, as its generic forms have an explicit
choice regarding shock layer thickness, while one has control over the amount of dissipation
through the associated tuning parameters. It is not a trivial task to find suitable values for
these parameters because they are typically problem and mesh dependent and, as such,
their underlying methods are likely to fail to converge to physically based solutions [15,16].

Over the years, staggered C-grid methods have been developed for the modeling of
rapidly varied flows, and have shown remarkable potential in predicting the formation of hy-
draulic jumps, bores and breaking waves; see, e.g., the papers of Stelling and Duinmeijer [18]
and others [19–22]. The staggered spatial discretization schemes of the type proposed by
Arakawa [23] are primarily designed for accurate and efficient computation of incompressible
(often gradually varying) flows. The computational efficiency along with the physical accu-
racy is also the central theme in the above mentioned papers. Furthermore, staggered C-grid
schemes exhibit distinguished properties such as the absence of spurious pressure modes and
the local mass conservation. These attractive numerical properties are due to the staggering
of the primary unknowns in a grid, with pressure at the cell center and the normal velocity
components at the center of the cell faces. Yet, to the best of author’s knowledge, such meth-
ods are the only class of discretization methods that are capable of accurately resolving the
hydrodynamic shocks under various flow regimes without recourse to any explicit solution
regularization. See [22] for details.

The main contribution of this paper is to provide a rationale for this finding by using
the language of nonstandard calculus. Here, we first give a brief background to this branch
of modern mathematics and in particular its natural discrete representation of physical
phenomena, which is then followed by an outline of the current work.

Historically, the Newtonian mechanics was closely connected with the early de-
velopment of calculus that proceeded for centuries on heuristic arguments of infinitesi-
mals [24,25]. The paradoxical difficulties raised by infinitesimals were thoroughly bypassed
by employing the ε− δ definitions of limit, as introduced in the nineteenth century. In the
1960s, a rigorous framework for dealing with infinitely small and infinitely large quantities
as numbers has entered the area of pure mathematics. This new application of infinitesimals
and infinite numbers (not to be confused with infinity ∞), termed nonstandard analysis,
was invented as an alternative to the ε− δ limit to put the means of calculus on a sound
footing. Even more so, the use of infinitesimals is, to a greater extent, effective and insight-
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ful than the traditional analysis in terms of ε and δ. Today, nonstandard analysis helps
to reconcile the way infinitesimals are used in, e.g., applied mathematics, physics and
engineering with some formalism.

Nonstandard analysis basically extends the real numbers to the hyperreal numbers that
involve infinite and infinitesimal numbers [26,27]. Because of the existence of infinitesimals
in the hyperreal number system, the process of limit is no longer an issue. The implication
is that the interpretation of the derivative is viewed as a finite process rather than an infinite
limiting procedure [27]. Specifically, either a derivative is utilized for finding the limit of
a difference quotient of vanishing quantities, that is, measuring the instantaneous rate of
change, or a derivative is considered as the ultimate limit of the ratio of small but finite
quantities. While the former statement is related to the ε− δ concept of calculus, the last
assertion has a physical meaning, in the sense that no physical quantity can be measured
to infinite precision. Yet, once the limit is performed, a continuum model is obtained
that does no longer resolve features on the various length scales; they actually contracted
to (zero-dimensional) points. Moreover, all physically relevant quantities must then be
infinitely differentiable.

The extension to the hyperreals comes equipped with a hierarchical lattice-like struc-
ture on the Euclidean space. Such a structure shares many of the properties of topological
spaces and is essentially simpler than the continuum. In particular, the presence of a
non-vanishing length scale is distinctly defined. It thus provides a means for developing a
discrete model to describe a physical system with very large degrees of freedom. As it will
be demonstrated in the present study, this becomes particularly relevant for problems with
discontinuities. In fact, as we will see, this approach inherently deals with the regularization
of the discontinuity.

Viewed in this way, the discrete model is more rich in physics than the continuum
model. This may seem counterintuitive, as it is deeply ingrained in our conceptual un-
derstanding of the differential equation that it provides a truer description of a physical
problem than any discrete formulation that approximates the original equation in a way
that it produces solution sufficiently close to the “exact” solution. Note that we have put
the word exact in quotes to emphasize the difference with the actual, that is, physical-based
solution to the problem in question.

That said, the crux of nonstandard calculus lies in the development of mathematical
models with a degree of computability, which also have a meaningful physical sense. Even
though the significance of this view has long been recognized in the field of nonstandard
analysis, see, e.g., [28,29], it is still relatively unknown to applied mathematicians, physicists
and engineers, given the fact that the large majority of mathematical models in physics and
engineering are based on continuous partial differential equations.

The organization of the paper is as follows. In Section 2, first a basic understanding
of the concepts of nonstandard analysis is presented. We address the natural extension
of differentiation to the hyperreal numbers by means of infinitesimal increments. An
important feature of this extension is that the derivative turns into a discrete process while
handling the discontinuities adequately. Inspired by this key observation, a nonstandard
rendition of the inviscid shallow water equations is formulated that expresses exactly the
discrete conservation of mass and momentum across a hydraulic jump in an open channel
with uniform bed. Such discrete formulations additionally advocate the use of the staggered
C-grid arrangement and are amenable to be numerically solved. We then highlight that
the continuous form of the traditional shallow water equations is the standard part of the
obtained finite difference equations, while they have lost properties typically associated
with hydrodynamic shocks. To gain some insight on the solution regularization, Section 3
analyses the distribution of the flow field across the hydraulic jump, where the nonstandard
Heaviside functions are employed to model smooth jump functions for the flow variables
such as water depth, velocity and mechanical energy. A key result of this nonstandard
analysis is that, unlike the primitive variables, the energy flux displays an undershoot in
the hydraulic jump, suggesting that the viscosity does not play a crucial role, as similarly
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observed by Salas and Iollo [30], who demonstrated a local maximum of the entropy profile
inside an inviscid gaseous shock. Numerical computations to study the formation of a
hydraulic jump in a rectangular channel are performed as detailed in Section 4. Finally,
conclusions are stated in Section 5.

2. Discretization of Shallow Water Equations from the Perspective of
Nonstandard Calculus
2.1. Nonstandard Calculus

A complete introduction to nonstandard analysis can be found in the textbooks of
Goldblatt [26] and Keisler [27]. In the following, the building blocks of nonstandard
calculus, in particular, those used in this work, are briefly reviewed.

Basically, nonstandard analysis deals with an extension of the real number line R
including nonzero infinitesimals and infinitely large numbers, along with the real numbers.
This extended set is denoted by ∗R, and its elements are called hyperreals (or nonstandard
reals). An infinitesimal is, in absolute value, a number that is smaller than every positive
real number. Zero is the only real number that is an infinitesimal. The reciprocal of a
nonzero infinitesimal is a hyperlarge number (or infinitely large or simply infinite), which
is larger than any real number, though strictly smaller than infinity. If a number is not
hyperlarge, it is called finite (or limited). Accordingly, every real number is finite. Finally, a
number which is limited and not infinitesimal is called appreciable.

Neither nonzero infinitesimals nor infinitely large numbers exist on the real line. Yet,
they can be treated in much the same way as standard numbers. This property is known
as the transfer principle. As an example, the reals are an ordered field, and so are the
hyperreals; infinitesimals differ in magnitude from other infinitesimals, and hyperlarge
numbers from other hyperlarge numbers. For details on the construction of the nonstandard
reals, we refer to Goldblatt [26].

Let ε be an infinitesimal and x and y be finite hyperreals. We define the relation x ' y
as x− y is infinitesimal or zero. It immediately follows that ε ' 0. This corollary essentially
captures the idea of “arbitrary close” that lies at the heart of the well-known ε− δ limit
in calculus.

Furthermore, let a be a real number. The standard part of x, denoted by st(x), is a
unique real a infinitely close to x, thus a = st(x). Consequently, st(ε) = 0. A hyperlarge
number cannot have a standard part. The standard part function provides an essential link
between the finite hyperreals and the real numbers.

Next to the hyperreal numbers, one also deals with hyperfunctions. Given a function
f from R to R, there is a unique function ∗ f : ∗R→ ∗R, called the ∗-transform of f , such
that ∗ f (x) = f (x) if and only if x ∈ R. Thus, ∗ f is a nonstandard extension of f .

Let f : R→ R, then the derivative of f at point x, denoted f ′(x), is defined by

f ′(x) = st
( ∗ f (x + δ)− f (x)

δ

)
for every nonzero infinitesimal δ, provided that f ′(x) exists independent of δ. Function
f is said to be differentiable at point x. Notice that the derivative of f is not defined
by a vanishing limit δ → 0, but as the standard part of a difference quotient; f ′(x) is
infinitesimally close to that quotient. As a basic example, we consider f (x) = x2. Its
derivative is calculated as follows:

f ′(x) = st
(
(x + δ)2 − x2

δ

)
= st(2x + δ) = st(2x) + st(δ) = 2x .

This example clearly demonstrates the effectiveness of using nonzero infinitesimals to
determine the derivative without the need of an endless ε− δ limiting process and, in turn,
provides a rigorous basis for the calculus. For further illustrative examples, we refer to
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Keisler [27]. The transfer principle guarantees that all familiar rules involving derivatives,
e.g., the product, quotient, and chain rules, also hold for hyperreal-valued functions.

Next, suppose that f ′(x) exists at point x and let ∆x be a nonzero infinitesimal. Then,
the increment of f , denoted ∆ f , due to change ∆x is given by

∆ f = ∗ f (x + ∆x)− f (x) = f ′(x)∆x + ε ∆x

for some ε ' 0. Consequently,
∆ f
∆x

= f ′(x) + ε .

Thus, the standard part of the quotient ∆ f /∆x equals the derivative f ′(x). This result
is known as the increment theorem. By virtue of the transfer principle, this property can be
generalized to functions of multiple variables. Note that the infinitesimal ε can be viewed
as an error term, which depends on ∆x.

The use of infinitesimals in nonstandard analysis enables us to study topological
spaces of reals induced by hyperfinite lattices. (Hyperfinite sets may be treated as finite
sets, though they are generally infinite.) A halo (or a monad) of a point x on the hyperreal
line is the interval of hyperreals that are infinitesimally close to x. Let µ(x) denote the halo
of x, then µ(x) = {y ∈ ∗R | y ' x}. While every point on the real line has zero dimensions,
the size of each halo on the hyperreal line is infinitesimal. A halo is said to possess a
microstructure. There exist infinitely large halos containing the point x. Furthermore, if x is
finite, then st(x) ∈ µ(x), while not including other real numbers. Additionally, the halos of
different real numbers do not overlap.

2.2. Discrete Formulations

A hydraulic jump forms at the transition from the upstream supercritical flow to the
downstream subcritical flow. A sudden rise subsequently occurs in the free surface while
the flow is rapidly varied. Let us consider the hydraulic jump that moves at a constant
speed c in an open channel with a uniform bed. The rate at which the flow changes between
the upstream state and the downstream state is determined by the flow continuity and
the momentum balance. Following Stoker [31], they can be written, respectively, in the
following form

hd(ud − c) = hu(uu − c) (1)

and
hd(ud − c)ud − hu(uu − c)uu =

1
2

gh2
u −

1
2

gh2
d . (2)

Here, the variables h and u have their conventional meanings of water depth and flow
velocity, whereas the subscripts u and d refer to the upstream and downstream states with
respect to the jump; see Figure 1.

u

u

h

hu
u

d

d

c

Figure 1. The hydraulic jump. The flow velocities are relative to the bed. The distribution of
hydrostatic pressure is shown upstream and downstream of the jump. Definitions of the variables
are provided in the text.
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Furthermore, g is the acceleration of gravity. Note that the vertical pressure distribution
away from the jump is hydrostatic.

Microscopically, due to viscous forces acting in the large flow gradients within the
relatively thin jump layer, the flow is irreversible. Some of the kinetic energy is converted
into an increase in potential energy and the remainder is lost through turbulence to heat.
Consequently, the downstream state must have a higher entropy than the upstream state.

The rate of energy loss in flow expansion can be computed as follows (see [31]):

eu − ed = g q
(hd − hu)

3

4hu hd
, (3)

where ek = g q(hk + (uk − c)2/2g) is the mechanical energy (flux) per unit mass (per unit
width), with k ∈ {u, d} labeling the position with respect to the jump, and q = hd (ud− c) =
hu (uu − c) is the mass flux through the jump.

The physical laws of mass conservation, momentum transport (Newton’s law of
motion) and energy loss (the second law of thermodynamics) thus provide the macroscopic
balance of flow changes across the hydraulic jump. In fact, this applies to any form of
discontinuity that is intrinsically linked to an irreversible process. Yet, the resolution of
Equations (1) and (2) adequately resolves the large-scale features of the flow field, while
fluid motions that occur at length scales smaller than the width of the jump layer are
not captured.

For the discussion below and in Section 3, and without loss of generality, we consider
the channel with one dimension of space on the x−axis. The flow passes through the
hydraulic jump in the positive x−direction. Accordingly, the traveling flow variables along
a characteristic are a function of the similarity variable s = x− ct. By virtue of the increment
theorem, we have

st
( ∆s

∆x
)
=

∂s
∂x

= 1 , st
(∆s

∆t
)
=

∂s
∂t

= −c .

Let the jump be located at some point S on the characteristic. Now, the extension of
the real number line to include nonzero infinitesimals naturally permits to deal with the set
of all points separated from S by an infinitesimal distance. This halo of S, denoted µ(S),
conceptually resolves the scale of the flow variables across the jump. The size of the halo is
given by ∆s, which is a nonzero infinitesimal.

Let the functions h(s) and u(s) be the water depth and flow velocity along the charac-
teristic, respectively. These flow variables are constant on both sides of the infinitesimal
jump. (Recall that the jump is uniformly moving with speed c.) Furthermore, the down-
stream state is distanced from the upstream one by ∆s. Then, mass balance (1) with respect
to the jump can be rewritten as

−c
(∗h(s + 1

2 ∆s)− ∗h(s− 1
2 ∆s)

)
= ∗h(s− 1

2 ∆s)∗u(s− 1
2 ∆s)− ∗h(s + 1

2 ∆s)∗u(s + 1
2 ∆s) .

Using the variable transformation and a time shift of + 1
2 ∆t, this equation is cast into

∗h(x, t + ∆t)∆xa − h(x, t)∆xa

∆t
=

∗h(x− 1
2 ∆x, t + 1

2 ∆t)∗u(x− 1
2 ∆x, t + 1

2 ∆t)− ∗h(x + 1
2 ∆x, t + 1

2 ∆t)∗u(x + 1
2 ∆x, t + 1

2 ∆t) (4)

with h(x, t) and u(x, t) being the water depth and the flow velocity in the space-time
domain, respectively. Note that point (x, t) ∈ µ(S) is finite. Furthermore, ∆t and ∆x are
the nonzero infinitesimals associated with halo ∆s. Finally, ∆xa represents the infinitesimal
area (per unit width) of the halo.

Physically, Equation (4) describes the volume balance with which the infinitesimal
rate of change in the volume h ∆xa of a halo is equated to the net mass flux q = h u (inflow
less outflow) through the boundaries of the halo. This naturally leads to the staggered
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positioning of the variables h and q in space and in time; the water depth is located at
points intermediate between the mass fluxes. It should be noted that here the water depth
(or the water level) undergoes a jump in the halo ∆xa.

The partial differential equation describing the conservation of volume can be inferred
from the nonstandard Equation (4). Thus, noting that ∆xa = ∆x, we have

∗h(x, t + ∆t)− h(x, t)
∆t

+

∗h(x + 1
2 ∆x, t + 1

2 ∆t)∗u(x + 1
2 ∆x, t + 1

2 ∆t)− ∗h(x− 1
2 ∆x, t + 1

2 ∆t)∗u(x− 1
2 ∆x, t + 1

2 ∆t)
∆x

= 0

and owing to the increment theorem, the standard part of this quotient yields

∂h
∂t

+
∂hu
∂x

= 0 . (5)

In the same way, we derive the momentum balance as follows. From Equation (2),
we have

−c
(∗h(s + 1

2 ∆s)∗u(s + 1
2 ∆s)− ∗h(s− 1

2 ∆s)∗u(s− 1
2 ∆s)

)
+

∗q(s + 1
2 ∆s)∗u(s + 1

2 ∆s)− ∗q(s− 1
2 ∆s)∗u(s− 1

2 ∆s) =
1
2

g∗h2(s− 1
2 ∆s)− 1

2
g∗h2(s + 1

2 ∆s) .

This equation can be reshaped into space-time form as

∗h(x + 1
2 ∆x, t + 1

2 ∆t)∗u(x + 1
2 ∆x, t + 1

2 ∆t)∆xl − ∗h(x + 1
2 ∆x, t− 1

2 ∆t)∗u(x + 1
2 ∆x, t− 1

2 ∆t)∆xl

∆t

+∗q(x + ∆x, t)∗u(x + ∆x, t)− q(x, t)u(x, t) =
1
2

g h2(x, t)− 1
2

g ∗h2(x + ∆x, t) (6)

(note the space shift of + 1
2 ∆x) or, with ∆xl = ∆x, one obtains

∗h(x + 1
2 ∆x, t + 1

2 ∆t)∗u(x + 1
2 ∆x, t + 1

2 ∆t)− ∗h(x + 1
2 ∆x, t− 1

2 ∆t)∗u(x + 1
2 ∆x, t− 1

2 ∆t)
∆t

+

∗q(x + ∆x, t)∗u(x + ∆x, t)− q(x, t)u(x, t)
∆x

+
1
2 g ∗h2(x + ∆x, t)− 1

2 g h2(x, t)
∆x

= 0

and its standard part is then given by

∂hu
∂t

+
∂qu
∂x

+
∂ 1

2 g h2

∂x
= 0 . (7)

Equation (6) describes the infinitesimal rate of change of the total momentum h u ∆xl
for an inviscid fluid within a halo ∆xl through which the fluid flows. The first term on
the left hand side is the local rate of change in momentum. Furthermore, the second and
and the third term express the advective transfer of momentum with the mass flux q as the
transporting velocity. This advective acceleration causes a nonlinear spatial change in the
flow velocity u.

Now, the rate of change in momentum of the fluid is due to the action of hydrostatic
pressure on the fluid on both sides of the halo as given by the right hand side of Equation (6).
Again, the momentum and the pressure are carried at alternate spatial locations. Moreover,
the direction of the flow acceleration is aligned with that of the net streamwise force.
Accordingly, ∆xl must be understood as the infinitesimal length of the path within the halo
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along which the momentum h u (or depth-integrated velocity) is being transported. Thus,
this momentum experiences a jump inside halo ∆xl .

A key feature of the discussed approach is the close association between the primary
unknowns and the topology of the halo. In principle, the unknowns are the integrals over
the points, lines, surfaces, and volumes, and are referred to as discrete forms of degree 0, 1, 2,
and 3, respectively. Furthermore, they constitute a discrete representation for the primitive
variables on a primal-dual pair of space lattices, which naturally induces staggering of
the variables. For a more extensive survey of this topic, see Tonti [32] and Ferretti [29]. In
the current depth-integrated framework, the area integral of h over ∆xa (designated as the
primal surface lattice of the halo) and the line integral of h u along ∆xl (i.e., the dual of the
edge lattice of the halo ∆xa) are the discrete 2-form and 1-form, respectively.

2.3. Discussion

Equations (5) and (7) are the one-dimensional nonlinear shallow water equations with
the unknowns h and h u, suitable for cases with horizontal frictionless beds. (A physically
consistent extension to the case of flows over varying bottom topography with bed friction
is dealt with in, e.g., [18,22]) Such continuous differential equations are routinely viewed as
a mathematical model for describing the dynamics of a physical system while its number
of degrees of freedom is infinity; their main merit resides precisely in their uniqueness and
universality, that is, they uniquely describe physics at all scales.

The mathematical model for the inviscid shallow water equations is typically presented
as a hyperbolic system of conservation laws (e.g., [8,11,16]). In one dimension, this system
is of the form

∂W
∂t

+
∂F
∂x

= S(x, W) , W(x, t) =
(

h
hu

)
, F(W) =

(
uh

u2h + 1
2 gh2

)
,

where W is the vector of conserved variables, F is the vector function of inviscid flux, and
S is a source vector. Note that such vectors are expressed as field functions at a given point
(x, t) in the continuum. The mathematical structure of the hyperbolic system provides a
good basis for the theory of weak solutions involving shock waves [3]. Nevertheless, this
mathematical framework is general and does not take into account the physical nature
of the variation of hydraulic jumps. In fact, the system may also admit non-physical
discontinuous solutions.

Within the framework of (usually non-staggered) finite volume methods, a stable
high-resolution scheme can be adopted with the aim of constructing the numerical flux
vector. Then, the residual of the resulting algebraic equations (as computed by substituting
the exact solution) acts as the principal source of discretization error. Provided that the
solution is continuous and smooth, this error will be infinitesimally small.

However, the situation becomes different when the flow variables are discontinuous
so that the solution error is no longer infinitesimal. If a hydraulic jump is located in µ(S),
so that irreversible processes intervene, the solution of the difference equations is rather
different from the solution of the differential equations. This divergence persists in the
limit of vanishing size of µ(S). Obviously, the effect of discontinuity leaves no trace on
the solution of differential equations. As explained above, this effect is basically discarded
by an application of the standard part function, which in turn implies that the spatial
features of the halo (here ∆xa and ∆xl) are lost. This loss should be restored afterward by
the discretization process. This generally calls for measures, often proposed heuristically,
to ensure the entropy consistency of the discretization. Examples of such measures have
been discussed in the introduction section of this paper.

By contrast, the nonstandard Equations (4) and (6) are principally considered to
describe mathematically a physical system with a hyperlarge number of degrees of free-
dom [28]. This sole principle is built on the existence of nonzero infinitesimals. The resulting
discrete equations establish the flow distribution within each infinitesimally small halo ex-
hibiting a geometric structure, which may or may not contain a discontinuity. Furthermore,
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as it will be revealed in the next section, these equations have a built-in regularization effect
on the solution.

The enrichment with a nonvanishing halo size is an essential feature because it paves
the way towards grid partitioning of a flow domain. This feature provides a paradigm for
constructing discretizations of the nonstandard equations that are naturally adapted for
any type of grid system (Cartesian, curvilinear, and unstructured grids) and that behave
correctly in a physical sense. By making the size of both ∆t and ∆x appreciable, the above
system is translated into a finite but underdetermined system of equations. Its closure
is commonly obtained by the addition of a number of constitutive (locally dependent)
relations between the different solution fields, which involve the various interpolation
(central and upwind) techniques. An example of this process of approximation can be
found in Appendix A.

The development of mixed finite volume-finite difference methods that use C-grid
staggering on two-dimensional structured and unstructured (triangular) meshes for the
modeling of rapidly varied flows in coastal waters is documented in, e.g., [33–37].

3. Nonstandard Flow Profiles across Hydraulic Jump
3.1. Introduction

The aim of this section is to analyze one-dimensional jump distributions for an un-
steady, incompressible, inviscid flow across an infinitesimal hydraulic jump on a horizontal
bed by utilizing the nonstandard Heaviside functions. We adopt the methodology of
Baty et al. [38], who advocate a rigorous approach based on nonstandard analysis to study
the one-dimensional shock waves in a compressible, inviscid, perfect gas. However, to the
best of our knowledge, no study has been reported for an inviscid hydrodynamic shock.

The significance of the present analysis is that it not only provides valuable insight
into the jump solutions of water depth, flow velocity and mechanical energy, but also
sheds light on the embedded regularization capability of the governing equations of
motion. This is evident by the fact that the analysis deals with continuous hyperreal-valued
functions mapped onto the set of hyperreal numbers instead of discontinuous real-valued
functions that are mapped to real numbers. This is highly convenient, since it provides a
rigorous justification for nonlinear problems that cannot be adequately addressed by the
theory of distributions [39,40]. In particular, multiplications of differentiable nonstandard
functions in the form of the Dirac delta function or the Heaviside step function are thus
straightforward [38].

3.2. Nonstandard Heaviside Functions

The initial step of the analysis to be presented here is the introduction of nonstandard
Heaviside step functions to properly represent the distribution of the flow field across the jump
contained in a halo. Such functions belong to the class of infinitely differentiable functions.

A nonstandard Heaviside function is defined as follows:

∗H(s) =


0 , if s ≤ 0

∗h(s) , if 0 < s < ε

1 , if s ≥ ε

where ε is an infinitely small number, s = x− ct is a characteristic with c a constant jump
celerity, and ∗h(s) ∈ C∞(0, ε) is a strictly increasing hyperreal-valued function representing
an infinitesimal jump with thickness ε and

∗h(0) = 0 , ∗h(ε) = 1 .
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This function defines the microstructure (or the microscopic profile) of the flow field
inside a shock layer [38,40]. The standard part of ∗H is unique and is given by

H(s) = st(∗H) =

{
0 , if s < 0
1 , if s > 0

.

In contrast to step function H, any function ∗H will support all of the operations
in calculus required to derive solutions of the governing equations, in particular when
dealing with nonlinear terms, e.g., the products of Heaviside functions. Indeed, by virtue
of the definition of the standard Heaviside function, we have, for instance, H2(s) = H(s),
but also H3(s) = H(s). Taking the derivative in both cases implies 2HH′ = H′ and
3H2H′ = 3HH′ = H′ with H′ the Dirac delta function. Combining the last two equations
yields 1

2 H′ = 1
3 H′, which is false. By contrast, ∗Hk(s) 6= ∗H(s) for all k > 1, thus preventing

this inconsistency.
Following Baty et al. [38] and Salas and Iollo [30], each flow variable is assumed to

have a different microstructure. Thus, we look for solutions to h and u of the form

h(s) = hu + [h] H(s) , u(s) = uu + [u]U(s) , (8)

where [φ] ≡ φd − φu denotes the jump in variable φ. Recall that on both sides of the jump,
the flow variables are constant. Since we are only dealing with nonstandard functions, we
have omitted the superscript ∗ for convenience. Furthermore, the Heaviside functions H(s)
and U(s) are taken to have their jumps contained on the same interval (0, ε). In addition,
they must satisfy the conditions at the endpoints of the halo, that is

H(0) = U(0) = 0

and
H(ε) = U(ε) = 1 .

3.3. Jump Profiles for Flow Variables

To ease the process of deriving smooth functions of h and u from Equations (4) and (6),
we adopt their standard parts expressed in nonconservative form. Note that the use of
this form poses no problem for the present analysis since the Heaviside functions are
differentiable [38]. (By contrast, the theories of weak solutions and distributions require the
notion of conservation form.) Hence, we continue our analysis with the following nonlinear
equations

∂h
∂t

+ u
∂h
∂x

+ h
∂u
∂x

= 0 (9)

and
∂u
∂t

+ u
∂u
∂x

+ g
∂h
∂x

= 0 . (10)

It is worth noting that the governing equations are strictly model equations based
on two ideal, controlled conditions: the water is inviscid and incompressible. The latter
implies no thermodynamic equation of state. Accordingly, the model equations do not
contain enough physical information and consequently the microscopic flow profiles inside
a shock layer cannot be deduced (see also [41]).

Another key issue is the local invalidity of the hydrostatic pressure assumption; the
pressure cannot be hydrostatic inside the jump. This suggests that Equations (9) and (10)
cannot be satisfied by the solutions as given in Equation (8). We verify this by direct
substituting and subsequently arranging the resulting equations in matrix form. We
then find [

(u− c) [h] h [u]
g [h] (u− c) [u]

][
H′

U′

]
=

[
0
0

]
,
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where the prime denotes differentiation with respect to s. A non-trivial solution [H′, U′]
exists if the matrix is singular. This is the case if

u− c =
√

g h

which corresponds to the critical flow condition that must be valid on the whole interval
(0, ε). This would imply no jump. Thus, it is plausible to assert that Equation (10) does
not describe the complete physics. Along with this finding, we will pursue the analysis by
considering the continuity Equation (9) for which we will show below that regularization
of the jump discontinuity is accomplished through this particular equation.

Since a distinct jump profile for each flow variable cannot be determined, we instead
derive a relationship between the jump functions H and U. To this end, we substitute
the jump solutions (8) into the continuity equation and subsequently rewrite the resulting
equation by means of separation of H and U, as follows:

[u]U′

uu − c + [u]U
= − [h] H′

hu + [h] H
.

Integration gives
α(uu − c + [u]U)(hu + [h] H) = 1 .

Upon making use of boundary conditions H(0) = U(0) = 0, we obtain the integra-
tion constant

α =
1

(uu − c) hu

and, hence,
(uu − c + [u]U)(hu + [h] H) = (uu − c) hu . (11)

We observe that the mass flux is constant inside the jump (0, ε) and is equal to q.
Hence, no mass can be created nor destroyed within the hydrodynamic shock [42]. This is
particularly important because it discloses the incompressibility constraint of the shallow
water equations, which can be dealt with effectively by the use of staggered grids [22].
We further note that boundary conditions H(ε) = U(ε) = 1 yield the Rankine–Hugoniot
relation expressing the continuity of mass flux across the jump

(ud − c) hd = (uu − c) hu .

Finally, the sought relation follows from Equation (11)

U(s) =
q
[u]

[
1

hu + [h] H(s)
− 1

hu

]
. (12)

This central result implies that the microstructure of the flow velocity differs from the
microstructure of the water depth. Recall that these microstructures remain undetermined.

Note that besides the above jump condition of mass flux, another jump condition re-
lated to the conservation of momentum flux can be found. For this purpose, the momentum
equation is written in the following form:

(u− c) h [u]U′ + g h [h] H′ = 0

Recalling that h = hu + [h] H and the constant mass flux q, we obtain

g [h]2 H H′ + g hu [h] H′ = −q[u]U′

which is a nonlinear ordinary differential equation. Integrating both sides of this equation
then yields

1
2

g [h]2 H2 + g hu [h] H = −q[u]U + β
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with β the constant of integration. With H = U = 0 for s = 0, the value of this constant
is β = 0. However, for s = ε, we have H = U = 1 and obtain the following Rankine–
Hugoniot jump condition in the case of uniform bed (cf. Equation (2))

q[u] +
1
2

g
[

h2
]
= 0 .

In view of the staggered grid discretization, the non-smooth transition across a hy-
draulic jump, as manifested by finite changes in the primitive variables u and h on either
side of the jump in line with the above jump conditions, is effectively residing in one grid
cell. The cellwise continuity of both mass and momentum flux is thus enforced by the stag-
gered spatial placement of the unknowns and remains effective regardless of the grid size.
By contrast, central finite volume schemes on non-staggered (or colocated) grids necessarily
spread the discontinuity over two grid cells and also allow us to provoke the decoupling
between odd and even grid cells. As a result, the constancy of mass and momentum fluxes
across an abrupt change cannot be guaranteed. The importance of the Rankine–Hugoniot
jump relations in the suppression of odd–even grid oscillations is elaborated in [22].

The remainder of the present section provides an analysis of a direct corollary of the
above key result. In particular, we examine the jump distribution for mechanical energy
per unit mass, which is given by

e(s) = g q
(

h(s) +
(u(s)− c)2

2g

)
. (13)

Like the other flow variables, function e(s) is assumed to have its jump on the interval
(0, ε). However, since it is a composite variable, we do not adopt the following solution
form:

e(s) = eu + [e] E(s) ,

where E(s) is a nonstandard step function. Instead, we will show that function e(s) exhibits
a local extremum inside the hydraulic jump, considering that H is strictly increasing on
(0, ε). Let the derivative de/ds vanish at point σp ∈ (0, ε). Then,

0 =
de
ds

= g q
(
[h] H′(σp) +

u(σp)− c
g

[u]U′(σp)

)
which implies

g [h] H′(σp) = −
(
u(σp)− c

)
[u]U′(σp) .

Recall Equation (12). Differentiation yields

U′ = − q
[u]

[h]
h2 H′ .

Combining the last two equations and then using the fact that H′(σp) > 0, we obtain(
u(σp)− c

)2
= gh(σp)

which is precisely the critical flow condition, corresponding to a Froude number of unity.
Hence, the energy jump e(s) is a non-decreasing function. Since energy is lost when the
flow passes through the hydraulic jump, this function must take a minimum value at the
critical flow.

As support for this finding, we consider the energy distribution across the jump
at the microscopic scale. Within the shock layer, viscosity is then responsible for the
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redistribution and dissipation of mechanical energy. To show this, we first consider the
following momentum equation including the viscous stress term

∂hu
∂t

+
∂qu
∂x

+
∂ 1

2 g h2

∂x
=

∂

∂x
(
ν h

∂u
∂x
)

with ν the viscosity of water. Next, we derive the transport equation for the total energy
(the sum of the kinetic energy and the potential energy but without bottom topography) by
combining the momentum equation and continuity Equation (5). This equation reads

∂η

∂t
+

∂G
∂x

=
∂

∂x
(
ν q

∂u
∂x
)
− νh

(∂u
∂x
)2 , (14)

where η = 1
2 hu2 + 1

2 g h2 is the total energy (also termed entropy, see, e.g., [17]) and
G = q ( 1

2 u2 + gh) is the entropy flux. The last term on the right hand side of Equation (14)
results in a net loss of energy across the jump, while the first term redistributes the energy
inside the hydraulic jump. In particular, the velocity upstream of the jump decreases
rapidly, which in turn creates a sharp trough in the energy at the critical flow location, and
then recovers towards the downstream side of the jump, which thus causes a rise in the
energy level.

A similar phenomenon has been previously reported by Salas and Iollo [30], who have
demonstrated the existence of an entropy overshoot inside an inviscid aerodynamic shock
using the algebra of nonlinear generalized functions of Colombeau et al. [40]. Their finding
has also been justified by the work of Baty and Margolin [41] using nonstandard analysis.

The conclusions that can be drawn from the present analysis are that despite being char-
acterized by the complete absence of viscosity, the nonstandard Equations (4) and (6) do
comply with the second law of thermodynamics, and the flow distribution inside the
hydraulic jump is effectively regularized by the continuity equation. In particular, incom-
pressibility is an essential component of the solution regularization.

The present analysis also offers support for the ability of the staggered grid approach
to reproduce the macroscopic features of hydraulic jumps and bores such as the energy loss
and the jump location. This will be further discussed in Section 4.

Yet, the numerical techniques for the solution of shallow water equations by which reg-
ularization is based on the addition of artificial dissipation, either explicitly (see, e.g., [14,16])
or implicitly (see, e.g., [8]), do not directly invoke the incompressibility constraint. Indeed,
these methods are originally designed for the numerical solution of compressible Euler
equations. (An in-depth study of the dissipative regularization of the compressible Euler
(and Navier–Stokes) equations based on physical grounds is described in [43].)

3.4. An Illustrative Example

For the purpose of exploring the relation between the different microstructures of
the flow field across an infinitesimal hydraulic jump, we introduce the nondimensional
Heaviside function to model the microstructure for water depth h as defined by

H(s) =
1
2
+

1
2

erf
[

m
(

s− 1
2

)]
,

where s lies in the halo I = [0, 1] (normalized by the jump thickness ε) and m ∈ ∗N is a fixed
hyperinteger, either appreciable or infinitely large, that determines the actual thickness. It
should be noted that the proposed error function is one way to represent a jump. Other
examples of Heaviside functions to model the jump can be found in [41]. Also note that
function H is monotone increasing on I . The water depth profile is then given by

h(s) = hu + (hd − hu) H(s) .
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The other variables are determined from this jump function, specifically flow velocity
u(s) and energy e(s), by use of Equations (12) and (13), respectively. The nonstandard
function U(s) is likewise a monotone increasing function on I .

We consider the case of a standing hydraulic jump (c = 0) in a steady state, over a
frictionless horizontal bed, as illustrated in Figure 2.

u

u

h

hu
u

d

d

Figure 2. Schematic view of the hydraulic jump. The meaning of the variables is described in the text.

The corresponding flow is described by a depth hu and velocity uu upstream of the
jump, and a depth hd and velocity ud downstream of the jump. The following values have
been chosen for the present case: hu = 0.7 m, uu = 6.7 m/s, hd = 2.2 m and ud = 2.1 m/s.
Note that these values satisfy Equations (1) and (2). Also note that g = 9.81 m/s2. The
upstream and downstream Froude numbers are found to be 2.55 and 0.46, respectively. The
rate of energy loss in the jump is calculated from Equation (3)

eu − ed = 25.2
m4

s3 . (15)

The depth, velocity and energy jump profiles have been computed by setting m = 25
and are presented in Figure 3.
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Figure 3. Heaviside functions and flow profiles across infinitesimal hydraulic jump with thickness
of unity for m = 25. Function H is based on the error function, while function U is computed with
Equation (12).
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It can be observed that the water depth and the flow velocity are monotonically
increasing and decreasing, respectively, whereas the energy flux displays a sharp trough
inside the jump. Furthermore, this undershoot does not affect the overall energy loss across
the jump (cf. Equation (15)). The Froude number at the location of this undershoot (s = 0.5)
turns out to be exactly 1.

Overall, the present observations confirmed the results from the analysis of Section 3.3
and demonstrated that the undershoot observed in the energy profile inside the hydraulic
jump is rooted in the continuity of mass flux across the shock because the microstructure
associated with the water depth and the flow velocity is distinct, viz. Equation (12). Under
the assumption of a strictly increasing function for the water depth in the microstructure
(0, ε), this guarantees the existence of the entropy-consistent minimum value of energy in
the shock.

4. Numerical Experiment

Gharangik and Chaudhry [14] reported both laboratory and numerical experiments to
investigate the formation of a hydraulic jump in a rectangular flume with metal walls and
bed. These include six test conditions with the upstream Froude number Fu = uu/

√
ghu

ranging from 2.3 to 7.0, and thus provide a useful benchmark solution for validating
numerical methods. The objective of this test case is to assess the numerical efficiency of
the staggered C-grid discretization as outlined in Section 2.2. Its complete description and
implementation is given in Appendix A.

Numerical results of the current method are presented for two conditions: Fu = 2.30
(test no. 6 of [14]) and Fu = 5.74 (test no. 3). The flume dimensions and flow parameters for
these cases are identical to those used by Gharangik and Chaudhry [14].

The computational grid was uniform and the grid size was set to 0.15 m. At the
upstream boundary, an in-going Riemann invariant, defined as uu + 2

√
ghu, was imposed,

whereas at the downstream end the water depth hd was fixed. The time step was initially
taken as 0.01 s and the Courant number was set equal to 0.5 (see Appendix A). The
simulation time was set to 90 s, which was long enough to get a stabilized jump. Following
Gharangik and Chaudhry [14], a Manning’s bed roughness coefficient of k = 0.008 was
adopted. No artificial viscosity nor flux limiting was applied in the course of simulations.

Numerical predictions and comparisons with the experimental data are depicted in
Figure 4.
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Figure 4. Computed and recorded jump profiles for Fu = 2.30 (left panel) and Fu = 5.74 (right panel).
Black solid line: present method using Fromm’s scheme; black dash line: present method using first
order upwind scheme; red dots: experimental data of Gharangik and Chaudhry [14].

Here, the momentum advection is approximated by means of two upwind schemes:
the first order upwind scheme (see Appendix A) and the second order Fromm’s scheme [44].
The latter scheme is designed for low numerical dispersion and dissipation.

Obviously, model-predicted jump profiles agree very well with the measurements.
The location of the steady-state jump is adequately captured by the numerical approach.
Additionally, the steepness of the jump profile is hardly affected by the amount of numerical
diffusion induced by an advection scheme. This suggests that the role of this diffusion in
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the formation of the jump is less relevant than commonly believed. This finding is in line
with the conclusion of Section 3.3.

To verify the correctness of the simulations the well-known Bélanger formula is
employed and is given by

hd
hu

=
−1 +

√
1 + 8Fu

2

2
. (16)

Based on the numerical outcomes, we observed a 5% lower ratio hd/hu in comparison
with Equation (16), which is acceptable.

It is further observed that there are virtually no spatial oscillations, albeit a small
overshoot produced by the Fromm’s scheme. It should be noted that the numerical methods
employed by Gharangik and Chaudhry [14] necessarily involve some amount of artificial
viscosity to suppress these oscillations, and possibly numerical instability. The same
conclusion is also found in [16]. The main cause of such oscillations is due to the non-
staggered arrangement of the unknowns, which induces a checkerboard pattern. In turn,
this can lead to a loss of continuity of the mass flux. Lastly, the study of Ginting [16] has
also demonstrated the influence of the tuning of artificial viscosity on the jump location.

5. Conclusions

This paper provided an explanation of the ability of staggered C-grid discretizations
to produce physically realistic results for rapidly varying free-surface flows by leveraging
the concepts of nonstandard calculus. It was further argued that the physically consistent
nonstandard equations governing the conservation of water volume and the streamwise
transport of momentum can be established as a numerical methodology for solving the
inviscid shallow water equations on staggered grids. The resulting discretization is char-
acterized by the topological structures embedded in the nonstandard equations and the
primary unknowns.

Nonstandard analysis also opens the door to adequately analyze nonlinear problems
in the presence of discontinuities. The distributions of the water depth, flow velocity and
mechanical energy across a one-dimensional infinitesimal thin inviscid hydraulic jump
were analyzed by means of nonstandard Heaviside functions. The analysis presented in
this work demonstrated that the modeled microstructure of the energy profile displays
an undershoot inside the hydraulic jump, which is the result of the incompressibility
constraint while the viscosity, either physical or artificial, plays no role. This principal result
concludes that the staggered finite difference equations derived in this paper are effective
for regularizing the entropy-consistent solution to the nonlinear shallow water equations.

The numerical results reported in this paper serve to illustrate that the numerical
approach based on C-grid staggering indeed provides a superior representation of hydraulic
jumps to that returned by the methods using artificial viscosity.
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Appendix A

We present a staggered finite difference scheme in the one-dimensional case. In the
following the space domain is divided into M grid cells of length ∆x with cell centers located
at {xm |m = 1, . . . , M} and cell interfaces at {xm+1/2 |m = 0, . . . , M}; see Figure A1.
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x

m+2m+1
m+1/2m−1/2

m

cell of point m

m−2 m−1

∆

Figure A1. A part of a 1D computational grid.

With the staggered grid arrangement, the primitive variables are carried at alternate
grid points. The water depth is located at the center of the cells, whereas the flow velocity
is resided at the cell interfaces. Likewise, updates of these unknowns are staggered in time:
the water depth is evaluated at each whole time step n∆t, whereas the velocity at each half
time step (n + 1/2)∆t, with ∆t the time step and n = 0, . . . , N indicating the time level
tn = n∆t. The associated approximations are denoted by hn

m and un+1/2
m+1/2, respectively.

Concerning the solution strategy, the nonstandard Equations (4) and (6) are solved
by adopting the method described in Zijlema [22]. The underlying approach uses a mix
of interpolation and upwinding techniques with the aim to design a staggered scheme
which satisfies the Rankine–Hugoniot jump conditions. These conditions express the
continuity of mass flux and momentum flux across a discontinuity and are necessary for
preventing the odd–even decoupling problem. Below, we briefly outline the numerical
procedure. For further details, which also include a detailed implementation of the varying
bed topography, we refer to [22,34].

We first solve the momentum equation as follows:

h
n
m+1/2un+1/2

m+1/2 − h
n−1
m+1/2un−1/2

m+1/2

∆t
+

qn−1/2
m+1 ûn−1/2

m+1 − qn−1/2
m ûn−1/2

m

∆x
+

1
2

g
(hn

m+1)
2 − (hn

m)
2

∆x
= 0 , (A1)

where
h

n
m+1/2 =

1
2
(
hn

m + hn
m+1

)
and

qn−1/2
m =

1
2
(
qn−1/2

m+1/2 + qn−1/2
m−1/2

)
.

Here,
qn−1/2

m+1/2 = ĥn−1
m+1/2 un−1/2

m+1/2 (A2)

is the mass flux and for the transported velocity we apply a first order upwind scheme, as
follows:

ûn−1/2
m =


un−1/2

m−1/2 , if qn−1/2
m > 0

un−1/2
m+1/2 , if qn−1/2

m < 0
.

Second order accuracy can be obtained by means of a high order upwind scheme. In
this paper, we employ the well-known second order Fromm’s scheme, which generates a
limited amount of numerical dispersion and dissipation [44].

The water depth at the cell face in Equation (A2) is approximated as follows:

ĥn−1
m+1/2 =


hn−1

m , if un−1/2
m+1/2 > 0

hn−1
m+1 , if un−1/2

m+1/2 < 0
.

This approximation guarantees a non-negative water depth if the time step is limited
according to [

max
(

un−1/2
m+1/2 , 0

)
−min

(
un−1/2

m−1/2 , 0
)]

∆t

∆x
≤ 1 . (A3)
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To model the effect of bed friction on the flow motion, the following sink term is added
to the left hand side of Equation (A1)

k2 g
| un−1/2

m+1/2 |
(h

n
m+1/2)

1/3
un+1/2

m+1/2

with k the Manning’s roughness coefficient.
After the momentum Equation (A1) is solved, the continuity equation is then solved,

which is given by

hn+1
m − hn

m
∆t

+
qn+1/2

m+1/2 − qn+1/2
m−1/2

∆x
= 0 . (A4)

With respect to the temporal order of accuracy, the present scheme is second order
accurate in time in the absence of the advection term by virtue of staggering in time. To
obtain second order accuracy in both space and time, a predictor–corrector technique is
adopted. In the predictor step, the momentum Equation (A1) is solved to determine the
provisional flow velocities u∗m+1/2. Next, in the corrector step, these values are corrected by
means of the Fromm’s scheme, while marching in time using the MacCormack approach to
achieve second order accuracy in time. See [34] for further details. Convergence tests of the
present method are demonstrated in [22].

Since the time integration is explicit, the following CFL criterion[
| un−1/2

m+1/2 | +
√

gĥn
m+1/2

]
∆t

∆x
≤ 1

is employed to determine the maximum time step for stability. Note that this time step
automatically satisfies condition (A3).
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