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Abstract: Industries are constantly seeking ways to avoid corrective maintenance in order to reduce
costs. Performing regular scheduled maintenance can help to mitigate this problem, but not nec-
essarily in the most efficient way. In many real life applications, one wants to predict the future
failure time of equipment or devices that are expensive, or with long lifetimes, to save costs and/or
time. In this paper, statistical prediction was studied using the classical and Bayesian approaches
based on a unified hybrid censoring scheme. Two prediction schemes were used: (1) a one-sample
prediction scheme that predicted the unobserved future failure times of devices that did not complete
the lifetime experiments; and (2) a two-sample prediction scheme to predict the ordered values of
a future independent sample based on past data from a certain distribution. We chose to apply
the results of the paper to the Burr-X model, due to the importance of this model in many fields,
such as engineering, health, agriculture, and biology. Point and interval predictors of unobserved
failure times under one- and two-sample prediction schemes were computed based on simulated
data sets and two engineering applications . The results demonstrate the ability of predicting the
future failure of equipment using a statistical prediction branch based on collected data from an
engineering system.

Keywords: Burr-X distribution; maximum likelihood prediction; Bayesian prediction; one and
two-sample prediction schemes; unified hybrid censoring; Gibbs sampler and Metropolis–Hastings
algorithm

MSC: 62F10; 62F15; 62N01; 62N02

1. Introduction

Industries are constantly seeking ways to avoid corrective maintenance in order to
reduce costs. Performing regular scheduled maintenance can help to mitigate this problem,
but not necessarily in the most efficient way, see [1–3]. In condition-based maintenance,
the main goal is to come up with ways to treat and transform data from an engineering
system, so that it can be used to build a data set to make statistical predictions about how
the equipment will act in the future and when it will break down.

In many practical situations, one desires to predict future observations from the same
population of previous data. This may be done by constructing an interval that will include
future observations with a certain probability.

Predictive interval accuracy depends on sample size; full testing is impractical in real
testing, owing to the advancement of industrial design and technology, which results in
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very reliable products with long lifespans. Censoring has been implemented in this case
for a variety of reasons, including a lack of available resources and the need to save costs.
In general, only a small percentage of failure times are recorded when a CS is engaged in a
test environment.

Let X1:n, X2:n, . . . , Xn:n be the ordered failure times of n identical units placed on a
life-test, from a certain distribution with PDF, f (x; θ), where θ is the vector of parameters
and RF, R(x; θ). For fixed k, r ∈ {1, 2, . . . , n} and T1 < T2 ∈ (0, ∞) with k < r and upon the
relation between T1, T2, Xk and Xr, an UHCS is defined by Balakrishnan with six decisions,
as follows:

(1) Stopping the experiment at T1 if 0 < Xk:n < Xr:n < T1 < T2;
(2) Stopping the experiment at Xr:n if 0 < Xk:n < T1 < Xr:n < T2;
(3) Stopping the experiment at T2 if 0 < Xk:n < T1 < T2 < Xr:n;
(4) Stopping the experiment at Xr:n if 0 < T1 < Xk:n < Xr:n < T2 ;
(5) Stopping the experiment at T2 if 0 < T1 < Xk:n < T2 < Xr:n;
(6) Stopping the experiment at Xk:n if 0 < T1 < T2 < Xk:n < Xr:n.

Let di denote the number of failures until time Ti, i = 1, 2. Then, the LF of this UHCS
censored sample is as follows:

L(θ; data) =



n!
(n−d)! [∏

d
i=1 f (xi; θ)][R(T1; θ)](n−d), d1 = d2 = d = r, . . . , n,

n!
(n−r)! [∏

r
i=1 f (xi; θ)][R(xr; θ)](n−r), d1 = k, . . . , r− 1, d2 = r,

n!
(n−d2)!

[∏d2
i=1 f (xi; θ)][R(T2; θ)](n−d2), d1 = k, . . . , r− 1, d2 = k, . . . , r− 1, d1 ≤ d2

n!
(n−r)! [∏

r
i=1 f (xi; θ)][R(xr; θ)](n−r), d1 = 0, 1, . . . , k− 1, d2 = r,

n!
(n−d2)!

[∏d2
i=1 f (xi; θ)][R(T2; θ)](n−d2), d1 = 0, . . . , k− 1, d2 = k, . . . , r− 1,

n!
(n−k)! [∏

k
i=1 f (xi; θ)][R(xk; θ)](n−k), d2 = 0, . . . , k− 1.

(1)

Many well-known censoring schemes can be considered as special cases from the
studied UHCS, such as generalized type-I HCS, see [4] when T1 → 0, generalized type-II
HCS, see [4] when k = 1, type-I HCS, see [5], when T1 → 0 and k = 1, type-II HCS, see [5],
when T2 → ∞ and k = 1, type-I censoring, see [6], when T1 → 0, k = 1, r = n and type-II
censoring, see [6], when T1 → 0, T2 → ∞ and k = 1.

Among the advantages of UHCS is that it is more flexible than the generalized type-I
HCS and generalized type-II HCS; moreover, it guarantees us more observations, which
will increase the accuracy of the predictive intervals.

Ref. [7] proposes the Burr-X distribution as a member of the Burr distribution family.
This model is extremely useful in the fields of statistics and operations research. Engineer-
ing, health, agriculture, and biology are just some of the fields where it can be used to
great effect.

A random variable X is said to have a Burr-X with a vector of parameters θ = (α, β) if
the PDF is given by

f (x; α, β) = 2 α β x e−β x2
(1− e−β x2

)α−1, x > 0, (α > 0, β > 0). (2)

The corresponding CDF and RF are given, respectively, as:

F(x; α, β) = (1− e−β x2
)α, x > 0, (α > 0, β > 0), (3)

R(x; α, β) = 1− (1− e−β x2
)α, x > 0, (α > 0, β > 0). (4)

For more details about some Burr models with related inferences using classical and
Bayesian approaches, see [8–18].

Many contributions found in this paper, such as: studying the prediction problem
in a UHCS using the classical and Bayesian approaches with making some comparisons
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between the two approaches, analyzing two engineering real data sets using Burr-X distri-
bution and applying the obtained results on these real data sets as illustrative examples.

This paper is organized as follows: the point and interval prediction problems under
one- and two-sample prediction schemes were studied using the classical and Bayesian
approaches in Sections 2 and 3, respectively. In Section 4, the obtained results were applied
on simulated and real data sets. Our conclusions are summarized in Section 5.

2. One-Sample Prediction

Assume that n items are placed in a life-time experiment and that this experiment will
be terminated at a fixed time T∗ and the number of failures until this time is D. The previous
ordered failures denoted by x = (x1:n, x2:n, . . . , xD:n), which can be written for simplicity as
x = (x1, x2, . . . , xD), called (Informative sample). In Balakrishnan’s UHCS, T∗ will equal
T1 in the first case, xr in the second case, T2 in the third case, xr in the fourth case, T2 in the
fifth case and xk in the sixth case. Moreover, D will equal d1 in the first case, r in the second
case, d2 in the third case, r in the fourth case, d2 in the fifth case, and k in the sixth case. In
the one-sample prediction scheme, the future failure time xD+s ≡ ys, s = 1, 2, . . . , n− D
will be predicted based on the informative sample.

In this section, the PPs and IPs of the future unknown failure time ys will be computed
using classical and Bayesian methods.

First, the conditional PDF of the future failure time ys given the vector of parameters
θ should be derived as follows:

Based on the informative sample x = (x1, x2, . . . , xD), the PDF of ys given θ will be
the PDF of the sth ordered value from n− D ordered values after T∗, which can be written
as (see [15,19–21]):

g1(ys; θ) ∝ [R(T∗; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−D−s [R(T∗; θ)]−(n−D) f (ys; θ), ys > T∗. (5)

Using this PDF, the conditional PDF of the future failure time ys given θ based on all
cases of Balakrishnan’s UHCS is:

g1(ys; θ) ∝



[R(T1; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−d−s [R(T1; θ)]−(n−d) f (ys; θ), ys > T1,
d1 = d2 = d = r, . . . , n,
[R(xr; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−r−s [R(xr; θ)]−(n−r) f (ys; θ), ys > xr,
d1 = k, . . . , r− 1, d2 = r,
[R(T2; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−d2−s [R(T2; θ)]−(n−d2) f (ys; θ), ys > T2,
d1 = k, . . . , r− 1, d2 = k, . . . , r− 1, d1 ≤ d2

[R(xr; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−r−s [R(xr; θ)]−(n−r) f (ys; θ), ys > xr,
d1 = 0, 1, . . . , k− 1, d2 = r,
[R(T2; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−d2−s [R(T2; θ)]−(n−d2) f (ys; θ), ys > T2,
d1 = 0, . . . , k− 1, d2 = k, . . . , r− 1,
[R(xk; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−k−s [R(xk; θ)]−(n−k) f (ys; θ), ys > xk, d2 = 0, . . . , k− 1.

(6)

2.1. Classical Method (Maximum Likelihood Prediction)

In this subsection, the PPs and IPs of ys were obtained using the following PLF
(see [22]):

g∗1(ys; θ, x) ∝ L(θ; x) g1(ys; θ), ys > T∗. (7)

Substituting from (1) and (6) in (7), we have
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g∗1(ys; θ, x) ∝



[∏d
i=1 f (xi; θ)] [R(T1; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−d−s f (ys; θ), ys > T1,

d1 = d2 = d = r, . . . , n,
[∏r

i=1 f (xi; θ)] [R(xr; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−r−s f (ys; θ), ys > xr,
d1 = k, . . . , r− 1, d2 = r,
[∏d2

i=1 f (xi; θ)] [R(T2; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−d2−s f (ys; θ), ys > T2,
d1 = k, . . . , r− 1, d2 = k, . . . , r− 1, d1 ≤ d2

[∏r
i=1 f (xi; θ)] [R(xr; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−r−s f (ys; θ), ys > xr,

d1 = 0, 1, . . . , k− 1, d2 = r,
[∏d2

i=1 f (xi; θ)] [R(T2; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−d2−s f (ys; θ), ys > T2,
d1 = 0, . . . , k− 1, d2 = k, . . . , r− 1,
[∏k

i=1 f (xi; θ)][R(xk; θ)− R(ys; θ)]s−1 [R(ys; θ)]n−k−s f (ys; θ), ys > xk,
d2 = 0, . . . , k− 1.

(8)

Substituting from (2)–(4) in (8), we have

g∗1(ys; α, β, x) ∝



αd+1 βd+1 ys e−β y2
s (1− e−β y2

s )α−1 [∏d
i=1 xi e−β x2

i (1− e−β x2
i )α−1]×

[(1− e−β y2
s )α − (1− e−β T2

1 )α]s−1 [1− (1− e−β y2
s )α]n−d−s, ys > T1,

d1 = d2 = d = r, . . . , n,
αr+1 βr+1 ys e−β y2

s (1− e−β y2
s )α−1 [∏r

i=1 xi e−β x2
i (1− e−β x2

i )α−1]×
[(1− e−β y2

s )α − (1− e−β x2
r )α]s−1 [1− (1− e−β y2

s )α]n−r−s, ys > xr,
d1 = k, . . . , r− 1, d2 = r,
αd2+1 βd2+1 ys e−β y2

s (1− e−β y2
s )α−1 [∏d2

i=1 xi e−β x2
i (1− e−β x2

i )α−1]×
[(1− e−β y2

s )α − (1− e−β T2
2 )α]s−1 [1− (1− e−β y2

s )α]n−d2−s, ys > T2,
d1 = k, . . . , r− 1, d2 = k, . . . , r− 1, d1 ≤ d2

αr+1 βr+1 ys e−β y2
s (1− e−β y2

s )α−1 [∏r
i=1 xi e−β x2

i (1− e−β x2
i )α−1]×

[(1− e−β y2
s )α − (1− e−β x2

r )α]s−1 [1− (1− e−β y2
s )α]n−r−s, ys > xr,

d1 = 0, 1, . . . , k− 1, d2 = r,
αd2+1 βd2+1 ys e−β y2

s (1− e−β y2
s )α−1 [∏d2

i=1 xi e−β x2
i (1− e−β x2

i )α−1]×
[(1− e−β y2

s )α − (1− e−β T2
2 )α]s−1 [1− (1− e−β y2

s )α]n−d2−s, ys > T2,
d1 = 0, . . . , k− 1, d2 = k, . . . , r− 1,
αk+1 βk+1 ys e−β y2

s (1− e−β y2
s )α−1 [∏k

i=1 xi e−β x2
i (1− e−β x2

i )α−1]×
[(1− e−β y2

s )α − (1− e−β x2
k )α]s−1 [1− (1− e−β y2

s )α]n−k−s, ys > xk,
d2 = 0, . . . , k− 1.

(9)

2.1.1. Point Predictor

In this subsection, the PPs of ys will be obtained using two methods.

Method (1): obtaining the values of α, β, and ys, which maximize the logarithm of the
PLF, and will be denoted by α∗, β∗, and y∗s , respectively. The values α∗ and
β∗ will be called the PMLEs and the value y∗ will be called the MLP of ys.
To maximize the logarithm of the PLF, we will differentiate log(g∗1(ys; α, β, x))
with respect to α, β, and ys, set the resulting derivatives to zero and solve
the resulting nonlinear equations. The solution of the resulting nonlinear
equations will be α∗, β∗, and y∗.

Method (2): first, the MLEs of the parameters α and β, denoted by α̂ and β̂, will be
obtained, then replace α and β by α̂ and β̂, respectively, in the PLF, to obtain
the MLPF in the form: g∗∗1 (ys; x) = g∗1(ys; α̂, β̂, x), and finally the MLP of
ys will be equal to

∫ ∞
T∗ ys g∗∗1 (ys; x) dys, which represents the mathematical
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expectation of the random variable Ys. To obtain the (MLEs) of α and β, we
will differentiate the logarithm of the LF then set the resulting equations
to zero and solve the resulting nonlinear equations. The solution of the
resulting nonlinear equations will be α̂ and β̂.

Based on the studied UHCS, g∗∗1 (ys; x) can be written in the form:

g∗∗1 (ys; x) = A ys e−β̂ y2
s (1− e−β̂ y2

s )α̂−1 [(1− e−β̂ y2
s )α̂ − (1− e−β̂ T∗

2
)α̂]s−1[1− (1− e−β̂ y2

s )α̂]n−D−s, ys > T∗, (10)

where A is a normalizing constant and has the value

A =
1∫ ∞

T∗

(
ys e−β̂ y2

s (1− e−β̂ y2
s )α̂−1 [(1− e−β̂ y2

s )α̂ − (1− e−β̂ T∗2 )α̂]s−1[1− (1− e−β̂ y2
s )α̂]n−D−s

)
dys

.
(11)

So, the MLP of ys will be

y∗s = E[Ys] =
∫ ∞

T∗
ys g∗∗1 (ys; x) dys =∫ ∞

T∗

(
y2

s e−β̂ y2
s (1− e−β̂ y2

s )α̂−1 [(1− e−β̂ y2
s )α̂ − (1− e−β̂ T∗

2
)α̂]s−1[1− (1− e−β̂ y2

s )α̂]n−D−s
)

dys∫ ∞
T∗

(
ys e−β̂ y2

s (1− e−β̂ y2
s )α̂−1 [(1− e−β̂ y2

s )α̂ − (1− e−β̂ T∗2 )α̂]s−1[1− (1− e−β̂ y2
s )α̂]n−D−s

)
dys

,
(12)

where 

D = d, ys > T∗, T∗ = T1, d1 = d2 = d = r, . . . , n,
D = r, ys > T∗, T∗ = xr, d1 = k, . . . , r− 1, d2 = r,
D = d2, ys > T∗, T∗ = T2, d1 = k, . . . , r− 1, d2 = k, . . . , r− 1, d1 ≤ d2

D = r, ys > T∗, T∗ = xr, d1 = 0, 1, . . . , k− 1, d2 = r,
D = d2, ys > T∗, T∗ = T2, d1 = 0, . . . , k− 1, d2 = k, . . . , r− 1,
D = k, ys > T∗, T∗ = xk, d2 = 0, . . . , k− 1.

(13)

2.1.2. Interval Predictor

A (1− τ)× 100% MLPI (LM1, UM1) of the future failure time ys can be obtained by
solving the following two nonlinear equations:{∫ ∞

LM1
g∗∗1 (ys; x) dys = 1− τ

2 ,∫ ∞
UM1

g∗∗1 (ys; x) dys =
τ
2 .

(14)

From (10) and (11) in (14), the two nonlinear equations in (14) can be rewritten to be of
the form

∫ ∞
LM1

(
ys e−β̂ y2

s (1−e−β̂ y2
s )α̂−1 [(1−e−β̂ y2

s )α̂−(1−e−β̂ T∗
2
)α̂ ]s−1[1−(1−e−β̂ y2

s )α̂ ]n−D−s

)
dys

∫ ∞
T∗

(
ys e−β̂ y2

s (1−e−β̂ y2
s )α̂−1 [(1−e−β̂ y2

s )α̂−(1−e−β̂ T∗2 )α̂ ]s−1[1−(1−e−β̂ y2
s )α̂ ]n−D−s

)
dys

= 1− τ
2 ,

∫ ∞
UM1

(
ys e−β̂ y2

s (1−e−β̂ y2
s )α̂−1 [(1−e−β̂ y2

s )α̂−(1−e−β̂ T∗
2
)α̂ ]s−1[1−(1−e−β̂ y2

s )α̂ ]n−D−s

)
dys

∫ ∞
T∗

(
ys e−β̂ y2

s (1−e−β̂ y2
s )α̂−1 [(1−e−β̂ y2

s )α̂−(1−e−β̂ T∗2 )α̂ ]s−1[1−(1−e−β̂ y2
s )α̂ ]n−D−s

)
dys

= τ
2 .

(15)

By solving the previous system, the MLPI of ys, (LM1, UM1), can be computed.
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2.2. Bayesian Method (Bayesian Prediction)

Using the following bivariate prior suggested by [23,24]:

π(α, β) ∝ αc1+c3−1 βc3−1e−α (β+c2), α > 0, β > 0, (c1 > 0, c2 > 0, c3 > 0), (16)

where c1, c2, and c3 are the prior parameters ( also known as hyperparameters) and LF (1)
replace f (xi; θ) and R(xi; θ) by its definitions from (2) and (4), the posterior PDF of α and
β can be written as:

π∗(α, β; x) ∝



αd+c1+c3−1 βd+c3−1 e−α (β+c2) [∏d
i=1 xi e−β x2

i (1− e−β x2
i )α−1]×

[1− (1− e−β T2
1 )α]n−d−s, d1 = d2 = d = r, . . . , n,

αr+c1+c3−1 βr+c3−1 e−α (β+c2) [∏r
i=1 xi e−β x2

i (1− e−β x2
i )α−1]×

[1− (1− e−β x2
r )α]n−r−s, d1 = k, . . . , r− 1, d2 = r,

αd2+c1+c3−1 βd2+c3−1 e−α (β+c2) [∏d2
i=1 xi e−β x2

i (1− e−β x2
i )α−1]×

[1− (1− e−β T2
2 )α]n−d2−s, d1 = k, . . . , r− 1, d2 = k, . . . , r− 1, d1 ≤ d2

αr+c1+c3−1 βr+c3−1 e−α (β+c2) [∏r
i=1 xi e−β x2

i (1− e−β x2
i )α−1]×

[1− (1− e−β x2
r )α]n−r−s, d1 = 0, 1, . . . , k− 1, d2 = r,

αd2+c1+c3−1 βd2+c3−1 e−α (β+c2) [∏r
i=1 xi e−β x2

i (1− e−β x2
i )α−1]×

[1− (1− e−β T2
2 )α]n−d2−s, d1 = 0, . . . , k− 1, d2 = k, . . . , r− 1,

αk+c1+c3−1 βk+c3−1 e−α (β+c2) [∏k
i=1 xi e−β x2

i (1− e−β x2
i )α−1]×

[1− (1− e−β x2
k )α]n−k−s, d2 = 0, . . . , k− 1.

(17)

Using the previous posterior PDF and the conditional PDF of ys given α and β, (6),
after using the definition of f (xi; θ) and R(xi; θ) from (2) and (4), the Bayesian predictive
PDF of ys given x will be as follows (see [22]):

h∗1(ys; x) =
∫ ∞

0

∫ ∞

0
h1(ys; α, β, x)dβ dα, (18)

where

h1(ys; α, β, x) =π∗(α, β; x) g1(ys; α, β) =

A1 ys αd+c1+c3 βd+c3 e−(α (β+c2)+β y2
s ) (1− e−β y2

s )α−1×
[∏d

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [(1− e−β y2
s )α − (1− e−β T2

1 )α]s−1×
[1− (1− e−β y2

s )α]n−d−s, ys > T1, d1 = d2 = d = r, . . . , n,

A2 ys αr+c1+c3 βr+c3 e−(α (β+c2)+β y2
s ) (1− e−β y2

s )α−1×
[∏r

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [(1− e−β y2
s )α − (1− e−β x2

r )α]s−1×
[1− (1− e−β y2

s )α]n−r−s, ys > xr, d1 = k, . . . , r− 1, d2 = r,

A3 ys αd2+c1+c3 βd2+c3 e−(α (β+c2)+β y2
s ) (1− e−β y2

s )α−1×
[∏d2

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [(1− e−β y2
s )α − (1− e−β T2

2 )α]s−1×
[1− (1− e−β y2

s )α]n−d2−s, ys > T2, d1 = k, . . . , r− 1, d2 = k, . . . , r− 1, d1 ≤ d2

A4 ys αr+c1+c3 βr+c3 e−(α (β+c2)+β y2
s ) (1− e−β y2

s )α−1×
[∏r

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [(1− e−β y2
s )α − (1− e−β x2

r )α]s−1×
[1− (1− e−β y2

s )α]n−r−s, ys > xr, d1 = 0, 1, . . . , k− 1, d2 = r,

A5 ys αd2+c1+c3 βd2+c3 e−(α (β+c2)+β y2
s ) (1− e−β y2

s )α−1×
[∏d2

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [(1− e−β y2
s )α − (1− e−β T2

2 )α]s−1×
[1− (1− e−β y2

s )α]n−d2−s, ys > T2, d1 = 0, ..., k− 1, d2 = k, . . . , r− 1,

A6 ys αk+c1+c3 βk+c3 e−(α (β+c2)+β y2
s ) (1− e−β y2

s )α−1×
[∏k

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [(1− e−β y2
s )α − (1− e−β x2

k )α]s−1×
[1− (1− e−β y2

s )α]n−k−s, ys > xk, d2 = 0, . . . , k− 1,

(19)
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where Ai, i = 1, 2, . . . , 6 are normalizing constants.
The BP of ys will equal to (see [22]):

y∗∗s = E[Ys] =
∫ ∞

T∗
ysh∗1(ys; x)dys, (20)

and the (1− τ)× 100% BPI, (LB1, UB1), of ys can be obtained by solving the following
two nonlinear equations: {∫ ∞

LB1
h∗1(ys; x) dys = 1− τ

2 ,∫ ∞
UB1

h∗1(ys; x) dys =
τ
2 .

(21)

It is clear that the previous system contains double integration on α and β, which will
make the problem of finding the solution for this system very complicated. In this situation,
the Gibbs sampler and Metropolis–Hastings algorithm were used to generate a random
sample (α(1), β(1)), (α(2), β(2)), . . . , (α(K), β(K)) from the posterior PDF (17); the the system
(21) will be of the form 

∑K
i=1
∫ ∞

LB1
h1(ys ; α(i), β(i), x) dys

∑K
i=1
∫ ∞

T∗ h1(ys ; α(i), β(i), x) dys
= 1− τ

2 ,

∑K
i=1
∫ ∞

UB1
h1(ys ; α(i), β(i), x) dys

∑K
i=1
∫ ∞

T∗ h1(ys ; α(i), β(i), x) dys
= τ

2 .

(22)

By solving this system, the BPI, (LB1, UB1), for ys will be obtained.
For more details about the Gibbs sampler and Metropolis–Hastings algorithms, see,

for example [25–28].

3. Two-Sample Prediction

Assume that x = (x1, x2, . . . , xD) and z = (z1, z2, . . . , zm) represent the informative
sample, from the studied UHCS and a future ordered sample of size m, respectively. It is
assumed that the two samples are independent.

In this section, PPs and IPs of the observation zs, s = 1, 2, . . . , m will be obtained using
the classical and Bayesian methods. The conditional PDF of the observation zs given the
vector of parameters θ is the PDF of the sth ordered value from the m ordered values,
which can be written as (see [15,22]):

g2(zs; θ) ∝ [1− R(zs; θ)]s−1 [R(zs; θ)]m−s f (zs; θ), zs > 0. (23)

Using the definitions of R(x; θ) and f (x; θ) from (2) and (4) in (23), the conditional
PDF of the observation zs given θ will be:

g2(zs; α, β) ∝ α β zs e−β z2
s (1− e−β z2

s )s α−1 [1− (1− e−β z2
s )α]m−s, zs > 0. (24)

Based on the two-sample scheme and the same prior (16), the IPs and PPs of zs can be
summarized as follows in the following subsections.

3.1. Maximum Likelihood Prediction (Point and Interval Predictors)

The MLPF can be obtained from (24) after replacing each parameter by its MLE to be
of the form

g∗∗2 (zs; x) = B zs e−β̂ z2
s (1− e−β̂ z2

s )s α̂−1 [1− (1− e−β̂ z2
s )α̂]m−s, zs > 0, (25)
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where B is a normalizing constant has the value

B =
1∫ ∞

0

(
zs e−β̂ z2

s (1− e−β̂ z2
s )s α̂−1 [1− (1− e−β̂ z2

s )α̂]m−s
)

dzs

.
(26)

So, the MLP of zs will be

z∗s = E[Zs] =
∫ ∞

0
zs g∗∗2 (zs; x) dzs =∫ ∞

0

(
z2

s e−β̂ z2
s (1− e−β̂ z2

s )s α̂−1 [1− (1− e−β̂ z2
s )α̂]m−s

)
dzs∫ ∞

0

(
zs e−β̂ z2

s (1− e−β̂ z2
s )s α̂−1 [1− (1− e−β̂ z2

s )α̂]m−s
)

dzs

,
(27)

A (1− τ)× 100% MLPI (LM2, UM2) of zs can be obtained by solving the following
two nonlinear equations: {∫ ∞

LM2
g∗∗2 (zs; x) dzs = 1− τ

2 ,∫ ∞
UM2

g∗∗2 (zs; x) dzs =
τ
2 .

(28)

From (25) and (26) in (28), the two nonlinear equations in (28) can be rewritten, to be
of the form 

∫ ∞
LM2

(
zs e−β̂ z2

s (1−e−β̂ z2
s )s α̂−1 [1−(1−e−β̂ z2

s )α̂ ]m−s

)
dzs

∫ ∞
0

(
zs e−β̂ z2

s (1−e−β̂ z2
s )s α̂−1 [1−(1−e−β̂ z2

s )α̂ ]m−s

)
dzs

= 1− τ
2 ,

∫ ∞
UM2

(
zs e−β̂ z2

s (1−e−β̂ z2
s )s α̂−1 [1−(1−e−β̂ z2

s )α̂ ]m−s

)
dzs

∫ ∞
0

(
zs e−β̂ z2

s (1−e−β̂ z2
s )s α̂−1 [1−(1−e−β̂ z2

s )α̂ ]m−s

)
dzs

= τ
2 .

(29)

By solving the previous system, the MLPI of zs, (LM2, UM2), can be computed.

3.2. Bayesian Prediction (Point and Interval Predictors)

The Bayesian predictive PDF of zs given x will be as follows:

h∗2(zs; x) =
∫ ∞

0

∫ ∞

0
h2(zs; α, β, x)dβ dα, (30)

where
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h2(zs; α, β, x) =π∗(α, β; x) g2(zs; α, β) =

B1 zs αd+c1+c3 βd+c3 e−(α (β+c2)+β z2
s ) (1− e−β z2

s )s α−1×
[∏d

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [1− (1− e−β z2
s )α]m−s×

[1− (1− e−β T2
1 )α]n−d, zs > 0, d1 = d2 = d = r, . . . , n,

B2 zs αr+c1+c3 βr+c3 e−(α (β+c2)+β z2
s ) (1− e−β z2

s )s α−1×
[∏r

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [1− (1− e−β z2
s )α]m−s×

[1− (1− e−β x2
r )α]n−r, zs > 0, d1 = k, . . . , r− 1, d2 = r,

B3 zs αd2+c1+c3 βd2+c3 e−(α (β+c2)+β z2
s ) (1− e−β z2

s )s α−1×
[∏d2

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [1− (1− e−β z2
s )α]m−s×

[1− (1− e−β T2
2 )α]n−d2 , zs > 0, d1 = k, . . . , r− 1, d2 = k, . . . , r− 1, d1 ≤ d2

B4 zs αr+c1+c3 βr+c3 e−(α (β+c2)+β z2
s ) (1− e−β z2

s )s α−1×
[∏r

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [1− (1− e−β z2
s )α]m−s×

[1− (1− e−β x2
r )α]n−r, zs > 0, , d1 = 0, 1, . . . , k− 1, d2 = r,

B5 zs αd2+c1+c3 βd2+c3 e−(α (β+c2)+β z2
s ) (1− e−β z2

s )s α−1×
[∏d2

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [1− (1− e−β z2
s )α]m−s×

[1− (1− e−β T2
2 )α]n−d2 , zs > 0, d1 = 0, . . . , k− 1, d2 = k, . . . , r− 1,

B6 zs αk+c1+c3 βk+c3 e−(α (β+c2)+β z2
s ) (1− e−β z2

s )s α−1×
[∏k

i=1 xi e−β x2
i (1− e−β x2

i )α−1] [1− (1− e−β z2
s )α]m−s×

[1− (1− e−β x2
k )α]n−k, zs > 0, , d2 = 0, . . . , k− 1,

(31)

where Bi, i = 1, 2, . . . , 6 are normalizing constants.
The BP of zs will equal

z∗∗s = E[Zs] =
∫ ∞

0
zsh∗2(zs; x)dzs, (32)

and the (1− τ)× 100% BPI, (LB2, UB2), of zs can be obtained by solving the following
two nonlinear equations: {∫ ∞

LB2
h∗2(zs; x) dzs = 1− τ

2 ,∫ ∞
UB2

h∗2(zs; x) dzs =
τ
2 .

(33)

Using (α(1), β(1)), (α(2), β(2)), . . . , (α(K), β(K)), which are generated from the posterior
PDF (15), then the system (33) will be of the form

∑K
i=1
∫ ∞

LB2
h2(zs ; α(i), β(i), x) dzs

∑K
i=1
∫ ∞

0 h2(zs ; α(i), β(i), x) dzs
= 1− τ

2 ,

∑K
i=1
∫ ∞

UB2
h2(zs ; α(i), β(i), x) dzs

∑K
i=1
∫ ∞

0 h2(zs ; α(i), β(i), x) dzs
= τ

2 .
(34)

By solving this system, the BPI, (LB2, UB2), for zs will be obtained.
From the results of the second and third sections, it is clear that the classical method

of prediction and inference in general, called the maximum likelihood approach, depends
only on an informative sample from the studied distribution under a suggested censoring
scheme, and does not depend on any additional information about the parameters of
the population. However, for the Bayes method, it depends on the same informative
sample, but in addition to additional information about the parameters of the population
represented in the prior distribution of the parameters. This obviously leads to better
results. The results obtained based on the samples in the next section will verify this fact.
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In case of absence of information on the population parameters, we have two choices.
The first is to use the Bayes approach under a vague prior and the second is to use the
classical method.

4. Results

In this section, one- and two-sample PPs and IPs using the classical and Bayesian
approaches were obtained based on simulated and real data sets.

4.1. Simulated Results

The predictive process is a process that takes in historical data to predict which areas
and parts of an asset will fail and at what time. The technician can receive relevant and
accurate data points, remotely. The collected data are then analyzed and predictive algo-
rithms to determine which part are more likely to fail. This information is communicated to
workers via collaboration tools and data visualization, with which they can perform main-
tenance work only on the parts that require it. By implementing a predictive maintenance
solution (Figure 1), organizations will know when to schedule a specific part replacement
and be alerted to future degradations due to faulty parts.

Figure 1. Reactive periodic proactive predictive four stage engineering process.

In this section, the PPs and IPs of future failure times are computed, in one- and two-
sample schemes, using the classical and Bayesian methods based on a generated UHCS
informative sample for different values of r, k, T1, and T2 as follows:

1. For a given set of prior parameters c1, c2, and c3, the population parameters α and β
are generated from the joint prior (16).

2. Making use of α and β obtained in step 1, a sample of size n of upper ordered values
from Burr-X is generated.

3. For different values of n, r, k, T1, and T2, a UHCS informative sample is generated
from the complete sample in step 2.

4. For different values of n, r, k, T1, and T2, the PPs and IPs of the future failure times are
computed using classical and Bayes methods in a one-sample scheme, as explained in
Section 2.

5. The same is done in a two-sample scheme, as explained in Section 3.
6. For each future failure time, the PP, IP, length of the IP, and the CP of the IP are

computed.
7. The results are summarized in Tables 1 and 2.

From Tables 1 and 2, observe the following:

(a) For fixed r, k, T1, and T2, the length and the CP of the IP increase by increasing
s because the element ys or zs will be larger, which will widen its predictive
interval and, therefore, its CP.

(b) In all six cases of the studied UHCS:
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i. The length and the CP of the IP decreases by increasing the ratio D
n ,

which means that the results will be better by increasing the available
information.

ii. In the cases with constant ratio D
n and fixed r, T1, and T2, the length and

the CP of the IP decrease by increasing k, which show us that the results
will be better by increasing k.

(c) In all cases, the lengths of the IPs are shorter in case of the Bayesian method
than that computed by the classical method, which means that the Bayesian
method is better than the classical method.

(d) In all cases, the Bayesian CPs are less than that computed by the classical
method, which is also a criterion indicating that the results obtained by using
the Bayes method is better than that obtained using the classical method.

(e) The values r, k, T1, and T2 have been chosen so as to give all six cases of the
studied UHCS.

4.2. Data Analysis

In this section, two real data sets are introduced; they were analyzed using Burr-X.
The studied real data sets are from [8]. The first data set represents the failure times in the
hours of 15 devices, and the second represents the first failure times in the months of 20
electronic cards. These real data sets are:

Data I: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.76, 4.85, 6.5, 7.35, 8.01, 8.27, 12.06 and 31.75.
Data II: 0.9, 1.5, 2.3, 3.2, 3.9, 5.0, 6.2, 7.5, 8.3, 10.4, 11.1, 12.6, 15.0, 16.3, 19.3, 22.6, 24.8, 31.5,

38.1 and 53.0.

In Table 3, the MLEs of the parameters α and β and the corresponding Kolmogorov–
Smirnov (K− S) test statistic were computed under the Burr-X model.

Under the significance level (0.05) and using the Kolmogorov–Smirnov table, the
critical value for the K− S test statistic is 0.33760, which is greater than the computed K− S
test statistics for the two real data sets under the Burr-X model. This means that the studied
model fits the two biological data sets well.

PPs and IPs of the remaining future failure times (ys, s = 1, 2, 3, 4) and of the first four
observations ( zs, s = 1, 2, 3, 4) from an independent ordered sample based on a generated
Balakrishnan UHCS informative sample from the given real data sets, were computed;
they are summarized in Tables 4–7.
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Table 1. PPs and IPs of the future failure time ys, s = 1, 2, 3, 4, based on the generated Balakrishnan
UHCS informative sample. (α = 3.1811, β = 1.5779), (c1 = 4.8, c2 = 2.5, c3 = 4.5).

Values of (T1, T2) (1.5, 1.6)

Generated y1 Generated y2 Generated y3 Generated y4
(r, k) PP of y1 PP of y2 PP of y3 PP of y4
(n, D) Method IP of y1 IP of y2 IP of y3 IP of y4

Length Length Length Length
CP CP CP CP

(10, 5) ML 1.03809 1.11608 1.57305 1.65624
(20, 12) 0.91676 1.0914 1.4711 1.6674

(0.87340,1.12306) (0.82512,1.13621) (1.10036,1.61367) (1.42708,1.97736)
0.24966 0.31109 0.51331 0.55028
0.9176 0.92177 0.93001 0.93816

Bayes 1.03809 1.11608 1.57305 1.65624
0.91053 1.1537 1.5018 1.6214

(0.87103,0.98636) (1.02104,1.22278) (1.16172,1.47264) (1.29082,1.70564)
0.11523 0.20174 0.31092 0.41482
0.9037 0.9165 0.9275 0.9310

(10, 7) ML 1.03809 1.11608 1.57305 1.65624
(20, 14) 1.18077 1.32147 1.59917 1.79101

(1.09166,1.22885) (1.21106,1.42664) (1.38102,1.68120) (1.49016,1.88918 )
0.13719 0.21558 0.30018 0.39902
0.9001 0.91130 0.92719 0.92991

Bayes 1.03809 1.11608 1.57305 1.65624
1.17914 1.34221 1.62017 1.77082

(1.11057,1.23958) (1.20184,1.4052) (1.42061,1.69377) (1.58062,1.94235)
0.12901 0.20336 0.27316 0.36173
0.8997 0.91055 0.9206 0.9227

Values of (T1, T2) (1.3, 1.5)

(25, 5) ML 0.66209 0.89038 0.91005 1.75215
(30, 25) 0.58144 0.9102 0.88152 1.70119

(0.40068,0.79311) (0.60106,1.09158) (0.74061,1.27075) (1.12105,1.85211)
0.39243 0.49052 0.53014 0.73106
0.95161 0.96173 0.96106 0.97015

Bayes 0.662089 0.890378 0.910053 1.75215
0.64825 0.86239 0.94931 1.69046

(0.50151,0.86203) (0.76175,1.16289) (0.95276,1.46868) (1.39173,1.90765)
0.36052 0.40114 0.51592 0.61058
0.9483 0.9553 0.9581 0.98813

(25, 10) ML 0.662089 0.890378 0.910053 1.75215
(30, 25) 0.66131 0.86561 0.94072 1.78334

(0.49106,0.78122) (0.73083,1.11254) (0.807016,1.26818) (1.24608,1.94780)
0.29016 0.38171 0.46117 0.70172
0.94814 0.95231 0.95618 0.96131

Bayes 0.662089 0.890378 0.910053 1.75215
0.67013 0.88172 0.90157 1.74105

(0.58043,0.79278) (0.72063,1.07077) (0.83803,1.24985) (1.14473,1.82615)
0.21225 0.35041 0.41182 0.68142
0.9381 0.9481 0.9511 0.9591
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Table 1. Cont.

Values of (T1, T2) (1.25, 1.4)

(25, 15) ML 1.42077 1.50944 1.54494 1.63888
(30, 21) 1.39354 1.48593 1.51207 1.65472

(1.31075,1.56622) (1.32194,1.86571) (1.34528,1.70186) (1.45619,1.84651)
0.25547 0.27377 0.35658 0.45032
0.9695 0.9726 0.9799 0.9801

Bayes 1.42077 1.50944 1.54494 1.63888
1.43406 1.49225 1.53821 1.64152

(1.40089,1.52250) (1.40916,1.59487) (1.42534,1.67038) (1.50294,1.77342)
0.12161 0.18571 0.24504 0.27048
0.9217 0.9317 0.9502 0.9573

Values of (T1, T2) (0.8, 2.5)

(25, 20) ML 1.42077 1.50944 1.54494 1.63888
(30, 25) 1.40593 1.49593 1.57207 1.61472

(1.32194,1.56571) (1.32194,1.58239) (1.34528,1.68186)) (1.25619,1.70651)
0.24377 0.26045 0.33658 0.45032
0.9504 0.9551 0.9623 0.9708

Bayes 1.42077 1.50944 1.54494 1.63888
1.41948 1.51021 1.54843 1.63451

(1.35285,1.47209) (1.40421,1.65515) (1.48797,1.81620) (1.52675,1.95603)
0.11924 0.25094 0.32823 0.42928
0.9495 0.9525 0.9605 0.9693

Values of (T1, T2) (0.8, 1.1)

(30, 20) ML 1.42061 1.52062 1.63815 1.64518
(40, 23) 1.41092 1.49332 1.61337 1.66319

(1.32901,1.59942) (1.40162,1.69674) (1.48054,1.78922) (1.50512,2.14725)
0.27041 0.29512 0.34116 0.64213
0.9601 0.9664 0.9718 0.9804

Bayes 1.42061 1.52062 1.63815 1.64518
1.41941 1.51804 1.64183 1.65184

(1.34162,1.56357) (1.44076,1.69407) (1.52184,1.82301) (1.59042,2.00790)
0.22195 0.25331 0.30117 0.41748

9594 0.9614 0.9695 0.9748

Values of (T1, T2) (0.5, 0.8)

(30, 25) ML 1.51436 1.60734 1.71813 1.72479
(40, 25) 1.49201 1.58801 1.77419 1.75118

(1.40162,1.663278) (1.45281,1.74086) (1.59042,1.91318) (1.66492,2.25535)
0.23116 0.28805 0.32276 0.59043
0.9584 0.9615 0.9697 0.978

Bayes 1.51436 1.60734 1.71813 1.72479
1.50184 1.58294 1.70174 1.73182

(1.41062,1.62090) (1.50372,1.74565) (1.60152,1.88221) (1.64107,1.98290)
0.21028 0.24193 0.28069 0.34183
0.9533 0.9557 0.9614 0.9736
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Table 2. PPs and IPs of the future failure time zs, s = 1, 2, 3, 4, based on the generated Balakrishnan
UHCS informative sample. (α = 3.1811, β = 1.5779), (c1 = 4.8, c2 = 2.5, c3 = 4.5).

Values of (T1, T2) (1.5, 1.6)

Generated z1 Generated z2 Generated z3 Generated z4
(r, k) PP of z1 PP of z2 PP of z3 PP of z4
(n, D) Method IP of z1 IP of z2 IP of z3 IP of z4

Length Length Length Length
CP CP CP CP

(10, 5) ML 0.41303 0.78654 1.09878 1.31352
(20, 12) 0.37017 0.69154 0.95124 1.24012

(0.25175,0.46227) (0.43129,0.80322) (0.71182,1.30162) (1.00273,1.59152)
0.21052 0.37193 0.4898 0.58879
0.88153 0.9152 0.9205 0.9317

Bayes 0.41303 0.78654 1.09878 1.31352
0.38718 0.71032 0.97182 1.27104

(0.33152,0.53268) (0.51037,0.82988) (0.81094,1.20606) (1.17213,1.65357)
0.20116 0.31951 0.39512 0.48144
0.8781 0.9013 0.9114 0.9226

(10, 7) ML 0.41303 0.78654 1.09878 1.31352
(20, 14) 0.38053 0.71108 0.98155 1.30153

(0.35102,0.54184) (0.51005,0.82108) (0.81106,1.22128) (1.10924,1.63025)
0.19082 0.31103 0.41022 0.52101
0.8771 0.9010 0.9113 0.9215

Bayes 0.41303 0.78654 1.09878 1.31352
0.39012 0.73318 1.1192 1.34417

(0.38065,0.56341) (0.54194,0.83207) (0.79168,1.16883) (1.01845,1.50039)
0.18276 0.29013 0.37715 0.48194
0.8771 0.8917 0.9016 0.9106

Values of (T1, T2) (1.3, 1.5)

(25, 5) ML 0.41303 0.78654 1.09878 1.31352
(30, 25) 0.38026 0.82165 1.16271 1.41152

(0.15243,0.42406) (0.40072,0.90224) (0.87932,1.44074) (1.27194,1.88367)
0.27163 0.50152 0.56152 0.61173
0.9201 0.9332 0.9441 0.9505

Bayes 0.41303 0.78654 1.09878 1.31352
0.39012 0.73515 0.92166 1.28061

(0.27251,0.52427) (0.50041,0.96225) (0.88015,1.40234) (1.18145,1.78310)
0.25176 0.46184 0.52219 0.60165
0.9115 0.9271 0.9396 0.9471

(25, 10) ML 0.41303 0.78654 1.09878 1.31352
(30, 25) 0.40712 0.0.81026 0.99172 1.28017

(0.35143,0.59310) (0.53183,0.99795) (0.80384,1.29498) (0.93317,1.51480)
0.24167 0.46612 0.0.49114 0.0.58163
0.9195 0.9307 0.9421 0.9497

Bayes 0.41303 0.78654 1.09878 1.31352
0.41005 0.79015 1.01823 1.31561

(0.37041,0.60357) (0.55272,0.97563) (0.79043,1.24077) (0.93962,1.49109)
0.23316 0.42291 0.45037 0.55147
0.9061 0.9298 0.9402 0.9488
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Table 2. Cont.

Values of (T1, T2) (1.25, 1.4)

(25, 15) ML 0.41303 0.78654 1.09878 1.31352
(30, 21) 0.40815 0.77804 0.1.10926 1.28915

(0.31629,0.57135) (0.56052,0.86964) (0.80057,1.24265) (1.01748,1.55254)
0.25506 0.30912 0.44208 0.53506
0.9479 0.95514 0.9609 0.9716

Bayes 0.41303 0.78654 1.09878 1.31352
0.41105 0.78052 1.08805 1.30615

(0.30225,0.547738) (0.52817,0.82633) (0.93183,1.3335) (1.13052,1.64131)
0.24513 0.29816 0.40167 0.0.51079
0.9397 0.9520 0.9593 0.9675

Values of (T1, T2) (0.8, 2.5)

(25, 20) ML 0.41303 0.78654 1.09878 1.31352
(30, 25) 0.41201 0.80152 1.11026 1.28961

(0.43172,0.65335) (0.60332,0.85448) (0.82184,1.20366) (1.10286,1.56910)
0.22163 0.25116 0.38182 0.46624
0.9418 0.9536 0.9592 0.9663

Bayes 0.41303 0.78654 1.09878 1.31352
0.41052 0.79316 0.1.12052 1.29164

(0.45132,0.66194) (0.65293,0.89786) (0.87281,1.23444) (1.17148.1.60341)
0.21062 0.24493 0.0.36163 0.43193
0.9406 0.9513 0.9554 0.9614

Values of (T1, T2) (0.8, 1.1)

(30, 20) ML 0.41303 0.78654 1.09878 1.31352
(40, 23) 0.41903 0.79016 0.99173 0.1.3201

(0.32183,0.58324) (0.53148,0.83165) (0.81064,1.22247) (1.10573,1.68725)
0.26141 0.30017 0.41183 0.58152
0.9726 0.9775 0.9802 0.9892

Bayes 0.41303 0.78654 1.09878 1.31352
0.41525 0.77812 0.1.03124 1.31902

(0.35149,0.59301) (0.56028,0.84226) (0.79104,1.18118) (0.97823,1.51955)
0.24152 0.28198 0.39014 0.54132
0.9618 0.9693 0.9715 0.9801

Values of (T1, T2) (0.5, 0.8)

(30, 25) ML 0.41303 0.78654 1.09878 1.31352
(40, 25) 0.4111 0.7902 0.1.1058 0.1.3111

(0.31047,0.56566) (0.55061,0.84878) (0.81718,1.20735) (1.03081,1.59187)
0.25519 0.29817 0.39017 0.56106
0.9594 0.9615 0.9694 0.9772

Bayes 0.41303 0.78654 1.09878 1.31352
0.40183 0.79163 1.10815 1.29284

(0.28071,0.52488) (0.51148,0.80667) (0.79208,1.15819) (1.10273,1.62478)
0.24417 0.29519 0.36611 0.52205
0.9523 0.9594 0.9611 0.9731
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Table 3. MLEs of the parameters and the associated K− S based on the real data sets I and II.

Data Set No. MLEs K − S

I α̂ = 0.436377, β̂ = 0.0218652 0.193849

II α̂ = 0.611733, β̂ = 0.140011 0.247625

Table 4. PPs and IPs of the future failure time ys, s = 1, 2, 3, 4 based on a generated Balakrishnan
UHCS informative sample from real data set I.

Values of (T1, T2) (1.1, 7.5)

True ys Method y1 y2 y3 y4
(r, k) PP of y1 PP of y2 PP of y3 PP of y4
(n, D) IP of y1 IP of y2 IP of y3 IP of y4

Case No. Length Length Length Length

(12, 5) ML 8.01 8.27 12.06 31.75
(15, 11) 7.5715 8.1129 11.3816 33.8818

5 (6.77191,9.97962) (7.17305,10.60674) (10.48435,14.55529) (25.66194,39.64581)
3.20771 3.43369 4.07094 13.98387

Bayes 8.01 8.27 12.06 31.75
7.70925 8.19027 11.69016 32.20172

(7.21062,9.51244) (7.50592,10.42419) (10.88017,14.53119) (27.44018,38.34811)
2.30182 2.91827 3.65102 10.90793

Table 5. PPs and IPs of the future failure time ys, s = 1, 2, 3, 4, based on a generated Balakrishnan’s
UHCS informative sample from real data set II.

Values of (T1, T2) (1.3, 1.8)

True ys Method y1 y2 y3 y4
(r, k) PP of y1 PP of y2 PP of y3 PP of y4
(n, D) IP of y1 IP of y2 IP of y3 IP of y4

Case No. Length Length Length Length

(12, 5) ML 5.0 6.2 7.5 8.3
(15, 5) 4.6827 6.0196 7.3891 8.9017

6 (3.51081,6.01779) (4.89192,7.91478) (6.09047,9.82138) (6.12081,10.55201)
2.50698 3.02286 3.73091 4.43120

Bayes 5.0 6.2 7.5 8.3
4.7908 6.3005 7.4213 8.5105

(3.78207,5.66372) (5.03927,7.07429) (6.24718,8.57770) (6.74039,10.55102)
1.88165 2.03502 2.33052 3.81063

From previous tables and figures, we can observe (for fixed r, k, T1, and T2):

1. Increase the length of the predictive intervals by increasing s, because, as mentioned
previously, the element ys or zs will be larger, which will widen its predictive interval.

2. The length of the predictive intervals computed by the Bayesian method is less that
that computed by the classical method, which means that Bayes technique is better
than the other technique.

3. For Bayes and classical approaches, and for all values of s, the exact value of ys lies in
its predictive interval.

4. From Figures 2A,B, 3A,B, 4A,B and 5A,B, we can observe that:

(a) The red broken refracted line, which represents the true value of the observation
to be predicted, is located between the two broken lines that represent the lower
and upper bounds of the predictive internals, which confirms with 3.
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(b) The lower bounds increase by increasing s.
(c) The upper bounds also increase by increasing s.

5. From Figures 2C, 3C, 4C and 5C, we can observe:

(a) The length of the predictive interval increase by increasing s, which confirms
with 1.

(b) The lengths of the predictive intervals obtained using the Bayes approach are
less than that obtained by the classical approach, which confirms with 2.

Table 6. PPs and IPs of the future failure time zs, s = 1, 2, 3, 4, based on a generated Balakrishnan
UHCS informative sample from real data set I.

Values of (T1, T2) (1.1, 7.5)

Generated zs Method z1 z2 z3 z4
(r, k) PP of z1 PP of z2 PP of z3 PP of z4
(n, D) IP of z1 IP of z2 IP of z3 IP of z4

Case No. Length Length Length Length

(12, 5) ML 0.38819 0.49016 0.52015 0.60823
(15, 11) 0.42115 0.50284 0.51082 0.58807

5 (0.34905,0.51106) (0.36373,0.54428) (0.39017,0.60024) (0.48165,0.7626)
0.16201 0.18055 0.21007 0.28095

Bayes 0.38819 0.49016 0.52015 0.60823
0.41066 0.48107 0.52713 0.60153

(0.36105,0.49267) (0.40552,0.56075) (0.48174,0.65461) (0.52315,0.76499)
0.13162 0.15523 0.17287 0.24184

Table 7. PPs and IPs of the future failure time zs, s = 1, 2, 3, 4, based on a generated Balakrishnan
UHCS informative sample from real data set II.

Values of (T1, T2) (1.3, 1.8)

Generated zs Method z1 z2 z3 z4
(r, k) PP of z1 PP of z2 PP of z3 PP of z4
(n, D) IP of z1 IP of z2 IP of z3 IP of z4

Case No. Length Length Length Length

(12, 5) ML 0.28003 0.41052 0.48105 0.50185
(15, 5) 0.30119 0.38826 0.41918 0.46817

6 (0.20275,0.37427) (0.25594,0.4890) (0.30142,0.71214) (0.35107,0.82210)
0.171752 0.23306 0.41072 0.47103

Bayes 0.28003 0.41052 0.48105 0.50185
0.29014 0.39082 0.45119 0.48017

(0.26023,0.42308) (0.27684,0.48890) (0.33206,0.61621) (0.39082,0.70595)
0.16285 0.21206 0.28415 0.31513
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(A)

(B)

(C)

Figure 2. (A) ML one-sample predictive intervals based on sample I; (B) Bayesian one-sample
predictive intervals based on sample I; (C) lengths of the one-sample predictive intervals based on
sample I.
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(A)

(B)

(C)

Figure 3. (A) ML one-sample predictive intervals based on sample II; (B) Bayesian one-sample
predictive intervals based on sample II; (C) lengths of one-sample predictive intervals based on
sample II.
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(A)

(B)

(C)

Figure 4. (A) ML two-sample predictive intervals based on sample I; (B) Bayesian two-sample
predictive intervals based on sample I; (C) lengths of two-sample predictive intervals based on
sample I.



Mathematics 2022, 10, 1450 21 of 23

(A)

(B)

(C)

Figure 5. (A) ML two-sample predictive intervals based on sample II; (B) Bayesian two-sample
predictive intervals based on sample II; (C) lengths of two-sample predictive intervals based on
sample II.
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5. Conclusions

In this paper, the PPs and IPs of the future failure times from Burr-X were computed
based on a UHCS (suggested by Balakrishnan et al. (2008) ) informative sample using
different values of r, k, T1, and T2, using classical and Bayesian approaches, making some
comparisons between the two approaches. Two engineering real data sets were introduced
and analyzed using the Burr-X model to emphasize that the studied model fits the given
real data sets well. Based on a generated UHCS informative sample from the given real
data sets, the PPs and IPs of the future failure times under one- and two-sample schemes
were computed using classical and Bayesian approaches; it was found that the predictive
intervals using the Bayesian approach were shorter than those computed by the classical
approach, which means that the Bayesian approach is better than the other approach. In
addition to the tabular description of the results related to the real data sets, graphical
descriptions were also introduced. The results of the work confirm that it is possible
to use statistical prediction to perform predictive tasks in relation to the conditions of
industrial equipment.
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