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Abstract: The Allee effect is widespread among endangered plants and animals in ecosystems,
suggesting that a minimum population density or size is necessary for population survival. This paper
investigates the stability and pattern formation of a predator—prey model with nonlinear reactive
cross-diffusion under Neumann boundary conditions, which introduces the Allee effect. Firstly,
the ODE system is asymptotically stable for its positive equilibrium solution. In a reaction system
with self-diffusion, the Allee effect can destabilize the system. Then, in a reaction system with cross-
diffusion, through a linear stability analysis, the cross-diffusion coefficient is used as a bifurcation
parameter, and instability conditions driven by the cross-diffusion are obtained. Furthermore, we
show that the system (5) has at least one inhomogeneous stationary solution. Finally, our theoretical
results are illustrated with numerical simulations.
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1. Introduction

Starting with the seminal research of Lotka and Volterra, the analysis of predator-prey
model has become an important field of mathematical biology because of its practical and
theoretical significance. Most articles about the simulation of predator-prey interaction use
the logistic growth function. Meanwhile, some examples verify the existence of the Allee
effect, which Allee proposed [1]. The Allee effect has many possible origins, e.g., difficulty
looking for a partner, reproductive convenience, environmental regulation, or close relative
decline. In general, for a population that is initially low density, if the per capita growth rate
is an increasing function, then the species has an Allee effect. The Allee effect is divided
into strong and weak; if the growth rate per capita is negative in a low-density limit, this
is a strong Allee effect, while a weak Allee effect is expressed at zero density when the
per capita growth rate is positive. A strong Allee effect creates a population threshold
beyond which the population could grow. On the contrary, a group with a weak Allee
effect has no threshold [2—4]. Prey is influenced by strong Allee effects. Numerous studies
have revealed rich and diverse pattern-formation scenarios. Especially in a predator-prey
system with a strong Allee effect on the population of the prey, space is vital for existence
of species. Pattern formation can be observed both inside and outside the Turing field.
Especially in reaction-diffusion systems, the function of space is significant for the existence
of a species. On the other hand, numerous studies have shown that pattern formation is
altered with the addition of a weak Allee effect. Currently, the Allee effect receives great
attention from ecologist and mathematicians, because it can affect the population growth
of a species [5-12].
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In 1952, Turing proposed that space-diffusion can destroy interacting chemicals in a ho-
mogeneous and stable state, which is occurs through two coupled reaction—diffusion equa-
tions. This instability is known as diffusion-driven instability or Turing instability [13,14].
In recent years, reaction—diffusion systems have attracted increasing attention from math-
ematical biologists seeking insights into patterns occurring in ecosystems [15-26]. Many
researchers have studied the emergence of patterns in population dynamics systems with
self-diffusion [27-31]. While the reaction—diffusion system is not sterically stable, it ex-
hibits Turing modes in space. With the broad growth of biomathematics and theoretical
biology, the most prominent theme in the scopes of the dynamic system is the influence of
cross-diffusion on mode appearance [32-38]. Biologically, integrated defenses against prey
tend to move predators to areas with lower prey concentrations, which means that this
can give rise to a spatially inhomogeneous population distribution. This can be described
by reaction—diffusion systems with cross-diffusion. It has been seen that a appropriate
cross-diffusion coefficient is able to generate this pattern [39-41].

In view of the above introduction about the Allee effect and the diffusion term, some
scholars have studied the impact of the Allee effect on the stability and the pattern formation
of the predator—prey system, and some scholars have studied the impact of diffusion on
the stability and the pattern formation of the system. By studying the temporal and
spatial distribution and dynamics of populations, human beings can better protect and
adjust populations and rationally develop and utilize resources, which has far-reaching
significance. Due to the aforementioned motivations, in this paper, we consider the effects
of the Allee effect and nonlinear cross-diffusion terms on system stability and spatial mode
formation in our model. The structure of the text is as follows: in Section 2, in terms of its
mathematical and biological significance, we introduce the model. In Section 3, we discuss
the influence of the Allee effect constant on the stability of the coexistence equilibrium of the
predator—prey system with self-diffusion and ODE systems. Additionally, the conditions of
cross-diffusion-driven Turing instability are obtained. In Section 4, we prove the existence
of a nonconstant positive solution. In Section 5, our theoretical results are illustrated with
numerical simulations. Finally, in Section 6, the conclusion is given.

2. The Mathematical Model

In the section, firstly, we introduce the Allee effect into the prey growth function.
In 1983, Verhulst-Pearl proposed the Verhulst-Pearl equation, which is also called the

Logistic model:
au u

E = rmU(l - E)r (1)

U(t) is species density, K is carrying capacity, also known as environmental capacity, and it
is a constant. r,, is defined as the intrinsic growth rate. At this time, the average growth
rateis ¥ = 1y (1 — %) When the population density reaches K, the birth rate is equal to the
death rate.

The following model is used to describe the growth of a single population:

aul u

Eﬁ—e(l—ﬁ)—g, 2)
e is the birth rate per capita when undisturbed by other individuals; when the actual birth
rate per capita is zero, the density of the population is P. g is the per capita mortality rate
for adults. Equation (2) is equivalent to the logistic equation, and environmental carrying
capacity is K = P(e — g) /e [42]. Introducing the Allee effect to Equation (2):

L —e(1- D) () -
aru P U+m —

®)

m is the Allee effect constant, and U /U + m is known as the Allee effect, where the larger

the m, the better the Allee effect. Solving equation e(1 — %) (Wum) — g =0, the equivalent
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equation is eU2 — P(e — g)U + Pgm = 0. Assuming Ay = [P(e — g)]*> — 4Pegm > 0, let

I = P(gfgz);m, k= P(efgz): VAo, Additionally, Equation (3) can also be expressed as:
aauil u u _e(U-n(k-U)
wu U ) T8 P(U+m) ' @
Equation (4) can be simplified to: % = W, where u = %,w = %,

B=ho—E

Let 11, uy denote the density of prey and predator. Lety = (u1, u2)",D(y) = (Dij(¥)) -
y; = A[D(y)] + H(y) represents the strongly coupled reaction—diffusion system. Concern-
ing the nonlinear cross-diffusion coefficient, the authors of [43,44] researched the systems
for D(y) = dig(c1 + ﬁ,cz, c3)y, D(y) = dig(cq + ﬁ,cz, c3 + c3caug)y. Additionally,
k

+up?’

2 + cquq)y, where c3 = %,C5 =1

here, we study the system for D(y) = dig(c1 + ¢y + c4uq)y. It can be simplified to

D(y) = dig(c1 + Hsﬁ’
In this article, we study a predator—prey model with the Allee effect and nonlinear
cross-diffusion.

%_A(ClJrcis)ul:w_uluzl t>0,xcQ,

ot 1+C5u22 o+uq

BBLtZ — A1+ cqur)up = uguy — duy, t>0x€Q, )
a%za%z=0, £>0, x €9Q),

ui(x,0) = ujp(x) >0, i=12x€cQ,

u1(x) and uy(x) are the population densities of prey and predator, respectively. w is the
intrinsic prey growth rate, and 4 represents the relative mortality of the predator. ¢ is the
Allee effect constant and S is the Allee threshold. cy, ¢y, ¢3, ¢4 and c5 are positive constants,
the constants ¢, (m = 1, 2) are termed self-diffusion coefficients, and ¢,,,(m = 3, 4) are
termed cross-diffusion coefficients. () is a bounded domain in RN with a smooth boundary
0Q). The Homogeneous Neumann boundary condition states the population flux across the
boundary is zero.
The diffusive flux of u is

c3U c 2c3c51UqU
J= -V C]M1+3712 = — Cl+732 VM1+L122V112,
1+ csu3 1+ csus (1+ csu3)

as 2czuquy/ (1+ C5u%)2 > 0, the 2csuquy /(1 + C5u%)2Vu2 part of the flux is in the direction
of the increasing population density of u5.
The diffusive flux of u, is

J = =V (coup + cocauquy) = —cocaua Vg — (cp + cacaug) Vg,

as —cpcauy < 0, —cocquaVuy of the flux is in the direction of the decreasing population
density of uy.

As predators hunt their prey, the flux should point in the direction of increasing prey
population density. However, in certain ecosystems, large numbers of prey species come
together to form a large group to protect themselves from predators.

3. Stability of the Coexisting Equilibrium

In this section, we discuss the effect of the Allee effect constant on the stability of
the coexistence equilibrium point of ODE systems and predator-prey systems with self-
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diffusion. When (1 —46)(6 — B) > 0,y = (uy, up) is the unique positive coexistence
equilibrium point in system (5), where

w(1-96)(6—p)

i =0, = 43 ) (6)

Consider the ODE system of system (5) as follows:

dditl = wul(l;ilu)l(L_ﬁ) —uqup, t >0, %
‘%2 = uquy — duy, t>0.
Theorem 1. If the parameters of (5) satisfy
B¢
o> %—B-1 ®)
u is locally asymptotically stable in system (7).
Proof. Indicate
e — (1) _ [ maiy) 2w (%W - ”2)
(Y) - H ( ) - A
2y uzg2(y) = uz(u1 = 9) ©)
_ ( ul(w(—ul ‘;Sﬁ:l)”l_ﬁ) _ Mz)
up(u1 — 6)
Noticing H(y) =0,
i (—wﬁ—2w0ﬁ1+waﬁ+w0+wﬁ> 0
Hu(y) = | ™ (o+)? b (10)
1) 0

The characteristic polynomial of Hy(y) is

x() =n*+ A + Ay,

where Ay = Trace(Hy(y)), A2 = Det(Hy(y)).
If (8) holds, A1 and A; are positive, which is easy to verify. So, due to the Routh—
Hurwitz criterion, a conclusion is established. [J

Next, the following system (5) with self-diffusion can be studied:

L c1Auy = wuy (1—uq) (41 —B)

ot o+uq — Ujuy, t> O, X € Q,

aa% — C2Auy = uquy — Sy, t>0 xeQ, a1
ouy __ oup __

o= o =0 t>0, x €00,

u;i(x,0) = ujp(x) >0, i=12 xeQ.

To research the local asymptotic stability of Equation (11), similar to [45], we give
Notation 1.

Notation 1. Let 0 = 71y < 71y < - -+ — oo be the eigenvalues of —A on Q) under no-flux boundary
conditions, and let E(7t,,) be the space of eigenfunctions corresponding to 7t,,. Then,

@ Xpn = {c “Pmun € E R3}, {$mn } are the orthonormal bases of E(7t,,),n = 1,2 .. dimE(7ty,).
(i) X:= {u € [CH@)]” : dutuy = dyup = Oon aQ},thenx = % Xy Xy = @IECX

n=1
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Theorem 2. If (8) holds, y is locally asymptotically stable in system (11).
Proof. Linearizing system (11), then
y: = (DA + Hy(y))y (12)

where D = ( c 0 >
0 Co

Due to Notation 1, if and only if X;, is an eigenvalue of the matrix —7,,D + Hy(y),
itis invariant under operator DA + Hy(y), when this operator on X;;, A is an eigenvalue.

m(A) = |AE — (=D + Hy(7))| = A% + BjA + By is the characteristic polynomial of
—ﬂmD + Hy(y), where

wily? + 2woily — (wBo + wo + wp)

By = 7tmc1 + mtmca + ity ( 1) ),
1

wily? + 2woiy — (w,B(T +wo + wp) ).
(0 + ul)
If (8) holds, we are able to show that B; and B, are positive. Then, for each i > 1,

because of the Routh-Hurwitz criterion, the two roots Aj;, Ajp > 0 of ¢;(A) = 0 have
negative real parts. So, the conclusion holds. [

By = tiyily + mrycp (7tmey + 10 (

Theorem 3. Assume that

2C5ﬁ2
(c2 4 cacqiiy) (1 4 c5iin?) + 2c500c41in

>0 (13)

and (8) hold, if 1y < ji, where 115 can be seen in Notation 1, ji will be seen in (14). There must
be a positive constant c3*, when the c3 > c3*, coexistence equilibrium solution y of system (5)
is unstable.

Proof. We indicate that

T
C3Uq

9 = cu — U CrCqaU1U

(¥) (1 1+1+C5u22 2Up + 2412)

Linearizing system (5) at y, then we have y, = (8yA + Hy(¥))y, where

—2C3C5171ﬂ22
+
l9y = “ 1+C5u2 (1+C5ﬂ22)2 ,
CoCylin C2 + Cacqq

the characteristic polynomial of — 7,8y + Hy(y) is gm(A) = A2 +B1A + By,

~ 2 ~
_ ~ Wi " —2woi +woB+wo+wfh
By = 7ty (c1 + 1+C5u22 + ¢ + cocqty) — 11q ( AT ),
R. =~ ZC5C2C3C4I/NIZ
By = 1 ((Cl + l+c i ez (ca + cacqiy) + (1tcsin?) )
2
~ ¢ —wil* 2wl +woB+wor+wp ~ ~ ~ 2¢3C51p
T\ —U c CpCqU1 ) — CoCqU Uy — Uy
+70m (=i ( o+ ) )(C2 + €a64iin) — Cacqiiniiy — 5y ) + .
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Let A1 (7T ), A2(7tm) be the two roots of ¢, (A) = 0, and Ay (7t) - A2(71m) = —Ba. To
have at least one Re(Ay) > 0, By < 01is enough. Next, we find the condition for B, < 0.
B, = det(m, Py — Hy(y)) and B, = Qo 7tm? + Q17T + Qo, where

ZC5CZC3C4172

Qr = ( )(CZ + CZC4L~11) + m/

3
1+cu2

—wii2 — 2wy + waﬁ +wo +wp 2c3C51in

Q1 = —in( 1) )(c2 + cocqliy) — cocqiiyiiz — At i)’
Qo = iiyiip,det(Hy) = iiyiiy.
Let Q(mr) = Qo + Qi + det(Hy) and 711, 72, two roots of Q(m) = 0, satisfy
Re(771) < Re(72). Then, det(Hy) = 71171 > 0.
Note that
Cliinoo%;r) _ Cliinoo Q2n2+Q1C7'3f+det(Hu)
= ((m)(cz + cocqiiy) + (szffcfuz) )7tm® + (= (112%2) )T

Under condition (13), coherence contention is demonstrated; when c3 is big enough,
Re(7T1) > 0. Moreover, as Re(771 )Re(772) > 0, Re(72) > 0, and

2csily L~

c%lgéonl = T{eatercain) (Lesi?) 4 2escr0am; 1 (14)
lim ﬁz = 0,
C3—00

So, there must be a constant c3*, when c3 > c3*, the following holds: @(7‘[) <0,
7t € (7T, 71 ). Since that 0 < 71, < 77, that is

2C5 ilvz

e~ — — > 0.
(d2 + d2d4u1)(1 + C5u22) + 2c5dodytin

We have 71, € (7, 711 ), s0 it follows that Q(71;) < 0. Thus, we show that By < 0, and the
proof is completed. [

It can be seen from the above theorem that cross-diffusion makes the positive equilib-
rium solution unstable.

4. Nonhomogeneous Steady States

In this section, our research concerns inhomogeneous positive solutions from the
Leray-Schauder theory [45].
Firstly, we study the following form of the corresponding steady state of system (5):

1) (1—
_A(Clul + 13:;22) = @l a—}l—liti( B —uyuy, x € Q, (15)

—cA(up + cquqtip) = uqupy — dup,  x € QL

Domain () determines the generic constants S*, S, S. A collection is defined:
B(S) = {y = (u,up)" i S <u; <5,i= 1,2}, then in the set B(S), we can obtain non-
homogeneous positive solutions.
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T
Let ¢(y) = (clul + 1%;[%, Colp + C4u1u2> . Next, (15) is equivalent to
—Ad%(y) =H(y), t >0, x€Q, 16)
9,y =0, x € 0Q).

Fory, dy(y) exists and dy(y) > 0, the determinant of dy(y) > 0. So, y > 0 to (22) when
R(y) == (1= 8) {85 [H(y) + Vy- Py (y) - Vy] +y} =y,
(I— A)_l is the inverse of I — A under no-flux boundary constraints. Observe

Ry(¥) = (1-8)"{ @y 3)Hy(y) +1},

For the problem of eigenvalue

{ —(I-Ry(y)¥ =AY, x€Q, (17)

oY =0, x €9Q),

¥ = (Y1, ¥, ¥3)". Since R(+) has no fixed points in 9B(S), the Leray-Schauder degree
is well defined. Utilizing the Leray-Schauder theorem,

index(I —R(-),y) = (-1)", = X ng, (18)
¢>0
If zero is not the eigenvalue of (17), ng is the multiplicity of ¢.
If and only if ¢ is an eigenvalue of the matrix —I + %ﬂm(ﬁ;l?Hy(?) +1) =
ﬁ(—rcml + 19}71(§)Hy(§)), m > 1,1 < n < dim E(7my), Xmn is invariant under
—I+4 Dy f(y*). The number of positive eigenvalues & in X, is odd if and only if det(— 7z, I +-

8,1 (¥)Hy(¥)) > 0. Set

L(7t) = L(y, ) £ det(—nl + 8, (y)Hy(¥)), (19)
and next, we obtain some consequences.

Proposition 1. Assume that all m > 1, matrix —m,,I + n;l(”i)Hy(S'r) is nonsingular. So,

index(I — R(-),y) = (-1)F, 7= Py dimE .
index(1=R(),§) = (), 7= % dimE(m)

For our convenience to compute index(I — R(-),y) , next, we study the sign of L(7ty,) , fix
1, ¢, ca , and consider the dependence of L(,,) on c3 . Then, we note

L(r) = det{ay—l(y))det(nﬁyy - Hy(y)}.

Now that we have determined det{ 719y (y)} > 0 , we just need to study det{ ndyyHy(y) } .

Actually, the value of obtained from Section 3 is equal to det{ ndyy — Hy(y) } . We obtain enough
conditions to By < 0 during the proof of Theorem 3.
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Proposition 2. Suppose (3.8) holds. There must be a constant c3 , for all c3 > c3 , two roots 7y ,
705 of det{ 0y (y) — Hy(y) } = 0are real and satisfy (3.9). Furthermore,
0< 77.'1 < ﬁ2,
det{nﬁyy - Hy(y)} >0, 7€ (—00, 7)) U (7, ), 20)
det{ 70,5 — Hy(§) } <0, 7 € (7, 71).

We study the influence of cross-diffusion on the positive solution of (16); firstly, we conclude that
there is no nonconstant equilibrium solution without cross-diffusion.

Theorem 4. Assume that

-0
(%] Z ,C3 = 0/ C4 = 0/ (21)
72

which 7ty can see in Notation 1. Next, there must be a positive constant D, ; when ¢; > D1,
(15) has no nonconstant positive solution; moreover,

A

1
u; =u;, i = 1,2 where u; = @/ u;dx.
Q

Proof. Let 7; £ ﬁ fQ u;idx, i = 1,2. Multiplying the ith equation of (15) through u; — u;,
then integrating the results over () by parts yields

€1 fg\vul\zz Jo(ur — ) (w181 (w1, up) — w181 (W, ) )dx
— (1 _ﬁl)(ul(w — 1) _Ww —1))dx

i o, (22)
u + +up)+ —w+ +u ) — _ T 210 4 4+ u?
= fQ (ul—ul)z[(“’” woB) (ug+i)+(wp w(;u&ll)(?l%)ul) woB—wo (i 2+t g ”1)]dx

+ Jo(u1 — 1) (W7 — uqup)dyx,

02 [o| Vo= [ (2 — ) (1282 (11, u2) — a8 (101, 12) ) dx
= [o(uz —2) (up(uy — ) — iz (1) — 6))dx (23)
= [o (w1 —1)*(=0)dx + [y (11 — i) (uauty — Tholhy )dx.

c1 fo| Vi |* + e 5| Vua?

_ fQ (13 _ﬁl)z[(w0+w(7/3)(u1+ﬂl)+(wﬁ—w-€;u—ézi;:z£;bﬁl)—waﬁ—wa(ﬁlzﬁ-ﬁluﬁ-u%)]dx (24)
+ Jo (w1 =0)?(=0)dx + [y (1 — ) (g — i) (2412 4 M2 )

By the Cauchy inequality,

a1 [o| Vi |? + e [o| V|

< [ (i _Hl)z[(wa+wcf/3)(u1+m)+(wﬁ7w;r;v+(51)+(gl+);i)ﬁl)fwﬁ*w(ﬁlzﬁlMﬁu%)]dx (25)
- Joy (= )26+ O)dx + [y (g — )P fy[(Bllztui | i) 2 g,

where 0 is an arbitrary positive constant.
Due to Poincare Inequality,

v2+/v2>/ —*2d+/ _m)Adx, (26
c1/0| 1| o) Q| up|= > chyz(ul 11)"dx chyz(uz ip)“dx (26)
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So there is a 6 such that
pady > —6 + 0y,
(w0+w0/3)(u1+ﬂ1)+(wﬁ—w+w(u1+ﬂ1)ulﬁl)—waﬁ—wa(ﬂlzﬁ-ﬁluﬁ-u%)
D12 | () (o) Jdx (27)
1 [/ ugp—uqu Uy — U U;
+@K lui—ﬂ; 2 114§—ﬂ1 2)} :

We can conclude that u; =u;, i =1,2. 0

Theorem 5. Let cq,cp,cq be fixed and satisfy (8) and (11), and let ji be defined in (12). If
n
i€ (Un, pns1),n > land 0 = Y, dimE(7y,) are odd, there must be a positive number c3 ; if
m=2
c3 > ¢3 , system (5) has at least a nonhomogeneous positive steady-state solution.

Proof. Let D1, Dy, Dy, D3, Dy be fixed and meet (14); in Proposition 2, there must be a
positive constant c3; when c3 > c3, (20) holds and

0=m < Ty < 7,701 € (7T, Tpa1) - (28)

We show when c3 > c3, (15) has at least an inhomogeneous positive solution. It is
obtained because of the homotopy invariance of topological degree. Instead, we assume
this protestation is not correct. Set

N c3u R R T
8(t;u) = (t(cr — 1) (crug + %),cz +t(er — &) (12 + carnun)) t € [0,1]
+ c5Up
where & = Dy, & = —%, and the study issues

(29)

_A8(ty) = H(y), t€ [0,1], x€Q,
any = O, X e aQ.

y is the unique constant positive solution of (29). Next, y is a positive solution of (29) when

R(ty) = (1-28) {85 [H(y) + Vy- @y (L) - Vy] +y} = .

By the definition of R(y), R(1;y) = R(y). Theorem 4 indicates that R(0;y) = y has
only one positive constant solution in B(S). By a direct computation,

Ry(55) = (1= 8) {8y (63) Hy (7) + 1.

Especially

Ry(0;7) = (1= ) { D Hy(7) +1},
Ry(1;y) = (1= 8) {8, (3 Hy (7) + T }= Ry(y),

D = diag(¢1,¢,,¢64). Given Propositions 4.2 and (28), the following conclusions can

be drawn:
L(m) = L(0) >0,

L(mty) <0,2<i<mn,
L(rty) >0,i>n+1
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So, for all m > 1, zero is not an eigenvalue of the matrix 7t,,I — 8,,'(y)Hy(y) and
n n
oy = Y, dimE(my,) = y dimE(7t,,,), which is odd. Because of Proposition 1,
m=2 m>1,H (7 )<0
we have
index(I — R(1;-),y) = (-1)" = (-1 = —1. (30)

Likewise, we could obtain
index(I — R(1;-),y) = (-1)° = 1. (31)

Now, for all t € [0, 1], there must be a positive constant S, and the positive solution of
(29) meets S~! < uy,up < S. So, forall t € [0,1], R(t;y) # y on 9B. Using the homotopy
invariance of the topological degree,

deg(I — R(1;-),0,B(S)) = deg(I — R(0;-),0,B(S)). (32)

Meanwhile, according to a previous assumption, the two equations R(1;u) = 0 and
R(0;u) = 0 only have a positive solution u in B(S), so,

deg(I — R(1;-),0,B(S)) = index(I — R(1;-),
deg(I — R(0;-),0,B(S)) = index(I — R(0;-),y) = 1,

This contradicts the assumption that the proof ends. [

5. Numerical Simulation

In this section, we use numerical simulations to validate our theoretical simulations,
including the stability of the coexistence equilibrium points in Section 3, the existence
of constant and nonconstant equilibrium solutions in Section 4, that is, system (11) with
self-diffusion does not form a space pattern, and in system (5) with cross-diffusion, the
system forms a spatial stationary pattern.

Firstly, we use numerical simulations to illustrate the stability of the coexistence
equilibrium points in the ODE system. We choose appropriate parameters in ODE system
(7), and the two populations tend to be stable and coexist, as shown in Figure 1. For PDE
system (5) with cross-diffusion, Figures 2 and 3 show the relation between the real part
of the eigenvalue A and cross-diffusion coefficient c3 or Allee effect constant ¢. Due to
Theorem 3, we state that when the real part of the maximum eigenvalue is greater than
zero, the system equilibrium point will become unstable. Figure 2 shows the real part of the
eigenvalues A as a function of ¢3, and the cross-diffusion coefficient can affect the stability
of the coexistence equilibrium points. When ¢ is 0.3, 0.5, or 0.8, the critical value of c3 is
173.4, 208.4, or 277.3, respectively. For different o, the critical value of c3 is different. It
can be concluded that the Allee effect constant also affects the stability of the coexistence
equilibrium points. Figure 3 shows that when the parameter c; is fixed, there is also a
critical value for ¢ to induce the instability of coexistence equilibrium points of the system
(5). When c3 is 200, 300, or 500, the critical value of ¢ is 0.455, 0.882, or 1.385, respectively.
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Figure 1. Dynamics curves of prey (a), predator (b), and phase diagram (c) of system (7). Parameters
arec =0.3,=0.1,0 =05,w =2,c5 = 05.

01 T T T T T T
0=0.3
0=0.5
-0.1 0=0.8 T
B
k]
T
]
2
g2 B
%
8
s
5
03 B
04 i
05 I | | | | I | | |
0 50 100 150 200 250 300 350 400 450 500

c3

Figure 2. The relation between the real part of the eigenvalue A and c3. The blue, red, and yellow
lines correspond to curve lines with ¢ = 0.3, ¢ = 0.5, ¢ = 0.8, respectively. Parameters are:
B=01,6=05 w=2,c5=05,c =001, c; =0.01, cg = 100.
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Figure 3. The relation between the real part of the eigenvalue A and ¢. The blue, red, and yellow
lines correspond to curve lines with c3 = 200, c¢3 = 300, c3 = 500, respectively. Parameters are:
B=01,6=05 w=2,c5=05,c1 =001, cg =0.01, ¢4, = 100.
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Next, the numerical simulations show that the system (11) with self-diffusion does
not form a space pattern, and in the PDE system (5) with cross-diffusion, the system will
form a spatial stationary pattern. We suppose the area of system (5) is a rectangular area
Q= 1[0,L] x [0,L] C R? with L = 200. Additionally, we study the system (5) in a domain
with 200 x 200 stations using the simple Euler method with the Laplacian operator in a
discrete grid of lattice points denoted by (p,q), p=1,2---N,g =1,2--- N. The form is

1
Aklij) = Zk(p = La) +k(p+1,9)) +k(p,q = 1) + k(p,q+1) —4k(p,q) ,  (33)

s is the lattice constant. Let s = 1. When (p,q) is on the left boundary, we define
k(p,0) = k(p,1). When (p, q) is on the right boundary, we define k(p, N +1) = k(p, N).
When (p,q) is on the upper boundary, we define k(0,q) = k(1,4). When (p, q) is on the
lower boundary, we define k(N + 1,9) = k(N, q). This indicates that the population flux
across the border is zero.

Then, we choose the Allee effect constant that makes system (11) with self-diffusion
stable. Figure 4 illustrates changes in the population density of prey and predators in
system (11). It can be seen that system (11) does not form a space pattern. This verifies the
result of Theorem 4 in Section 4, and it shows that the system with self-diffusion cannot
induce a space pattern. Next, we select suitable parameters to generate the spatial patterns.
They satisfy condition (8) and (13). Figure 5 shows the spatial pattern for system (5). When
the time reaches 30,000, the spatial pattern is unchanged. So, as time increases, it shows
that the system forms a spatial stationary pattern. Numerical simulations illustrate our
theoretical results of Theorem 5.
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Figure 4. Spatial patterns of the time evolution of the species density of prey population and predator
population at different instants withoc = 0.3, =01, 0 =05 w=2,c5=0,c1 =1, ¢, =2, c3 =1,
¢4 = 0. Moments: t = 5000; t = 60,000; t = 90,000 t = 110,000. (u7(x) and up(x) are the population
densities of prey and predator).
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Figure 5. Spatial patterns of the time evolution of the species density of prey population and predator
population at different instants with ¢ = 0.3, p = 0.1, 6 = 05, w = 2, ¢5 = 0.5, ¢; = 0.01,
¢ = 0.01, ¢3 = 200, ¢4 = 10. Moments: t = 5000; t = 20,000; t = 30,000; t = 50,000.(11 (x) and u;(x) are
the population densities of prey and predator).

6. Concluding Remarks

In our article, we studied a spatial predator—prey model with the Allee effect and
nonlinear reaction cross-diffusion to research the Turing instability and pattern formation
caused by cross-diffusion. Moreover, the Allee effect produces considerable influence on
the stability of the system.

For ODE system (7) and system (11) with self-diffusion, if the Allee effect constant is
within the stable range, the coexistence equilibrium of the model is asymptotically stable
(Theorem 1 and Theorem 2), which means that two populations will tend to be stable and
coexist in ODE system (7) (see Figure 1). For system (5) with nonlinear cross-diffusion, the
system will induce Turing instability when the cross-diffusion coefficient c3 is big enough
and satisfies conditions (8) and (13) (Theorem 3). Figure 2 shows the relationship between
the real part of the maximum eigenvalue A and the cross-diffusion coefficient c3. When c3
is big enough, the real part of the maximum eigenvalue is positive, that is, the system is
unstable. Figure 3 shows the relationship between the real part of the maximum eigenvalue
A and the Allee effect constant. The critical value of c3 increases with the value of the Allee
effect constant. Thus, the Allee effect also affects the stability of system (5).

Furthermore, in Theorem 4, if the Allee effect constant is within the stable range, we
prove that the model has a constant solution for system (11) with self-diffusion. Choosing
appropriate parameters, numerical simulation shows the spatial patterns. It shows predator
and prey densities do not change over time, and finally, it reaches the stationary uniform
solution. The system cannot generate spatial patterns (see Figure 4). When the cross-
diffusion is present, we prove reaction system (5) could produce nonconstant, positive,
steady-state solutions (Theorem 5). Figure 5 shows stationary patterns in system (5). It
shows that a predator—prey ecosystem with self-diffusion does not form spatial patterns,
while in an ecosystem with cross-diffusion, the population forms spatial patterns.

In our model, the Allee effect and the nonlinear cross-diffusion term were introduced
together to study the stability and spatial patterns of the system. Biologically, due to
the fact that the impacts of the Allee effect on different predator—prey systems are quite
different, under the Allee effect, a system with self-diffusion will change its stability at the
equilibrium point. Meanwhile, the mobility of a population is largely influenced by the
abundance of the presence or absence of another population. The uniform steady state
of a self-diffusion system is stable under nonuniform perturbations, but because of cross-
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diffusion, it loses its stability and produces various modes. This explains the destabilizing
effect of nonlinear cross-diffusion.
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