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Abstract: We construct the global existence and exponential time decay rates of mild solutions to the
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1. Introduction and Main Results

In this paper, we are concerned with the Cauchy problem to the nonlinear Fokker–
Planck equation as follows{

∂tF + v · ∇xF = ρ∇v · (∇vF + vF),
F(0, x, v) = F0(x, v),

(1)

where the non-negative unknown function F(t, x, v) is the spatially periodic density dis-
tribution function of particles with position x = (x1, x2, x3) ∈ T3 := [−π, π]3 and velocity
v = (v1, v2, v3) ∈ R3 at time t ≥ 0, and the density ρ(t, x) is defined as ρ =

∫
R3 Fdv.

In statistical mechanics, nonlinear Fokker–Planck equation is a partial differential
equation which describes the Brownian motion of particles. This equation illustrates the
evolution of particle probability density function with velocity, time and space position
under the influence of resistance or random force. This equation is also widely used in
various fields such as plasma physics, astrophysics, nonlinear hydrodynamics, theory of
electronic circuitry and laser arrays, population dynamics, human movement sciences
and marketing.

The global equilibria for the nonlinear Fokker–Planck Equation (1) is the normalized
global Maxwellian

µ = µ(v) = (2π)−
3
2 e−

|v|2
2 .

Therefore, we can define the perturbation f = f (t, x, v) by

F(t, x, v) = µ + µ
1
2 f (t, x, v),

then the Cauchy problem (1) of the nonlinear Fokker–Planck is reformulated as [1]{
∂t f + v · ∇x f = ρL f ,

f (0, x, v) = f0(x, v) = µ−
1
2 (F0(x, v)− µ),

(2)
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where the density ρ(t, x) and the linear Fokker–Planck operator L are given by

ρ = 1 +
∫
R3

µ
1
2 f dv

and
L f = µ−

1
2∇v ·

(
µ∇v(µ

− 1
2 f )
)
= ∆v f +

1
4
(6− |v|2) f .

Defining the velocity orthogonal projection

P : L2(R3
v)→ Span

{
µ

1
2 , viµ

1
2 (1 ≤ i ≤ 3)

}
,

then for any given function f (t, x, v) ∈ L2(R3
v), one has

P f = a(t, x)µ
1
2 + b(t, x) · vµ

1
2 , (3)

with
a =

∫
R3

µ
1
2 f dv, b =

∫
R3

v · µ
1
2 f dv. (4)

Therefore, we have the following macro–micro decomposition of solutions f (t, x, v) of
the nonlinear Fokker–Planck Equation (1) with respect to the given global Maxwellian µ
which was introduced in [2]

f (t, x, v) = P f (t, x, v) + {I− P} f (t, x, v), (5)

where I denotes the identity operator, P f and {I− P} f are called the macroscopic and the
microscopic component of f (t, x, v), respectively.

Furthermore, multiplying (2) by µ
1
2 and integrating with respect to v over R3 to obtain

∂ta +∇x · b = 0,

then integrating the equality with respect to x over T3, we get the conservation of mass∫
T3

∫
R3

µ
1
2 f (t, x, v) dvdx =

∫
T3

∫
R3

µ
1
2 f (0, x, v) dvdx = 0. (6)

Let ν(v) = 1 + |v|2 and denote the norm | · |ν by

| f |2ν =
∫
R3

v

(
ν(v)| f |2 + |∇v f |2

)
dv. (7)

As is known [3–5], the Fokker–Planck operator L is coercive in the sense that there is a
positive constant λ0 such that

− (L f , f )L2
v
≥ λ0|{I− P} f |2ν + |b|2. (8)

Motivated by [6], we use the low-regularity function space L1
k L∞

T L2
v equipped with norm

‖ f ‖L1
k L∞

T L2
v

:=
∫
Z3

k

sup
0≤t≤T

‖ f̂ (t, k, ·)‖L2
v

dΣ(k) < ∞, (9)

where the Fourier transformation of f (t, x, v) with respect to x ∈ T3 is defined by

f̂ (t, k, v) = Fx f (t, k, v) =
∫
T3

e−ik·x f (t, x, v) dx, k ∈ Z3.
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In this paper, we will use dΣ(k) to denote the discrete measure in Z3, i.e.,∫
Z3

g(k) dΣ(k) = ∑
k∈Z3

g(k).

Notations

• A . B means that there is a constant C > 0 such that A ≤ CB. A ∼ B means A . B
and B . A.

• Denoting the dot product ( f , g) = f · g for any complex functions.
• Denoting (·, ·)L2

v
the complex inner product over L2

v, i.e.,

( f , g)L2
v
=
∫
R3

v

f (v)g(v)dv.

• The convolution of f and g is defined as

( f̂ ∗ ĝ)(k) =
∫
Z3

l

f̂ (k− l)ĝ(l) dΣ(l).

• R denotes the real part of a complex number.

Based on this preparing work, our main result can be stated as follows.

Theorem 1. Assume that f0(x, v) satisfies the conservation of mass∫
T3

∫
R3

µ
1
2 f (t, x, v) dvdx =

∫
T3

∫
R3

µ
1
2 f (0, x, v) dvdx = 0.

and F0(x, v) = µ + µ
1
2 f0(x, v) ≥ 0, there is a small sufficiently ε0 such that if

‖ f0(x, v)‖L1
k L2

v
≤ ε0,

then the Cauchy problem (2) admits a unique global mild solution f (t, x, v) satisfying F(t, x, v) =
µ + µ

1
2 f (t, x, v) ≥ 0, and it holds that

‖ f (t, x, v)‖L1
k L∞

T L2
v
+ ‖ f (t, x, v)‖L1

k L2
T L2

ν
. ‖ f0(x, v)‖L1

k L2
v
, (10)

for any t > 0. Moreover, there is a constant λ > 0 such that the solution also admits the time decay
estimate

‖ f (t, x, v)‖L1
k L2

v
. e−λt‖ f0(x, v)‖L1

k L2
v
, (11)

for any t ≥ 0.

Remark 1. Compared with the integer Sobolev space H4
x used in [1], the regularity assumption on

the initial data is weaker due to H4
x ↪→ L1

k .

There are a lot of results about the global existence and large time behavior of solutions
to Fokker–Planck-type equations, such as, for the Fokker–Planck–Boltzmann equation,
the global existence and temporal decay estimates of classical solutions are established
based on the nonlinear energy method developed in [2], under Grad’s angular cut-off
in [5,7] and without cut-off in [8,9], respectively. As for the Vlasov–Poisson–Fokker–Planck
equation, Duan and Liu [3] obtained the time-periodic small-amplitude solution in the
three dimensional whole space by Serrin’s method. Hwang and Jang [10], Wang [11]
obtained the global existence and the time decay of the solution. For the problem (1), the
global existence is proved by combining uniform-in-time energy estimates and the decay
rates of the solution is obtained by using the precise spectral analysis of the linearized
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Fokker–Planck operator as well as the energy method in [1]. Interested readers can refer to
the references [4,12–28] for more related details.

We note that the previous related results that are obtained in Sobolev space involved
the v-derivatives or x-derivatives, which required high regularity of the initial data. In order
to obtain the global in time solutions in low-regularity function space, Duan–Liu–Sakamoto–
Strain [6] introduced the space L1

k L∞
T L2

v to deal with the Landau and non-cutoff Boltzmann
equation, where L1 corresponds to the Weiner algebra over a torus satisfying ‖ f g‖L1

k
≤

‖ f ‖L1
k
‖g‖L1

k
. Motivated by this method, we are desired to obtain the global existence of

solutions to the Fokker–Planck–Boltzmann equation in low regularity function space.
The rest of this paper is organized as follows. In Section 2, we list some basic lem-

mas which will be used in the later proof. Sections 3 and 4 are devoted to deducing
global existence and exponential time decay rates for the solution to the Cauchy problem
of the Fokker–Planck–Boltzmann equation respectively, where the proofs of Theorem 1
is complete.

2. Basic Lemmas

In this section, we give some results concerning the linear Fokker–Planck operator L
and the nonlinear term.

Lemma 1 ([3–5]). There is a constant λ0 > 0 such that

−R(L f̂ , f̂ )L2
v
≥ λ0|{I− P} f̂ (t, k, ·)|2ν + |b̂(t, k)|2. (12)

Lemma 2. It holds that∫
Z3

k

(∫ T

0

∣∣∣∣(â ∗ L f̂ , f̂
)

L2
v

∣∣∣∣dt
)1/2

dΣ(k)

.

(
η +
‖ f ‖L1

k L∞
T L2

v

4η

) ∫
Z3

k

(∫ T

0
| f̂ (t, k, ·)|2ν dt

)1/2

dΣ(k)

(13)

for any T > 0, where the constant η > 0 can be arbitrarily small. It also holds that∫
Z3

k

( ∫ T

0
|(|â ∗ L f̂ |, µ

1
4 )L2

v
|2dt

)1/2
dΣ(k) . ‖ f ‖L1

k L∞
T L2

v
‖ f ‖L1

k L2
T L2

ν
. (14)

Proof. By Fubini’s theorem, one can obtain∣∣∣∣(â ∗ ∆v f̂ , f̂
)

L2
v

∣∣∣∣ =
∣∣∣∣∣
∫
R3

v

(∫
Z3

l

â(t, k− l)∆v f̂ (t, l, v)dΣ(l)

)
f̂ (t, k, v)dv

∣∣∣∣∣
=

∣∣∣∣∣
∫
Z3

l

â(t, k− l)
(∫

R3
v

∆v f̂ (t, l, v) f̂ (t, k, v)dv
)

dΣ(l)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Z3

l

â(t, k− l)
(∫

R3
v

∇v f̂ (t, l, v)∇v f̂ (t, k, v)dv
)

dΣ(l)

∣∣∣∣∣
.
∫
Z3

l

|â(t, k− l)|‖∇v f̂ (t, l, ·)‖L2
v
‖∇v f̂ (t, k, ·)‖L2

v
dΣ(l).

By applying Cauchy–Schwarz’s inequality with respect to
∫ T

0 (·)dt and using Young’s
inequality, we have
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∫
Z3

k

(∫ T

0

∣∣∣∣(â ∗ ∆v f̂ , f̂
)

L2
v

∣∣∣∣dt
)1/2

dΣ(k)

.
∫
Z3

k

(∫ T

0

∫
Z3

l

|â(t, k− l)|‖∇v f̂ (t, l, ·)‖L2
v
‖∇v f̂ (t, k, ·)‖L2

v
dΣ(l)dt

)1/2

dΣ(k)

.
∫
Z3

k

∫ T

0

(∫
Z3

l

|â(t, k− l)|‖∇v f̂ (t, l, ·)‖L2
v
dΣ(l)

)2

dt

1/4

×
(∫ T

0
‖∇v f̂ (t, k, ·)‖2

L2
v
dt
)1/4

dΣ(k)

. η
∫
Z3

k

(∫ T

0
‖∇v f̂ (t, k, ·)‖2

L2
v
dt
)1/2

dΣ(k)

+
1

4η

∫
Z3

k

∫ T

0

(∫
Z3

l

|â(t, k− l)|‖∇v f̂ (t, l, ·)‖L2
v
dΣ(l)

)2

dt

1/2

dΣ(k),

(15)

where η > 0 is a sufficiently small universal constant. For the second term in the above
inequality, we can obtain∫ T

0

(∫
Z3

l

|â(t, k− l)|‖∇v f̂ (t, l, ·)‖L2
v
dΣ(l)

)2

dt

1/2

≤
∫
Z3

l

(∫ T

0
|â(t, k− l)|2‖∇v f̂ (t, l, ·)‖2

L2
v
dt
)1/2

dΣ(l),

(16)

by the Minkowski’s inequality
∥∥‖ · ‖L1

l

∥∥
L2

t
≤
∥∥‖ · ‖L2

t

∥∥
L1

l
. By Fubini’s theorem and transla-

tion invariance with (16), we obtain

∫
Z3

k

∫ T

0

(∫
Z3

l

|â(t, k− l)|‖∇v f̂ (t, l, ·)‖L2
v
dΣ(l)

)2

dt

1/2

dΣ(k)

≤
∫
Z3

k

∫
Z3

l

(∫ T

0
|â(t, k− l)|2‖∇v f̂ (t, l, ·)‖2

L2
v
dt
)1/2

dΣ(l)dΣ(k)

≤
∫
Z3

k

∫
Z3

l

sup
0≤t≤T

|â(t, k− l)|
(∫ T

0
‖∇v f̂ (t, l, ·)‖2

L2
v
dt
)1/2

dΣ(l)dΣ(k)

=
∫
Z3

l

∫
Z3

k

sup
0≤t≤T

|â(t, k− l)|
(∫ T

0
‖∇v f̂ (t, l, ·)‖2

L2
v
dt
)1/2

dΣ(k)dΣ(l)

=
∫
Z3

l

(∫
Z3

k

sup
0≤t≤T

|â(t, k− l)|dΣ(k)

)(∫ T

0
‖∇v f̂ (t, l, ·)‖2

L2
v
dt
)1/2

dΣ(l)

=

(∫
Z3

k

sup
0≤t≤T

|â(t, k)|dΣ(k)

) ∫
Z3

l

(∫ T

0
‖∇v f̂ (t, l, ·)‖2

L2
v
dt
)1/2

dΣ(l).

(17)

Applying the Hölder inequality, we have∫
Z3

k

sup
0≤t≤T

|â(t, k)|dΣ(k) =
∫
Z3

k

sup
0≤t≤T

|
∫
R3

µ
1
2 f̂ (t, k, v)dv|dΣ(k)

≤
∫
Z3

k

sup
0≤t≤T

‖ f̂ (t, k, ·)‖L2
v
dΣ(k).

(18)
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Combining (15), (17) and (18), we obtain

∫
Z3

k

(∫ T

0

∣∣∣∣(â ∗ ∆v f̂ , f̂
)

L2
v

∣∣∣∣dt
)1/2

dΣ(k)

.

(
η +
‖ f ‖L1

k L∞
T L2

v

4η

) ∫
Z3

k

(∫ T

0
| f̂ (t, k, ·)|2ν dt

)1/2

dΣ(k),

(19)

with the fact∫
Z3

k

(∫ T

0
‖∇v f̂ (t, k, ·)‖2

L2
v
dt
)1/2

dΣ(k) .
∫
Z3

k

(∫ T

0
| f̂ (t, k, ·)|2ν dt

)1/2

dΣ(k).

Similarly, we can obtain

∫
Z3

k

(∫ T

0

∣∣∣∣∣
(

â ∗
(

1
4
(6− |v|2) f̂

)
, f̂
)

L2
v

∣∣∣∣∣dt

)1/2

dΣ(k)

.

(
η +
‖ f ‖L1

k L∞
T L2

v

4η

) ∫
Z3

k

(∫ T

0
| f̂ (t, k, ·)|2ν dt

)1/2

dΣ(k).

(20)

By (19) and (20) and the linear Fokker–Planck operator L f̂ = ∆v f̂ + 1
4 (6− |v|2) f̂ , the

desired result (13) can be obtained. The proof of (14) is also can be deduced similarly.

3. Global Existence

Firstly, we need to obtain the estimates of the microscopic dissipation for the solution
f in (2).

Proposition 1. Under the assumptions in Theorem 1, it holds that

∫
Z3

k

sup
0≤t≤T

‖ f̂ (t, k, ·)‖L2
v
dΣ(k) +

∫
Z3

k

(∫ T

0
|{I− P} f̂ (t, k, ·)|2ν dt

)1/2

dΣ(k)

+
∫
Z3

k

(∫ T

0
|b̂(t, k)|2 dt

)1/2

dΣ(k)

.‖ f0‖L1
k L2

v
+

(
η +
‖ f ‖L1

k L∞
T L2

v

4η

) ∫
Z3

k

(∫ T

0
| f̂ (t, k, ·)|2ν dt

)1/2

dΣ(k),

(21)

for any T > 0, where the constant η > 0 can be arbitrarily small.

Proof. Taking Fourier transform of (2) with respect x, we have

∂t f̂ (t, k, v) + iv · f̂ (t, k, v)− L f̂ (t, k, v) = (â ∗ L f̂ )(t, k, v),

where the convolutions are taken with respect to k ∈ Z3:

(â ∗ L f̂ )(t, k, v) =
∫
Z3

l

â(t, k− l)L f̂ (t, l, v)dΣ(l).

Taking product with the complex conjugate of f̂ (t, k, v) and further taking the real part
of the resulting equation, we have

1
2

d
dt
| f̂ (t, k, v)|2 −R(L f̂ , f̂ ) = R(â ∗ L f̂ , f̂ ),
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integrating the above identity with respect to v and then t, we obtain

1
2
‖ f̂ (t, k, ·)‖2

L2
v
−
∫ t

0
R(L f̂ , f̂ )L2

v
dτ =

1
2
‖ f̂0(k, ·)‖2

L2
v
+
∫ t

0
R(â ∗ L f̂ , f̂ )L2

v
dτ.

Recalling the coercivity estimates of L in Lemma 1, we can obtain

1
2
‖ f̂ (t, k, ·)‖2

L2
v
+ λ0

∫ t

0
|{I− P} f̂ (τ, k, ·)|2νdτ + λ0

∫ t

0
|b̂(τ, k)|2dτ

≤1
2
‖ f̂0(k, ·)‖2

L2
v
+
∫ t

0

∣∣∣R(â ∗ L f̂ , f̂ )L2
v

∣∣∣dτ.
(22)

Taking the square root on both sides and using the inequality

1√
3
(A + B + C) ≤

√
A2 + B2 + C2,

√
A2 + B2 ≤ A + B, A, B, C ≥ 0,

we further have

1√
6
‖ f̂ (t, k, ·)‖L2

v
+

√
λ0√
3

(∫ t

0
|{I− P} f̂ (τ, k, ·)|2νdτ

)1/2
+

√
λ0√
3

(∫ t

0
|b̂(τ, k)|2dτ

)1/2

≤ 1√
2
‖ f̂0(k, ·)‖L2

v
+

(∫ t

0

∣∣∣R(â ∗ L f̂ , f̂ )L2
v

∣∣∣dτ

)1/2
.

(23)

Moreover, taking sup0≤t≤T on both sides of the above inequality and integrating the
resulting inequality with respect to dΣ(k) over Z3, we have

∫
Z3

k

sup
0≤t≤T

‖ f̂ (t, k, ·)‖L2
v
dΣ(k) +

∫
Z3

k

(∫ T

0
|{I− P} f̂ (t, k, ·)|2ν dt

)1/2

dΣ(k)

+
∫
Z3

k

(∫ T

0
|b̂(t, k)|2 dt

)1/2

dΣ(k)

.‖ f0‖L1
k L2

v
+
∫
Z3

k

(∫ T

0

∣∣∣∣(â ∗ L f̂ , f̂
)

L2
v

∣∣∣∣dt
)1/2

dΣ(k)

.‖ f0‖L1
k L2

v
+

(
η +
‖ f ‖L1

k L∞
T L2

v

4η

) ∫
Z3

k

(∫ T

0
| f̂ (t, k, ·)|2ν dt

)1/2

dΣ(k),

(24)

by (13) in Lemma 2. Thus the desired estimate (21) are obtained.

Now we give the estimate of the macroscopic component â(t, k) by the dual argument.

Proposition 2. Under the assumptions of Theorem 1, it holds that

∫
Z3

k

(∫ T

0
|â(t, k)|2 dt

)1/2

dΣ(k) .‖ f ‖L1
k L∞

T L2
v
+ ‖ f0‖L1

k L2
v
+ ‖ f ‖L1

k L∞
T L2

v
‖ f ‖L1

k L2
T L2

ν

+
∫
Z3

k

(∫ T

0
|b̂(t, k)|2 dt

)1/2

dΣ(k)

+
∫
Z3

k

(∫ T

0
|{I− P} f̂ (t, k, ·)|2ν dt

)1/2

dΣ(k).

(25)

Proof. In order to obtain the estimate of a, we take a test function as

Φ̂(t, k, v) ∈ C1
(
(0, ∞)×Z3 ×R3

)
,
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which will be fixed later. Applying the Fourier transform to (2), taking the inner product of
it and Φ̂ in L2

v, then integrating the resultant over [0, T], one can obtain

( f̂ , Φ̂)|t=T − ( f̂ , Φ̂)|t=0 −
∫ T

0
( f̂ , ∂tΦ̂)dt−

∫ T

0
( f̂ , v · ikΦ̂)dt

=
∫ T

0
(â ∗ L f̂ , Φ̂)dt +

∫ T

0
(L f̂ , Φ̂)dt,

where we have used the notation (·, ·) = (·, ·)L2
v

and set T > 0 be an arbitrary fixed constant.
Denoting ( f̂ , Φ̂)(T) = ( f̂ , Φ̂)|t=T , ( f̂ , Φ̂)(0) = ( f̂ , Φ̂)|t=0 and plugging in the macro–micro
decomposition, we have

−
∫ T

0
(P f̂ , v · ikΦ̂)dt = ( f̂ , Φ̂)(0)− ( f̂ , Φ̂)(T) +

∫ T

0
( f̂ , ∂tΦ̂)dt +

∫ T

0
({I− P} f̂ , v · ikΦ̂)dt︸ ︷︷ ︸

J1

+
∫ T

0
(â ∗ L f̂ , Φ̂)dt︸ ︷︷ ︸

J2

+
∫ T

0
(L f̂ , Φ̂)dt︸ ︷︷ ︸

J3

.

Thanks to (6), we can get the conservation law for mass, i.e.,∫
T3

a(t, x)dx =
∫
T3

a(0, x)dx = 0,

so that â(t, 0) = 0. Now we choose the test function as

Φ̂(t, k, v) = (|v|2 − 10)v · ikφ̂a(t, k)µ
1
2 , (26)

where φ̂a(t, k) is a solution to
|k|2φ̂a(t, k) = â(t, k).

Since â(t, 0) = 0, we can formally write φ̂a(t, k) = â(t, k)/|k|2 for any k ∈ Z3 where
φ̂a(t, 0) = 0. Using the estimate of a in [6], we can obtain

−
∫ T

0
(P f̂ , v · ikΦ̂)dt = 5

∫ T

0
|â(t, k)|2dt,

|J1| .‖ f̂ (T, k, ·)‖2
L2

v
+ ‖ f̂0(k)‖2

L2
v
+ η

∫ T

0
|â(t, k)|2dt

+
∫ T

0
|b̂(t, k)|2dt +

∫ T

0
|{I− P} f̂ (t, k)|2νdt,

|J2| .η
∫ T

0
|â(t, k)|2dt +

∫ T

0
|(|â ∗ L f̂ |, µ

1
4 )L2

v
|2dt,

where η > 0 is a sufficiently small universal constant. Now we concentrate on the estimate
of J3, since

|J3| =
∣∣∣ ∫ T

0
(∆v f̂ +

1
4
(6− |v|2) f̂ , Φ̂)dt

∣∣∣
≤
∣∣∣ ∫ T

0
(∆v f̂ , Φ̂)dt

∣∣∣︸ ︷︷ ︸
J3,1

+
∣∣∣ ∫ T

0
(

1
4
(6− |v|2) f̂ , Φ̂)dt

∣∣∣︸ ︷︷ ︸
J3,2

.

By virtue of the macro–micro decomposition, (5) gives
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J3,1 ≤
∣∣∣ ∫ T

0
(∆vP f̂ , Φ̂)dt

∣∣∣+ ∣∣∣ ∫ T

0
(∆v{I− P} f̂ , Φ̂)dt

∣∣∣
≤
∣∣∣ ∫ T

0
(â∆vµ

1
2 , Φ̂)dt

∣∣∣︸ ︷︷ ︸
J1
3,1

+
∣∣∣ ∫ T

0
(b̂∆v(vµ

1
2 ), Φ̂)dt

∣∣∣︸ ︷︷ ︸
J2
3,1

+
∣∣∣ ∫ T

0
(∆v{I− P} f̂ , Φ̂)dt

∣∣∣︸ ︷︷ ︸
J3
3,1

.

Owing to ∆vµ
1
2 = ( 1

4 v2 − 3
2 )µ

1
2 and (26), we obtain

J1
3,1 =

∣∣∣ ∫ T

0

(
â∆vµ

1
2 , (|v|2 − 10)v · ikφ̂a(t, k)µ

1
2

)
dt
∣∣∣

=
∣∣∣ ∫ T

0

(
â(

1
4

v2 − 3
2
)µ

1
2 , (|v|2 − 10)v · ikφ̂a(t, k)µ

1
2

)
dt
∣∣∣ = 0,

as the integrand function is odd for v. Due to k ∈ Z3 and |k|2φ̂a(t, k) = â(t, k), it holds that
with the Young’s inequality

J2
3,1 .

∫ T

0
|b̂(t, k)||k||φ̂a(t, k)|dt . η

∫ T

0
|â(t, k)|2dt + Cη

∫ T

0
|b̂(t, k)|2dt.

Similarly, we can obtain

J3
3,1 =

∣∣∣ ∫ T

0
({I− P} f̂ , ∆vΦ̂)dt

∣∣∣dt . η
∫ T

0
|â(t, k)|2dt + Cη

∫ T

0
|{I− P} f̂ (t, k)|2νdt.

Regarding the estimate of J3,2, we can also deduce that

J3,2 .
∣∣∣ ∫ T

0
(

1
4
(6− |v|2)P f̂ , Φ̂)dt

∣∣∣+ ∣∣∣ ∫ T

0
(

1
4
(6− |v|2){I− P} f̂ , Φ̂)dt

∣∣∣
.η

∫ T

0
|â(t, k)|2dt + Cη

∫ T

0
|b̂(t, k)|2dt + Cη

∫ T

0
|{I− P} f̂ (t, k)|2νdt,

where ∫ T

0
(

1
4
(6− |v|2)âµ

1
2 , Φ̂)dt

=
∫ T

0
(

1
4
(6− |v|2)âµ

1
2 , (|v|2 − 10)v · ikφ̂a(t, k)µ

1
2 )dt = 0,

and ∫ T

0
(

1
4
(6− |v|2)(|v|2 − 3)ĉµ

1
2 , Φ̂)dt

=
∫ T

0
(

1
4
(6− |v|2)(|v|2 − 3)ĉµ

1
2 , (|v|2 − 10)v · ikφ̂a(t, k)µ

1
2 )dt = 0,

since the integrand function is odd for v. By collecting the above estimates and taking
η > 0 is small enough, we obtain∫ T

0
|â(t, k)|2dt .‖ f̂ (T, k, ·)‖2

L2
v
+ ‖ f̂0(k)‖2

L2
v
+
∫ T

0
|b̂(t, k)|2dt

+
∫ T

0
|{I− P} f̂ (t, k)|2νdt +

∫ T

0
|(|â ∗ L f̂ |, µ

1
4 )L2

v
|2dt.

Thus, we have
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∫
Z3

k

(∫ T

0
|â(t, k)|2 dt

)1/2

dΣ(k) .‖ f ‖L1
k L∞

T L2
v
+ ‖ f0‖L1

k L2
v
+ ‖ f ‖L1

k L∞
T L2

v
‖ f ‖L1

k L2
T L2

ν

+
∫
Z3

k

(∫ T

0
|b̂(t, k)|2 dt

)1/2

dΣ(k)

+
∫
Z3

k

(∫ T

0
|{I− P} f̂ (t, k, ·)|2ν dt

)1/2

dΣ(k),

where we have used∫
Z3

k

‖ f̂ (T, k, ·)‖L2
v
dΣ(k) ≤

∫
Z3

k

sup
0≤t≤T

‖ f̂ (t, k, ·)‖L2
v
dΣ(k) = ‖ f ‖L1

k L∞
T L2

v
,

and ∫
Z3

k

( ∫ T

0
|(|â ∗ L f̂ |, µ

1
4 )L2

v
|2dt

)1/2
dΣ(k) . ‖ f ‖L1

k L∞
T L2

v
‖ f ‖L1

k L2
T L2

ν
,

in Lemma 2. Thus the proof the proposition is complete.

Proposition 3. Under the assumptions of Theorem 1, it holds that

‖ f ‖L1
k L∞

T L2
v
+ ‖ f ‖L1

k L2
T L2

ν

. ‖ f0‖L1
k L2

v
+ ‖ f ‖L1

k L∞
T L2

v
‖ f ‖L1

k L2
T L2

ν
.

(27)

Proof. Taking the linear combination as (21) + M× (25) with M > 0 being small enough
and noticing that

‖P f ‖L1
k L2

T L2
ν
∼ ‖[a, b, c]‖L1

k L2
T
,

‖ f ‖L1
k L2

T L2
ν
∼ ‖{I− P} f ‖L1

k L2
T L2

ν
+ ‖P f ‖L1

k L2
T L2

ν
,

the desired estimate (27) are obtained.

With the above preparation in hand, we are ready to deduce the global-in-time exis-
tence of the solution. Firstly, the local-in-time existence and uniqueness of the solutions to
the Cauchy problem (2) can be established by performing the standard arguments as in [6],
where we omit its proof for simplicity. To extend the local solution into the global one, we
can deduce that

‖ f ‖L1
k L∞

T L2
v
+ ‖ f ‖L1

k L2
T L2

ν
. ‖ f0‖L1

k L2
v
,

from (27) in Proposition 3 by virtue of the smallness assumption on ‖ f0‖L1
k L2

v
. Combining

this with the local existence, the global mild solution and uniqueness follows immediately
from the standard continuity argument. This completes the proof of the global existence
and the uniform estimate (10).

4. Large Time Behavior

To deduce the exponential time decay rates of the solution f (t, x, v), we take

ĥ = eλt f̂

with λ > 0 which will be chosen later. Since f satisfies the system (2), then ĥ satisfies

∂t ĥ + ik · vĥ = e−λt(â ∗ L f̂ ) + λĥ + Lĥ,

with initial data
ĥ(0, k, v) = ĥ0(k, v).
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Using the same method to deduce Proposition 3, we can obtain

‖h‖L1
k L∞

T L2
v
+ ‖h‖L1

k L2
T L2

ν
.‖h0‖L1

k L2
v
+
√

λ
∫
Z3

k

(∫ T

0
||ĥ(t, k, ·)||2L2

v
dt
)1/2

dΣ(k)

≤‖h0‖L1
k L2

v
+
√

λ‖h‖L1
k L2

T L2
ν
,

(28)

for any T > 0. Then, take λ > 0 to be small enough, yields that

‖h‖L1
k L∞

T L2
v
+ ‖h‖L1

k L2
T L2

ν
. ‖h0‖L1

k L2
v
.

By the Minkowski’s inequality ‖‖ · ‖L1
k
‖L∞

T
≤ ‖‖ · ‖L∞

T
‖L1

k
, we can deduce

∫
Z3

k

‖ĥ(t, k, ·)‖L2
v
dΣ(k) . ‖h0‖L1

k L2
v
.

Since that ĥ = eλt f̂ , then one can obtain

‖ f (t)‖L1
k L2

v
. e−λt‖ f0‖L1

k L2
v
,

Thus, we have completed the proof of Theorem 1.

5. Conclusions

In this paper, the global existence and exponential time decay rates of mild solutions
to the nonlinear Fokker–Planck equation are obtained in the low regularity space L1

k L∞
T L2

v
by the nonlinear energy estimates. Compared with the previous results, the regularity
assumption on the initial data is weaker.
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