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Abstract: In this paper, we deal with the general fractional integrals and the general fractional deriva-
tives of arbitrary order with the kernels from a class of functions that have an integrable singularity
of power function type at the origin. In particular, we introduce the sequential fractional derivatives
of this type and derive an explicit formula for their projector operator. The main contribution of
this paper is a construction of an operational calculus of Mikusiński type for the general fractional
derivatives of arbitrary order. In particular, we present a representation of the m-fold sequential
general fractional derivatives of arbitrary order as algebraic operations in the field of convolution
quotients and derive some important operational relations.
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1. Introduction

Starting from the early phases in development of calculus, several attempts of inter-
pretation of derivatives and integrals as some purely algebraic symbols were undertaken.
Leibniz, Euler, Lagrange, and other founders of calculus introduced and employed the alge-
braic rules for manipulation with the integral and differential operators. In most of the cases,
these rules led to correct results. However, they were just formal algorithms without a strict
mathematical background. The most prominent example of this procedure were the works
by Oliver Heaviside who systematically employed an algebraic approach to investigation
of a number of practical problems including differential equations of electromagnetism
and theory of oscillators. Because of importance of Heaviside’s approach for engineers,
mathematicians started to think about its rigorous mathematical background. In the works
by Bromwich, Carson, Van der Pol, Doetsch, and other mathematicians, the methods of
Heaviside were justified in terms of the Laplace transform and its modifications. However,
a requirement of existence of the Laplace transform led to some conditions on behavior of
the functions in infinity that restricted applicability of the Heaviside operational calculus.

In the 1950s, a cardinal return to the original ideas of operational calculus was proposed
in the works by Jan Mikusiński and his co-authors (see [1] and the references therein),
where an operational calculus for the first order derivative has been developed and applied
for a number of mathematical and real world problems. The main components of this
approach are an interpretation of the Laplace convolution as a multiplication in the ring
of functions continuous on the real positive semi-axis and an extension of this ring to
the field of convolution quotients. Later on, the Mikusiński scheme was employed by
several mathematicians for development of operational calculi for some special differential
operators with the variable coefficients (see, for example, [2–4]) that turned out to be
particular cases of the hyper-Bessel differential operator in the form
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(B y)(t) = t−β
m

∏
j=1

(
γj +

1
β

t
d
dt

)
y(t), β > 0, γj ∈ R, j = 1, . . . , m. (1)

An operational calculus of Mikusiński type for the hyper-Bessel differential operator
(1) was constructed by Dimovski in [5].

A new stage in further development of operational calculi of Mikusiński type was
initiated in the works by Luchko and his co-authors, where operational calculi for different
fractional derivatives were constructed and applied for derivation of the closed form
solution formulas for the fractional integral and differential equations. The first operational
calculus for a fractional derivative has been proposed in [6,7], where an operational calculus
of Mikusiński type for the multiple Erdélyi-Kober fractional derivative was developed. The
two prominent particular cases of this fractional derivative are the hyper-Bessel differential
operator (1) and the Riemann–Liouville fractional derivative. An extended version of the
operational calculus for the Riemann–Liouville fractional derivative was suggested in [8,9].
An operational calculus for another basic fractional derivative, the Caputo derivative, was
developed in [10]. It is worth mentioning that in [10], this operational calculus was applied
for derivation of the closed form solutions formulas to the multi-term fractional differential
equations involving the Caputo fractional derivatives with the commensurate and non-
commensurate orders. An operational calculus of Mikusiński type for the Hilfer fractional
derivative was worked out in [11]. In [12], the case of the Caputo-type fractional Erdélyi-
Kober derivative was treated. In [13], a Mikusiński type operational calculus for the general
fractional derivative (GFD) of the “generalized order” form the interval (0, 1) in the Caputo
sense was developed. This GFD is a composition of a Laplace convolution integral with a
Sonine kernel with an integrable singularity of power function type at the point zero and
the first order derivative. In [13], this calculus was applied for derivation of the closed form
solution formulas for the initial-value problems for the multi-term fractional differential
equations with the sequential fractional derivatives of this type. The case of the GFD of
arbitrary order in the Riemann–Liouville sense was treated in the very recent paper [14],
where the corresponding operational calculus was applied to solve the multi-term fractional
differential equations with these derivatives and the suitably formulated initial conditions.
In [15,16], a survey of the operational calculi for several different fractional derivatives
was provided.

The rest of this paper is organized as follows: In Section 2, we present an overview of
some important properties of the general fractional integrals (GFI) and the GFD of arbitrary
order. Then we introduce the sequential GFDs, prove the 1st and the 2nd fundamental
theorem of fractional calculus (FC) for these derivatives, and derive an explicit form for
their projector operators. Section 3 is devoted to construction of an operational calculus of
the Mikusiński type for the GFD of arbitrary order. In particular, the sequential GFDs of
arbitrary order are represented as multiplication with certain elements of the constructed
field of convolution quotients. The developed operational calculus can be applied for
derivation of the closed form solution formulas for the ordinary and partial fractional
differential equations with the sequential GFDs of arbitrary order.

2. General Fractional Derivatives of Arbitrary Order

The first publication devoted to the GFI and GFD was the paper [17] by Sonine
published in 1884, even if no fractional integrals and fractional derivatives were explicitly
mentioned there. In [17], Sonine generalized the solution method employed by Abel
in [18,19] for the integro-differential equation (in slightly different notations)

f (t) =
1

Γ(1− α)

∫ t

0

g′(τ) dτ

(t− τ)α
, 0 < α < 1 (2)
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to the case of more general integral equations. In his derivations, Abel essentially used
the relation

(hα ∗ h1−α)(t) = {1}, t > 0, 0 < α < 1, (3)

where hα denotes a power function

hα(t) :=
tα−1

Γ(α)
, t > 0, α > 0, (4)

the operation ∗ stands for the Laplace convolution

( f1 ∗ f2)(t) =
∫ t

0
f1(t− τ) f2(τ) dτ, (5)

and {1} is the function that is identically equal to 1 for t > 0. Abel’s solution to the
integro-differential Equation (2) under the condition g(0) = 0 is nowadays well-known as
the Riemann–Liouville fractional integral:

g(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ) dτ, t > 0. (6)

The brilliant idea of Sonine was to replace the power functions hα and h1−α in the
relation (3) with the arbitrary functions κ, k that satisfy the same relation:

(κ ∗ k)(t) = {1}, t > 0. (7)

Nowadays such functions are called the Sonine kernels and the condition (7) is refereed
to as the Sonine condition.

By employing the Abel method, Sonine solved the convolution type integral equation

f (t) =
∫ t

0
κ(t− τ)g(τ) dτ = (κ ∗ g)(t) (8)

in explicit form:

g(t) =
d
dt

∫ t

0
k(t− τ) f (τ) dτ =

d
dt
(k ∗ f )(t), (9)

provided the kernels κ, k satisfy the Sonine condition (7).
It is worth mentioning that derivations of both Abel and Sonine were not rigorous

from the modern viewpoint because they did not introduce the suitable spaces of functions
and did not provide conditions for validity of their formal manipulations with integrals
and derivatives. Only recently, the operators (8) and (9) became a subject of active re-
search in FC and nowadays their mathematical theory is under intensive construction,
see [13,20–28].

In this paper, we deal with the GFI and GFD of arbitrary order introduced in [24] for
the first time. It is well-known that both the Riemann–Liouville fractional integral

(Iα
0+ f )(t) =

1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ) dτ, α > 0, t > 0 (10)

and the Riemann–Liouville and Caputo fractional derivatives

(Dα
0+ f )(t) =

dn

dtn (In−α
0+ f )(t), n− 1 ≤ α < n, n ∈ N, (11)

(∗Dα
0+ f )(t) =

(
Dα

0+

(
f (·)−

n−1

∑
j=0

f (j)(0)hj+1(·)
))

(t), t > 0, n− 1 ≤ α < n, n ∈ N (12)

are well-defined for any order α > 0.
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However, the relation (3) is valid only under the restriction 0 < α < 1. Similarly, the
Sonine operators defined by the right-hand sides of the Formulas (8) and (9) (GFI and GFD
in the modern FC notations) have a “generalized order” between zero and one because of
the Sonine condition (7). To define the GFI and GFD of arbitrary positive order, in [24], the
Sonine condition (7) was extended and specified for the kernels from some suitable spaces
of functions:

Definition 1 ([24]). Let the functions κ and k satisfy the condition

(κ ∗ k)(t) = {1}<n>(t), n ∈ N, t > 0, (13)

where

{1}<n>(t) := ({1} ∗ . . . ∗ {1}︸ ︷︷ ︸
n times

)(t) = hn(t) =
tn−1

(n− 1)!

and the inclusions κ ∈ C−1(0,+∞) and k ∈ C−1,0(0,+∞) hold true, where

C−1(0,+∞) := { f : f (t) = tp f1(t), t > 0, p > −1, f1 ∈ C([0,+∞))}, (14)

C−1,0(0,+∞) = { f : f (t) = tp f1(t), t > 0, −1 < p < 0, f1 ∈ C([0,+∞))}. (15)

The set of pairs (κ, k) of such kernels is denoted by Ln.

For a detailed treatment of the case n = 1, i.e., for a theory of the GFI and GFD with
the kernels from L1 we refer to [23]. In this paper, our focus will be on the case n > 1, even
if the case n = 1 is also included in all formulations and derivations.

It is worth mentioning that one cannot interchange the kernels κ and k in
Definition 1 with n > 1 because of the non-symmetrical inclusions κ ∈ C−1(0,+∞) and
k ∈ C−1,0(0,+∞) (in the case n = 1, Definition 1 is symmetrical and one can interchange the
kernels κ and k). However, the kernel κ(t) = hα(t), α > 0 of the Riemann–Liouville integral
(10) and the kernel k(t) = hn−α(t) of the Riemann–Liouville and Caputo fractional deriva-
tives (11) and (12) of order α, n− 1 < α < n, n ∈ N can be also not interchanged in the case
n > 1. Evidently, the kernels κ(t) = hα(t), α > 0 and k(t) = hn−α(t), n− 1 < α < n, n ∈ N
belong to the kernel set Ln. However, they are the Sonine kernels only in the case n = 1,
i.e., only in the case of the fractional derivatives orders less than one.

For other examples of the kernels from Ln, n > 1 and for the procedures how to
construct them starting from the known Sonine kernels from the set L1 we refer to [24,28].

Now we define the GFI and GFD of arbitrary order, present their known properties
and derive some new ones.

Definition 2 ([24]). Let (κ, k) ∈ Ln. The GFI with the kernel κ and the GFD of arbitrary order
with the kernel k are defined as follows:

(I(κ) f )(t) :=
∫ t

0
κ(t− τ) f (τ) dτ, t > 0, (16)

(∗D(k) f )(t) :=

(
D(k)

(
f (·)−

n−1

∑
j=0

f (j)(0)hj+1(·)
))

(t), t > 0, (17)

where the GFD D(k) defined in the Riemann–Liouville sense is given by the relation

(D(k) f )(t) :=
dn

dtn

∫ t

0
k(t− τ) f (τ) dτ, t > 0. (18)
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As already mentioned, the kernels of the Riemann–Liouville fractional integral (10)
and the Caputo fractional derivative (12) belong to the kernel set Ln and thus these FC
operators are particular cases of the GFI (16) and the GFD (17), respectively.

Another interesting particular case of the GFI (16) and the GFD (17) was presented
in [24]. Let the condition n− 2 < ν < n− 1, n ∈ N holds true. Then the operator

(I(κ) f )(t) =
∫ t

0
(t− τ)ν/2 Jν(2

√
t− τ) f (τ)dτ, t > 0, (19)

is a particular case of the GFI (16) and the corresponding GFD of arbitrary order takes the
following form:

(∗D(k) f )(t) :=

(
D(k)

(
f (·)−

n−1

∑
j=0

f (j)(0)hj+1(·)
))

(t), t > 0, (20)

where

(D(k) f )(t) =
dn

dtn

∫ t

0
(t− τ)n/2−ν/2−1 In−ν−2(2

√
t− τ) f (τ) dτ, t > 0 (21)

and the functions Jν and Iν are the Bessel and the modified Bessel functions, respectively.
In this paper, we investigate the GFI and the GFD of arbitrary order on the space

C−1(0,+∞) defined by the Formula (14) and its sub-spaces. In particular, the sub-spaces

Cm
−1(0,+∞) := { f : f (m) ∈ C−1(0,+∞)}, m ∈ N0 = N∪ {0}

will be often used. These sub-spaces were introduced and investigated in [10] in connection
with construction of an operational calculus of Mikusiński type for the Caputo fractional
derivative.

As mentioned in [24], if the inclusion k ∈ Cn−1
−1 (0,+∞) holds valid, the GFD (17) can

be represented as follows:

(∗D(k) f )(t) = (D(k) f )(t)−
n−1

∑
j=0

f (j)(0)
dn−j−1

dtn−j−1 k(t), t > 0, (22)

where D(k) is given by the relation (18). Moreover, for f ∈ Cn
−1(0,+∞), the GFD (17) takes

the form

(∗D(k) f )(t) =
∫ t

0
k(t− τ) f (n)(τ) dτ, t > 0 (23)

that is often used in the case of the power law kernel k(τ) = hn−α(τ), n− 1 < α < n, n ∈ N
of the Caputo fractional derivative.

The basic properties of the GFI (16) of arbitrary order on the space C−1(0,+∞) imme-
diately follow from the well-known properties of the Laplace convolution [23]:

I(κ) : C−1(0,+∞) → C−1(0,+∞) (mapping property), (24)

I(κ1)
I(κ2)

= I(κ2)
I(κ1)

(commutativity law), (25)

I(κ1)
I(κ2)

= I(κ1∗κ2)
(index law). (26)

We also mention the following important theorem:

Theorem 1 ([10]). The tripleR−1 = (C−1(0,+∞),+, ∗) with the usual addition + and multi-
plication ∗ in form of the Laplace convolution is a commutative ring without unity with respect to
multiplication and without divisors of zero.
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Furthermore, in [24], two fundamental theorems of FC for the GFI and the GFD of
arbitrary order have been proved. The formulations of these theorems are provided below,
for the proofs see [24].

Theorem 2 ([24]). Let (κ, k) ∈ Ln.
The GFD (17) of arbitrary order is a left inverse operator to the GFI (16) on the space

C−1,(k)(0,+∞):
(∗D(k) I(κ) f )(t) = f (t), f ∈ C−1,(k)(0,+∞), t > 0, (27)

where C−1,(k)(0,+∞) := { f : f (t) = (I(k) φ)(t), φ ∈ C−1(0,+∞)}.

Theorem 3 ([24]). Let (κ, k) ∈ Ln.
Then the relation

(I(κ) ∗D(k) f )(t) = f (t)−
n−1

∑
j=0

f (j)(0) hj+1(t) (28)

holds true on the space Cn
−1(0,+∞).

It is worth mentioning that the result of Theorem 3 (2nd fundamental theorem of
FC for the GFD of arbitrary order) can be reformulated in terms of the so-called projector
operator P of the GFD (17):

(P f )(t) := f (t)− (I(κ) ∗D(k) f )(t) =
n−1

∑
j=0

f (j)(0) hj+1(t). (29)

The form of the projector operator P determines the natural initial conditions for the
initial-value problems for the fractional differential equations with the GFD (17). Accord-
ing to the representation (29), they are provided in terms of the integer order derivatives
f (j)(0), j = 0, 1, . . . , n− 1 of the unknown function as it is the case for the ordinary differ-
ential equations and for the fractional differential equations with the Caputo derivatives.

In the rest of this section, we define the m-fold sequential GFIs and GFDs of arbitrary
order with the kernels (κ, k) ∈ Ln, n ∈ N and investigate their properties. In the case
n = 1, the m-fold GFIs and the m-fold sequential GFDs were introduced and studied
in [25,29]. In [14], the m-fold sequential GFDs in the Riemann–Liouville sense with the
kernels (κ, k) ∈ Ln have been considered based on the GFD of arbitrary order defined in
the Riemann–Liouville sense by the Formula (18). In this paper, we deal with the case of
the GFD of arbitrary order in form (17).

First we define the convolution powers f<m>, m ∈ N0 of a function f as follows:

f<m>(t) :=


{1}, m = 0,
f (t), m = 1,
( f ∗ . . . ∗ f︸ ︷︷ ︸

m times

)(t), m = 2, 3, . . . .
(30)

Definition 3. Let (κ, k) ∈ Ln, n ∈ N.
The m-fold GFI is defined as a composition of m GFIs with the kernel κ:

(I<m>
(κ) f )(t) := (I(κ) . . . I(κ)︸ ︷︷ ︸

m times

) f )(t) = (κ<m> ∗ f )(t), t > 0. (31)
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The corresponding m-fold sequential GFD of arbitrary order is defined as follows:

(∗D<m>
(k) f )(t) := (∗D(k) . . .∗ D(k)︸ ︷︷ ︸

m times

f )(t), t > 0. (32)

In analogy to the case of the Riemann–Liouville fractional integral and the Caputo
fractional derivative, the operators I<0>

(κ)
and ∗D<0>

(k) are interpreted as the identity opera-
tor Id.

Due to Theorem 1, the kernel κ<m>, m ∈ N from the Formula (31) is from the space
C−1(0,+∞) and thus the m-fold GFI can be represented as a GFI with the kernel κ<m>:

(I<m>
(κ) f )(t) = (κ<m> ∗ f )(t) = (I(κ)<m> f )(t), t > 0. (33)

The m-fold sequential GFD (32) of arbitrary order is a direct generalization of the
sequential fractional derivative in the Caputo sense to the case of the integro-differential
operators with the kernels from Ln.

The 1st fundamental theorem of FC (Theorem 2) for the GFI (16) and the GFD (17) of
arbitrary order immediately leads to the following important result:

Theorem 4 (1st fundamental theorem of FC for the m-fold sequential GFD of arbitrary
order). Let (κ, k) ∈ Ln, n ∈ N.

The m-fold sequential GFD (32) of arbitrary order is a left inverse operator to the m-fold GFI
(31) on the space C−1,(k)(0,+∞):

(D<m>
(k) I<m>

(κ) f )(t) = f (t), f ∈ C−1,(k)(0,+∞), t > 0. (34)

To generalize Theorem 3 to the case of the m-fold sequential GFDs, we first introduce
the suitable spaces of functions in the form

Cn,m
−1,(k)(0,+∞) := { f ∈ Cn

−1(0,+∞) : ∗D<i>
(k) f ∈ Cn

−1(0,+∞), i = 1, . . . , m− 1}. (35)

For m = 1, we set Cn,1
−1,(k)(0,+∞) := Cn

−1(0,+∞).

Theorem 5 (2nd fundamental theorem of FC for the m-fold sequential GFD of arbitrary
order). Let (κ, k) ∈ Ln.

Then the relation

(I<m>
(κ) ∗D<m>

(k) f )(t) = f (t)−
n−1

∑
j=0

dj f
dtj (0) hj+1(t)−

n−1

∑
j=0

m−1

∑
i=1

(
dj

dtj ∗D
<i>
(k) f

)
(0) (κ<i> ∗ hj+1)(t) (36)

holds true on the space Cn,m
−1,(k)(0,+∞).

Proof. In the case m = 1, the statement of Theorem 5 is Theorem 3 that was proved in [24].
Now we proceed with the case m = 2. Then we have the inclusion f ∈ Cn,2

−1,(k)(0,+∞) and
the representation

(I<2>
(κ) ∗D<2>

(k) f )(t) = (I(κ)I(κ) ∗D(k) ∗D(k) f )(t) =

(I(κ)(I(κ) ∗D(k)( ∗D(k) f )))(t).

For a function f ∈ Cn,2
−1,(k)(0,+∞), the inclusion ∗D(k) f ∈ Cn

−1(0,+∞) holds true and
thus we can apply Theorem 3 to the inner composition I(κ) ∗D(k) acting on the function
∗D(k) f and get the formula
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(I<2>
(κ) ∗D<2>

(k) f )(t) =

(
I(κ)

[
( ∗D(k) f )(t)−

n−1

∑
j=0

(
dj

dtj ∗D(k) f
)
(0) hj+1)(t)

])
(t) =

(I(κ) ∗D(k) f )(t)−
n−1

∑
j=0

(
dj

dtj ∗D(k) f
)
(0) (κ ∗ hj+1)(t).

The final result immediately follows by applying Theorem 3 to the composition
I(κ) ∗D(k) f at the right-hand side of the last formula:

(I<2>
(κ) D<2>

(k) f )(t) = f (t)−
n−1

∑
j=0

dj f
dtj (0) hj+1(t)−

n−1

∑
j=0

(
dj

dtj ∗D(k) f
)
(0) (κ ∗ hj+1)(t).

For m = 3, 4, . . . , we employ the recurrent formula

(I<m>
(κ) ∗D<m>

(k) f )(t) = (I<m−1>
(κ)

(I(κ) ∗D(k)( ∗D<m−1>
(k) f )))(t) =(

I<m−1>
(κ)

[
( ∗D<m−1>

(k) f )(t)−
n−1

∑
j=0

(
dj

dtj ∗D
<m−1>
(k) f

)
(0) hj+1(t)

])
(t) =

(
I<m−1>
(κ) ∗D<m−1>

(k) f
)
(t)−

n−1

∑
j=0

(
dj

dtj ∗D
<m−1>
(k) f

)
(0) (κ<m−1> ∗ hj+1)(t)

and the principle of the mathematical induction to complete the proof of the representa-
tion (36).

Remark 1. The Formula (36) can be rewritten in terms of the projector operator Pm of the m-fold
sequential GFD (32) as follows:

(Pm f )(t) := f (t)− (I<m>
(κ) ∗D<m>

(k) f )(t) =

n−1

∑
j=0

dj f
dtj (0) hj+1(t) +

n−1

∑
j=0

m−1

∑
i=1

(
dj

dtj ∗D
<i>
(k) f

)
(0) (κ<i> ∗ hj+1)(t), t > 0. (37)

According to Theorem 5, the Formula (37) is valid on the space Cn,m
−1,(k)(0,+∞).

It is worth mentioning that the Formula (37) specifies the natural form of the initial conditions
while dealing with the fractional differential equations that contain the sequential GFDs of the orders
up to m. These initial conditions should be formulated in terms of the values of the integer order
derivatives applied to the sequential GFDs of the orders up to (m− 1) evaluated at the point zero:

dj f
dtj (0) = aj0, j = 0, . . . , n− 1,

(
dj

dtj ∗D
<i>
(k) f

)
(0) = aji, j = 0, . . . , n− 1, i = 1, . . . , m− 1.

Remark 2. Evidently, the identity operator Id on the space Cn,m
−1,(k)(0,+∞) can be represented

as follows:

Id =(Id− I(κ) ∗D(k)) + (I(κ) ∗D(k) − I<2>
(κ) ∗D<2>

(k) ) + . . .

+(I<m−1>
(κ) ∗D<m−1>

(k) − I<m>
(κ) ∗D<m>

(k) ) + I<m>
(κ) ∗D<m>

(k)

=(Id− I(κ) ∗D(k)) + (I(κ) ( ∗D(k) − (I(κ) ∗D(k)) ∗D(k))) + . . .

+(I<m−1>
(κ)

( ∗D<m−1>
(k) − (I(κ) ∗D(k)) ∗D<m−1>

(k) )) + I<m>
(κ) ∗D<m>

(k)

=P + (I(κ) P( ∗D(k))) + · · ·+ (I<m−1>
(κ)

P( ∗D<m−1>
(k) )) + I<m>

(κ) ∗D<m>
(k) ,
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where P stands for the projector operator of the GFD (17) given by the Formula (29).
As a consequence, the projector operator Pm of the m-fold sequential GFD (32) can be also

represented in a more compact form:

(Pm f )(t) =
m−1

∑
i=0

(I<i>
(κ) (P ( ∗D<i>

(k) ) f ))(t), t > 0. (38)

It is worth mentioning that for any function f ∈ Cn,m
−1,(k)(0,+∞), its image Pm f by the

projector operator is from the kernel of the m-fold sequential GFD:

( ∗D<m>
(k) (Pm f ))(t) =( ∗D<m>

(k) f )(t)− ( ∗D<m>
(k) I<m>

(κ) ∗D<m>
(k) f )(t)

=( ∗D<m>
(k) f )(t)− ( ∗D<m>

(k) f )(t) = 0.

We also mention the inclusions

Ker ∗D(k) ⊂ Ker ∗D<2>
(k) ⊂ · · · ⊂ Ker ∗D<m>

(k)

that immediately follow from the definition of the m-fold sequential GFD.

3. Operational Calculus for the GFD of Arbitrary Order

As already mentioned in Introduction, an operational calculus of the Mikusiński type
for the GFI and GFD with the kernels (κ, k) ∈ L1 has been constructed in [13]. This
case corresponds to the GFI and GFD of the “generalized order” between zero and one.
In this paper, we extend the constructions presented in [13] to the case of the kernels
(κ, k) ∈ Ln, n ∈ N, i.e., for the GFI and GFD of arbitrary order.

The first important component of any operational calculus of Mikusiński type is
a suitable ring of functions. For the operational calculus for the GFI and GFD with
the kernels (κ, k) ∈ Ln, this ring is described in Theorem 1 that says that the triple
R−1 = (C−1(0,+∞),+, ∗) with the usual addition + and multiplication ∗ in form of the
Laplace convolution is a commutative ring without divisors of zero.

Furthermore, Definition 1 ensures that the kernels κ and k from Ln are elements of
this ring:

κ ∈ R−1, k ∈ R−1 if (κ, k) ∈ Ln.

In particular, this means that the GFI with the kernel κ is reduced to a conventional
multiplication on the ringR−1:

(I(κ) f )(t) = (κ ∗ f )(t), t > 0, f ∈ R−1. (39)

As to the GFD of arbitrary order, it cannot be reduced to the algebraic operations on
the ringR−1. The reason is that the GFD is a left-inverse operator to the GFI and the ring
R−1 does not possess a unity element with respect to multiplication. Thus, no inverse
element to κ ∈ R−1 does exist inR−1.

To demonstrate the last statement, let us assume that the GFD (17) of arbitrary order
can be represented as a convolution with a certain element κ−1 ∈ R−1:

(∗D(k) f )(t) = (κ−1 ∗ f )(t), t > 0, f ∈ R−1.

According to Theorem 2, the GFD (17) of arbitrary order is a left inverse operator to the
GFI (16). Combining the last equation with the representation (39), we arrive at the relation

(∗D(k) I(κ) f )(t) = (κ−1 ∗ (κ ∗ f ))(t) = ((κ−1 ∗ κ) ∗ f )(t) = f (t), t > 0, f ∈ R−1

that contradicts to the fact that the ringR−1 does not possess a unity element with respect
to multiplication.
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To resolve the problem mentioned above, the ringR−1 is extended to a field of convo-
lution quotients. Let us remind thatR−1 does not have any divisors of zero (Theorem 1)
and thus this extension follows a standard procedure, see, e.g., [10,13].

First, an equivalence relation on the set

C2
−1(0,+∞) := C−1(0,+∞)× (C−1(0,+∞) \ {0})

is introduced:

( f1, g1) ∼ ( f2, g2)⇔ ( f1 ∗ g2)(t) = ( f2 ∗ g1)(t), ( f1, g1), ( f2, g2) ∈ C2
−1(0,+∞).

Then we consider the equivalences classes C2
−1(0,+∞)/ ∼ and denote them as quotients:

f
g

:= {( f1, g1) ∈ C2
−1(0,+∞) : ( f1, g1) ∼ ( f , g)}.

On the space C2
−1(0,+∞)/ ∼, usual operations of addition and multiplication are

introduced:
f1

g1
+

f2

g2
:=

f1 ∗ g2 + f2 ∗ g1

g1 ∗ g2
,

f1

g1
· f2

g2
:=

f1 ∗ f2

g1 ∗ g2
.

These operations are correctly defined (they do not depend on the representatives of
the equivalence classes). Theorem 1 and the definitions provided above immediately lead
to the following important result:

Theorem 6 ([10]). The triple F−1 = (C2
−1(0,+∞)/ ∼, +, ·) is a field that is usually referred to

as the field of convolution quotients.

As usual, the ringR−1 can be embedded into the field F−1:

f 7→ f ∗ κ

κ
, (40)

where κ is the kernel of the GFI (16).
The set C2

−1(0,+∞)/ ∼ of the equivalence classes is also a vector space with the
addition operation mentioned above and multiplication with a scalar λ ∈ R or λ ∈ C
defined as follows [10]:

λ
f
g

:=
λ f
g

,
f
g
∈ C2

−1(0,+∞)/ ∼ .

On the other hand, the constant function {λ} (the function that takes the value λ
for any t ≥ 0) is from the space C−1(0,+∞) and thus it is an element of the ring R−1.
According to our definitions, multiplication with {λ} in the field F−1 is given by the
following expression:

{λ} · f
g
=
{λ} ∗ f

g
,

f
g
∈ F−1.

As we see, one has to differentiate between multiplication of an element from F−1
with a scalar λ and with the constant function {λ}.

Even if the ring R−1 is embedded into the field F−1, some elements of the field of
convolution quotients cannot be reduced to the conventional functions from the ring. One
of them is the unity element I = κ

κ of the field F−1 with respect to multiplication (see [13]).
Such elements can be interpreted as a kind of generalized functions (hyper-functions in
the terminology of [30]). The inverse element to the kernel κ of the GFI (16) is another
important hyper-function.
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Definition 4 ([13]). The inverse element to the kernel κ ∈ R−1 in the field F−1 in form

Sκ :=
κ

κ ∗ κ
(41)

is called an algebraic inverse element to the GFI (16).

By definition, the relation

κ · Sκ =
κ ∗ κ

κ
· κ

κ ∗ κ
=

κ<3>

κ<3> = I (42)

holds true, where I is the unity of the field F−1 with respect to multiplication.
Then, following [13], we introduce an important notion of an algebraic GFD of arbi-

trary order.

Definition 5. Let (κ, k) ∈ Ln, n ∈ N and f ∈ Cn−1[0,+∞).
The algebraic GFD of arbitrary order is defined as follows:

∗D(k) f = Sκ · f − Sκ · (P f ), (43)

where the function f and the projector operator P f given by the Formula (29) are interpreted as
elements of the convolution quotients field F−1.

As we see, the algebraic GFD of arbitrary order is defined for any function
f ∈ Cn−1[0,+∞). However, the GFD of arbitrary order given by the Formula (17) ev-
idently does not always exist on the space Cn−1[0,+∞). Thus, the algebraic GFD (43) can
be interpreted as a kind of a generalized derivative that assigns a certain element of the field
F−1 to any function f ∈ Cn−1[0,+∞). However, the algebraic GFD (43) coincides with the
GFD (17) on the space Cn

−1(0,+∞) (the inclusion Cn
−1(0,+∞) ⊂ Cn−1[0,+∞) holds valid,

see [10]).

Theorem 7. Let (κ, k) ∈ Ln and f ∈ Cn
−1(0,+∞).

Then the algebraic GFD (43) coincides with the GFD (17) of arbitrary order:

(∗D(k) f )(t) = ∗D(k) f = Sκ · f − Sκ · (P f ), (44)

where the projector operator P f is defined by the Formula (29) and the functions f , ∗D(k) f , and
P f are interpreted as elements of the field F−1.

Proof. On the space Cn
−1(0,+∞), the projector operator P is given by the Formula (29).

Thus, we have the following representation:

(I(κ) ∗D(k) f )(t) = (κ ∗ (∗D(k) f ))(t) = f (t)− (P f )(t), t > 0. (45)

For any f ∈ Cn
−1(0,+∞), both the function at the right- and the function at the left-

hand side of the Formula (45) evidently belong to the space C−1(0, +∞). Because the
ring R−1 is embedded into the convolution quotients field F−1, the Formula (45) can be
interpreted as an equality of two elements from F−1. By multiplying this equality with the
element Sκ and using the relation (42) we immediately arrive at the Formula (44).

Remark 3. In the case of the kernels κ(t) = hα(t), α > 0 and k(t) = hn−α(t), n− 1 < α < n,
n ∈ N, the GFI (16) is the well-known Riemann–Liouville fractional integral and the GFD (17) is
the Caputo fractional derivative of order α. In [10], a formula of type (44) for the Caputo fractional
derivative has been derived for the first time.
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The constructions presented above can be extended to the case of the m-fold sequential
GFD (32) of arbitrary order.

Definition 6. Let (κ, k) ∈ Ln, n ∈ N and ∗D<i>
(k) f ∈ Cn−1[0, +∞), i = 0, . . . , m− 1.

The m-fold sequential algebraic GFD of arbitrary order is defined by the expression

∗D<m>
(k) f = Sm

κ · f − Sm
κ · (Pm f ), (46)

where the function f and the projector operator Pm f given by the Formula (37) are interpreted as
the elements of the convolution quotients field F−1.

According to the Formula (37), the m-fold sequential algebraic GFD of arbitrary order
is well defined for any function f that satisfies the conditions ∗D<i>

(k) f ∈ Cn−1[0, +∞),
i = 0, . . . , m− 1. Evidently, these conditions do not ensure existence of the m-fold sequen-
tial GFD (32) of arbitrary order. Therefore, the m-fold sequential algebraic GFD of arbitrary
order can be interpreted as a kind of a generalized derivative. Still, for the functions
from the space Cn,m

−1,(k)(0,+∞) given by the Formula (35), Theorem 5 and the same argu-
ments that were used in the case m = 1 (Theorem 7 and its proof) lead to the following
important result:

Theorem 8. Let (κ, k) ∈ Ln, n ∈ N and f ∈ Cn,m
−1,(k)(0,+∞).

Then the m-fold sequential algebraic GFD (46) coincides with the m-fold sequential GFD (32):

(∗D<m>
(k) f )(t) = ∗D<m>

(k) f = Sm
κ · f − Sm

κ · (Pm f ), (47)

where the projector operator Pm is defined by the Formula (37) and the functions f , D<m>
(k) f , and

Pm f are interpreted as the elements of the field F−1.

Remark 4. The representation (37) of the projector operator Pm along with the formulas (I<i>
(κ)

f )(t) =

(κ<i> ∗ f )(t) and Sκ · κ = I lead to another form of the Formula (47):

(∗D<m>
(k) f )(t) = ∗D<m>

(k) f = Sm
κ · f −

m−1

∑
i=0

Sm−i
κ · (P (∗D<i>

(k) f )), (48)

where the projector operator P is given by Equation (29).

According to the representations (44) and (47) (or (48)), the GFD (17) of arbitrary order
and the m-fold sequential GFD (32) of arbitrary order can be represented as algebraic oper-
ations (multiplications) on the field F−1 of convolution quotients. These representations
can be used to reduce the initial-value problems for the fractional differential equations
with the GFDs of arbitrary order and the m-fold sequential GFDs of arbitrary order to
some algebraic equations on the field F−1 of convolution quotients. The solutions to these
equations are some elements of F−1 that in general are generalized functions or hyper-
functions. However, usually one looks for solutions in form of conventional functions, say,
from the space C−1(0,+∞). That is why the so-called operational relations (representations
of some elements of the field F−1 as conventional functions from the ringR−1) are another
important component of any operational calculus of Mikusiński type. In the rest of this
section, we provide operational relations for the elements of the field F−1 in form of the
rational functions R(Sκ) = Q(Sκ)/P(Sκ) with deg(Q) < deg(P). The result formulated in
the next theorem is a basis for derivation of these operational relations.

Theorem 9 ([14]). Let a function κ ∈ C−1(0,+∞) be represented in the form

κ(t) = hp(t)κ1(t), t > 0, p > 0, κ1 ∈ C[0,+∞) (49)
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and the convergence radius of the power series

Σ(z) =
+∞

∑
j=0

aj zj, aj ∈ C, z ∈ C (50)

be non-zero. Then the convolution series

Σκ(t) =
+∞

∑
j=0

aj κ<j+1>(t) (51)

is convergent for all t > 0 and defines a function from the space C−1(0,+∞). Moreover, the series

t1−α Σκ(t) =
+∞

∑
j=0

aj t1−α κ<j+1>(t), α = min{p, 1} (52)

is uniformly convergent for t ∈ [0, T] for any T > 0.

It is worth mentioning that the convolution series (51) is a far reaching generalization
of the power series (50) that is also a convolution series generated by the kernel κ = {1}
(Mikusiński’s operational calculus for the first order derivative).

As an example, let us consider the geometric series

Σ(t) =
+∞

∑
j=1

λj−1tj, λ ∈ C, λ 6= 0, t ∈ C. (53)

Its convergence radius is r = 1/|λ| > 0. Theorem 9 ensures that the convolution series

lκ,λ(t) =
+∞

∑
j=1

λj−1κ<j>(t), λ ∈ C, t > 0 (54)

is a function that belongs to the space C−1(0,+∞).
In the framework of the Mikusiński operational calculus for the first order derivative,

the kernel function κ = {1} was employed. It is easy to verify that for this kernel the
relation κ<j>(t) = {1}<j>(t) = hj(t) holds valid. Thus, the convolution series (54) is an
exponential function:

lκ,λ(t) =
+∞

∑
j=1

λj−1hj(t) =
+∞

∑
j=0

(λ t)j

j!
= eλ t. (55)

Another important example is the operational calculus of Mikusiński type for the
Caputo fractional derivative ([10]). In this case, the kernel κ is the power function hα and
the formula κ<j>(t) = h<j>

α (t) = hjα(t) holds valid. Thus, the convolution series (54) takes
the form

lκ,λ(t) =
+∞

∑
j=1

λj−1hjα(t) = tα−1
+∞

∑
j=0

λj tjα

Γ(jα + α)
= tα−1Eα,α(λ tα), (56)

where the two-parameters Mittag–Leffler function Eα,β is defined by the following abso-
lutely convergent series:

Eα,β(z) =
+∞

∑
j=0

zj

Γ(α j + β)
, <(α) > 0, z, β ∈ C. (57)

Some other particular cases of the convolution series (54) were presented in [13].
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A very important operational relation in terms of the convolution series lκ,λ is pre-
sented in the next theorem.

Theorem 10. For any λ ∈ C, the operational relation

I
Sκ − λ

= lκ,λ(t), t > 0 (58)

holds true, where by I
e we denote the element of the field F−1 inverse to the element e ∈ F−1.

Proof. In the case λ = 0, the convolution series (54) is just the kernel function κ(t) and
the operational relation (58) in the form I

Sκ
= κ holds true by definition of Sκ (see the

Formula (42)).
For λ 6= 0, the GFI I(κ) can be applied to the convolution series lκ,λ term by term due

to Theorem 9 and we get the following chain of equations:

(I − λκ) · lκ,λ = lκ,λ − λ(I(κ)
+∞

∑
j=1

λj−1κ j)(t) = lκ,λ − λ
+∞

∑
j=1

λj−1(I(κ) κ j)(t) =

lκ,λ −
+∞

∑
j=1

λjκ j+1(t) =
+∞

∑
j=1

λj−1κ j(t)−
+∞

∑
j=2

λj−1κ j(t) = κ.

Otherwise, the element I − λκ of the field F−1 can be represented as follows:

I − λκ = κ · Sκ − λκ = κ · (Sκ − λ).

The last two representations lead to the relation

κ · (Sκ − λ) · lκ,λ = (I − λκ) · lκ,λ = κ.

Thus, the element (Sκ − λ) · lκ,λ is the unity I of the field F−1 and the proof of the
operational relation (58) is completed.

In the case of the kernels (κ, k) ∈ L1, Theorem (10) has been formulated and proved
in [13].

As an example, we consider the kernel κ = {1} (Mikusiński’s operational calculus for
the first order derivative). According to the Formula (55), the operational relation (58) can
be represented in the well-known form:

I
Sκ − λ

= lκ,λ(t) = eλ t. (59)

In the case of the kernel κ(t) = hα(t), t > 0 (operational calculus for the Caputo
fractional derivative [10]), the Formula (56) leads to the following operational relation:

I
Sκ − λ

= lκ,λ(t) = tα−1Eα,α(λ tα), (60)

where the two-parameters Mittag–Leffler function Eα,β is defined by (57). This operational
relation has been deduced in [6] for the fist time.

Other particular cases of the operational relation (58) have been presented in [13].
As already mentioned, the operational relation (58) can be used to deduce other

useful operational relations. The embedding of the ring R−1 into the field F−1 means
in particular that a convolution of any ring elements complies with multiplication of the
corresponding elements of the field of convolution quotients. Thus, we get the following
operational relation:



Mathematics 2022, 10, 1590 15 of 17

I
(Sκ − λ)m = l<m>

κ,λ (t), t > 0, m ∈ N. (61)

For a representation of the convolution powers l<m>
κ,λ in terms of the convolution series

see [13].
As an example, we consider the kernel κ = {1} (Mikusiński’s operational calculus for

the first order derivative). The operational relation (61) takes the well-known form [1]:

I
(Sκ − λ)m = hm(t) eλ t. (62)

In the case of the kernel κ(t) = hα(t), t > 0 (operational calculus for the Caputo
fractional derivative), we get the following operational relation [6,10]:

I
(Sκ − λ)m = tmα−1Em

α,mα(λtα), t > 0, m ∈ N, (63)

where the Mittag–Leffler type function Em
α,β is defined via the following convergent series:

Em
α,β(z) :=

∞

∑
j=0

(m)jzj

j!Γ(αj + β)
, α, β > 0, z ∈ C, (m)j =

j−1

∏
i=0

(m + i).

Combining the operational relations (58) and (61), we deduce another important
operational relation.

Let R(Sκ) = Q(Sκ)/P(Sκ), where Q and P are polynomials and deg(Q) < deg(P). In
this case, the rational function R(Sκ) can be represented as a sum of the partial fractions:

R(Sκ) =
J

∑
j=1

mj

∑
i=1

aij

(Sκ − λj)i ,
J

∑
j=1

mj = deg (P). (64)

Then the operational relation

R(Sκ) =
J

∑
j=1

mj

∑
i=1

aij l<i>
κ,λj

(t), t > 0,
J

∑
j=1

mj = deg (P), (65)

holds true, where the constants λj and mj, j = 1, . . . , J are uniquely determined by repre-
sentation of the rational function R(Sκ) as a sum of the partial fractions in form (64).

The operational relation (65) is a direct consequence from the Formula (64) and the
operational relation (61).

4. Discussion

In this paper, we first discussed some important properties of the general fractional
integrals (GFI) and the GFD of arbitrary order introduced recently in the works of the third
named co-author. The new objects defined for the first time in this paper are the m-fold
GFIs and the sequential GFDs of arbitrary order. For the m-fold GFIs and the sequential
GFDs of arbitrary order we proved the 1st and the 2nd fundamental theorems of FC and
derived an explicit form for their projector operator. The main contribution of this paper is
an operational calculus of Mikusiński type for the GFDs of arbitrary order. In the field of
the convolution quotients, the GFDs of arbitrary order and the sequential GFDs of arbitrary
order are represented as multiplication with certain elements of the field. We also derived
several important operational relations that provide useful representations of some field
elements as conventional functions expressed in terms of the so-called convolution series.

In conclusion, we mention that the operational calculus for the GFDs of arbitrary order
that we constructed in this paper can be applied for derivation of the closed form formulas
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for the solutions to the ordinary and partial fractional differential equations containing the
m-fold sequential GFDs. These matters will be discussed elsewhere.
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