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Abstract: In a three-dimensional dissipative chaotic system circuit, by superimposing a cubic
magnetron-type memristor and connecting a feedback circuit, a new four-dimensional synchronous
controlling system is established. The control parameters have a significant impact on the system,
and the system displays rich dynamic features such as hyperchaos, chaos, and period states. At
the same time, the synchronization scheme for the chaotic system is designed based on the linear
quadratic regulator (LQR), which effectively improves the system response speed and reduces the
complexity of the synchronous controlling system. Further, numerical verification is carried out.
Finally, a detailed verification of the chaotic system’s dynamic characteristics is performed by hard-
ware simulation. Simulation results and performance analysis show that the proposed method has
synchronous controlling performance. Compared to some existing synchronous controlling schemes,
this method is more widely applicable.
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1. Introduction

Standard nonlinear dynamic systems can usually be achieved using regular inputs
and multipliers on electronic circuits, where the feedback capacitor and resistors link to
execute the mathematical integration operation. This operation is a complete nonlinear
operation with a four-quadrant implementation [1,2]. Memristor [3], a basic two-terminal
electronic component with adjustable resistance or conductance [4] due to its unusual
features of memory and nonlinearity, has great potential application in sundry linear
dynamic circuits. Over the past decade, there has been an increasing trend to develop many
other memristor models [5–7]. Many chaotic oscillators with memristive elements have
been widely discussed, such as the memristive model controlled by the flux linkage [8,9]
and the antiparallel two memristors [10]. For linear systems, sundry chaotic and hyper-
chaotic flow loops based on memory barriers have been simply established, and research
has been carried out [1,11]. After that, the system circuit realization of four-dimensional
resistance hyperchaotic system with nonlinear coupling resistance has aroused researchers’
wide concern.

The study of the complexity of chaotic systems is one of the most popular research
directions in the field of chaos, and many researchers have found simple nonlinear func-
tions to construct chaotic ones [12,13]. Although there has been little work on memristive
element-based chaotic systems, complex behaviors can be found in the existing literature.
Some studies have been conducted on memristor-based chaotic oscillators and their im-
portance in real-time engineering applications. The circuits’ performance is significantly
impacted by the study of chaotic circuits because they have special properties such as
unbalanced and hidden oscillations, line balance, and stable balance with nonlinear mem-
ristive models. Thus, the memristive Chua’s circuit is improved, and its physical realization
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presents an infinite balance of soft-hard excitation and bifurcation analysis [14]. The appli-
cation of memristor-based circuit systems for weak signal detection and neural networks
is also widely discussed [15–17]. Researchers have combined memristor elements with a
Hopfield neural network to obtain complex chaotic systems with wide range of potential
applications [18–20]. In addition, other researchers have proposed and studied a certain
simple circuit implementation of a memristor, namely a bridge memristor circuit [21–23].
A simulator of the memory capacitor and memory inductor was designed using the cur-
rent transmitter, and its dynamic characteristics were studied [24]. A novel memristive
hyperchaotic system for image encryption was researched, indicating that memristor-based
chaos generators are more sophisticated and practical in cryptography [25]. The memristive
hyperchaotic system strongly attracts a great number of researchers to fight for its applica-
tion in associative memory, brain science, information expression, pattern recognition, and
synchronization control.

The chaotic synchronization of hyperchaotic systems based on complex memristor
networks is an interesting challenge. In this case, the two systems must both exhibit the
same chaotic behavior. These two systems can be coupled in one direction, also known as
master-slave configuration, where the autonomous system with hyperchaotic dynamics is
called the master system, and the other system forced to follow the hyperchaotic behavior
by the coupling input is called the slave system. Many techniques have been introduced
and successfully applied to synchronize identical or dissimilar chaotic systems including
linear feedback control [26], sliding mode control [27–29], and so on. It is well known the
controller plays a crucial role in synchronization implementation. Most of the principles of a
controller design, such as impulsive control, pinning control, adaptive control, and feedback
control, are assumed to be handily accessed. However, this assumption is too strict to realize
synchronous control for the actual complex system. With the increasing use of memristors in
chaotic systems, some workers have attempted to construct a synchronous controller based
on memristor circuits [30,31]. Wang et al. [32] proposed an observer-based control method
to estimate the state of memristive neural networks and ensure their synchronization in the
presence of denial-of-service attacks and actuator saturation and finally achieved stable
output. In 2022, by considering a cluster combination output behaviors among the neural
nodes and designing multiple adjustable controllers based on adaptive control techniques,
Wang et al. [33] applied a memristive neural networks synchronization strategy to reduce
control costs and increase the anti-interference capacity of the control system, which
accurately evaluated chaotic states and finally obtained unlimited control output. This
study further proves that the synchronous control memristor-based system has lower costs
and better resistance to interference capability. In the context of deep learning techniques
being widely studied in various research fields, fuzzy neural network techniques have also
started to be applied in chaotic synchronization [34].

Different control schemes are usually employed for engineering systems that have
to change under demanding closed-loop conditions to obtain the desired output. PID
controllers are a type of feedback control system that is commonly used in industrial and
engineering settings. However, advanced control algorithms are required for chaotic and
hyperchaotic systems with sensitive initial conditions and rapid response to parameter
changes. Therefore, how to introduce a linear controller to reduce control difficulty in
complex memristor chaotic systems becomes an inevitable issue. However, no related work
has been reported yet, which lights a spark for this article to design a reliable controller to
improve the sensitivity and linear stability of the chaotic synchronization system. LQR is
an effective control strategy that is easy to implement. The static gain matrix K from LQR
does not alter the order of the complex system’s closed-loop system.

The article is organized as follows. Section 2 proposes a new four-dimensional
memristor-based hyperchaotic system, and its performance is discussed. In Section 3,
we obtain the Lyapunov exponent map and bifurcation diagram to better comprehend the
features of the chaotic system. In Section 4, we seek to construct a controller for the chaotic
synchronization model with a feedback structure. In Section 5, the new hyperchaotic
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system’s circuit is established based on the operational amplifier and simulated in Multisim.
The conclusion is summarized in Section 6.

2. Hyperchaotic Systems Based on Memristor Circuit
2.1. Construction of the System

A four-dimensional memristor-based hyperchaotic system is proposed in this sec-
tion by adding a memristor to the implemented circuit of an existing three-dimensional
chaotic system.

This is the most general parametric 3-D form containing all possible quadratic nonlin-
earities, as shown in [35], with a single non-quadratic term in the first equation:

.
x = f (x, y) + a1x2 + a2y2 + a3z2 + a4xy + a5xz + a6yz,

..
y = a7x2+a8y2 + a9z2 + a10xy + a11xz + a12yz,

..
z = a13x2+a14y2 + a15z2 + a16xy + a17xz + a18yz,

(1)

Here, f (x, y) are given by:

f (x, y) =


0,
1,
±x,
y,

(2)

We selected the SL10, which is the tenth system in a series of chaotic systems proposed in
reference [35]; its definition is as follows:

.
x = y + pxz,
.
y = xy− xz,
.
z = xy + qyz,

(3)

Here, p = 0.2, q = 3.
In the same vein as the famous as Lorenz system [36], Chen system [37], and Lü

system [38], system (3) is also an autonomous system that is a simple three-dimensional
model, which is a simple task to implement this electronically with a circuit that uses
multipliers and op-amps linked with resistors and/or capacitors. A memristor can be
added to the realization circuit of the system (3) to create a novel memristor chaotic system;
this system can be described as shown in Figure 1a. The memristor is represented by W
and the self-variable resistor or linear coupling resistor is represented by R.
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Figure 1. Circuit realization of the proposed memristor-based hyperchaotic system: (a) circuit real-

ization scheme using a memristor W, (b) circuit realizations of state variable x of the chaotic system 

(3), and the memristor-based hyperchaotic system (6) constructed by adding memristor W. 

Figure 1. Circuit realization of the proposed memristor-based hyperchaotic system: (a) circuit
realization scheme using a memristor W, (b) circuit realizations of state variable x of the chaotic
system (3), and the memristor-based hyperchaotic system (6) constructed by adding memristor W.
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Based on the realization scheme of the memristor-based chaotic system in Figure 1a,
a flux-controlled memristor W was used to impact the y variable. In this manner, a
memristor-based chaos system can be effortlessly assembled. For the memristor W, the
intrinsic nonlinear relation between the input terminal voltage v and output terminal
current i is given by:

i = W(ϕ)v,
.
ϕ = v, (4)

where W(ϕ) is described as:
W(ϕ) = αϕ + 3βϕ2, (5)

where α and β are two constant parameters.
Here, we set the parameters α = 1/7, β = 2/7. The pinched hysteresis lines

in Figure 2a demonstrate how the voltage fluctuates when the sinusoidal excitation
vs = Vmsin(2π f t) and Vm = 5 V is used as the driving signal for the extended amnesia.
When the excitation frequency is increased, the hysteresis area will decrease. The v− i
curves will span at the first and third quadrants. Figure 2b demonstrates how the voltage
fluctuates when the sinusoidal excitation vs = Vmsin(2π f t) and f = 5 rad/s is used as
the driving signal for the extended amnesia. When the excitation voltage is increased, the
hysteresis area will increase. The v− i curves will span at the first and third quadrants.
Figure 2c shows the variation of the hysteresis conductance of the memristor model with
time, and it can be seen that the organization oscillates with time, which also indicates that
the model has good nonlinear characteristics.
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Figure 2. Diagrams of the used memristor model. (a) Dynamical properties of the memristor a
hysteresis loop at different frequencies, (b) dynamical properties of the memristor a hysteresis loop at
a different voltage amplitude, (c) the curve of memductance varies with time which stopped at t = 5 s.

Correspondingly, a dimensionless state equation set of the proposed memristor system
was modeled as: 

.
x =

(
α + 3βw2)y + pxz,

.
y = xy− xz,
.
z = x2 + qxy,
.

w = y,

(6)
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Finally, feedback was added to the system, the system was shown as:
.
x =

(
α + 3βw2)y + pxz + x,

.
y = xy− xz− 10x + z,
.
z = x2 + qxy + w,
.

w = y.

(7)

2.2. Equilibrium Point and Stability Analysis

In our work, the parameters were set as α = 1/7, β = 2/7, p = 0.2, q = 20, respectively.
The equilibrium points of the system can be calculated by setting the result of (7) equal to 0,
which yields (0, 0, 0, 0) and (−1, 0, −5, −1). The Jacobi matrix at the equilibrium point S
was then derived as:

J =


pz

(
α + 3βw2) px 6βyw

y− z− 10 x 1− x 0
2x + qy qx 0 1

0 1 0 0

. (8)

Hence, by solving the following characteristic equations:

P(λ) = det(1λ− J) = 0, (9)

The eigenvalues at the two equilibrium points were obtained as such:

S0 : λ1,2 = 0.7302± 0.7110i, λ3,4 = −0.2032± 0.9791i,
S1 : λ1 = −0.5374, λ2 = 0.0541, λ3,4 = −0.2584± 5.8577i,

(10)

In the given parameter area, the zero-equilibrium point S0 is always an unstable
equilibrium point with two pairs of complex roots; the first pair has roots with positive real
parts, and the second pair has roots with negative real parts. The other equilibrium point,
S1, has a positive real root, a negative real root, and a pair of conjugate complex roots with
negative real parts. It is also an unstable equilibrium point where chaos can be aroused.

For the parameters, α = 1/7, β = 2/7, p = 0.2, q = 20 and the initial values (4, 4, 4, 4)
the system showed a hyperchaotic attractor as illustrated in Figure 3a,b. Figure 2c shows
the time domain waveforms of state variables x, y, z, and w. Among them, the three state
variables x, y and z had stable oscillation waveforms, while the amplitude of the oscillation
waveform of the state variable w gradually decreased with time.
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3. Properties of the MHS

As is well known, bifurcation diagrams and Lyapunov exponents spectra are wildly
used to analyze the main dynamical property of the chaotic system. To study how various
parameters impact the proposed memristor-based hyperchaotic system (6), the parameters
were set as α = 1/7, β = 2/7, as along with the initial conditions (4, 4, 4, 4). The parameters
p and q were adjusted separately and independently.

3.1. Hyperchaotic Behavior Depending on Parameters

The bifurcation diagram of the system state variable x, as well as the four Lyapunov
exponents, are both plotted in Figures 4a and 4c, respectively. The parameter p was set to
0.2, and q was increased gradually from 5 to 35. In a similar way, q = 20, and p was gradually
increased from 0.1 to 0.7, Figure 4b,d show the bifurcation diagram of the system state
variable x and its four Lyapunov exponents. The dynamical behaviors of chaos with one
positive Lyapunov exponent and hyperchaotic with two positive Lyapunov exponents can
be found in Figure 4, while we can also observe some periodic windows with non-positive
maximum Lyapunov exponents. Moreover, the Lyapunov exponent of the system oscillated
violently with the change of parameters p and q, which excited a rich dynamical behavior
of the system. Furthermore, the consequence in Figure 4 indicates that the memristor-based
system (7) was hyperchaotic for most of the interval of the parameter q. It is worth noting
that if q increases, the dynamic amplitude of the state variable x will decrease, while the
dynamic amplitude of the state variable x changes dramatically around the parameters
p = 0.28 and p = 0.58.
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Figure 4. Plots of the hyperchaotic dynamics with parameters q and p. (a) Lyapunov exponents vary
with parameter q, (b) Lyapunov exponents vary with parameter p, (c) bifurcation diagram of the
state variable x varies with parameter q, (d) bifurcation diagram of the state variable x varies with
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3.2. Hyperchaotic Behavior Relying on Memristor Initial Condition

This section investigates the dynamic behavior of the memristor-based system under
initial conditions. The fourth-state variable is critical to the memristor-based hyperchaotic
system because it directly reflects the memristor’s internal state. Since the memristor has
natural memory, its working state depends entirely on past behaviors. Therefore, if the
initial condition of the fourth-state variable is different, it could make the dynamic behavior
of the memristor-based chaotic system completely different.

The typical parameters α = 1/7, β = 2/7, p = 0.2, q = 20 and three initial conditions
x (0) = 4, y (0) = 4, z (0) = 4 were fixed, where the memristor initial condition w (0) was varied
in the region (–15, 15) When the memristor initial condition w (0) increased from −15 to 15,
the bifurcation diagram of the state variable x and the four Lyapunov exponents are plotted
in Figures 5a and 5b, respectively. From Figure 5, the memristor-based system appeared to
have hyperchaotic, chaotic, and periodic states based on the change of initial conditions.
The vast majority of hyperchaotic systems with two positive Lyapunov exponents were
found in the (−12, −8) and (3, 14) areas. Several narrow chaotic windows with a positive
Lyapunov exponent were found in the hyperchaotic area at the same time. As w (0)
increased, the dynamic amplitude of x varies approximately symmetrically. Whereas
the periodic window was located in the (−8, 3) area, it should be noted that when the
memristor’s initial state was the periodic state, the system variables will enter the periodic
orbit after about 110 s of stagnation, as illustrated in Figure 6a,b.
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4. Synchronization by Using the LQR Method

The linear-quadratic problem is an optimal control problem that is studied when the
system is linear and the performance index is the quadratic function of state variables and
control variables. LQR, the linear quadratic regulator, is commonly used to solve linear-
quadratic problems. LQR optimal design means that the designed state feedback controller
K should minimize the quadratic objective function J, and K is uniquely determined by the
weight matrices Q and R, so the selection of Q and R is critically important. LQR theory is
one of the first and most well-developed state space design methods in modern control
theory. It is particularly valuable that LQR can obtain the optimal control law of state linear
feedback, which easily forms closed-loop optimal control.

If the master chaotic systems are assumed to be as follows:

.
x = Ax + f (x), (11)

Here, x ∈ Rn is the state vector of the master system, A ∈ Rn×n is the linear parament
matrix of the system, and f (x) is the nonlinear part, the slave chaotic system is given by
the following form:

y = Ay + f (y) + u, (12)
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y ∈ Rn is the state vector of the slave system, and u is the controller. Synchronization
error between the master system and the slave system is:

e = y− x, (13)

According to Equations (11) and (12), the dynamic errors can be expressed as:

.
e = Ae + F(x, y) + u, (14)

where F (x, y) = f (y) − f (x). The purpose of u is to make e(t)→0 when t→∞. For
this purpose, controller u is separated into the linear and nonlinear terms, and it can be
written as:

u = −F(x, y) + BuL, (15)

where B ∈ Rn×r is the control matrix, to achieve linear feedback uL. Substituting Equation (15)
into Equation (14), we achieve dynamic errors:

.
e = Ae + BuL, (16)

We set K ∈ Rr×n as linear gain matrix. Therefore, linear control term uL is:

uL = −BKe, (17)

The dynamic errors can be written as:

.
e = (A− BK)e, (18)

For this reason, the linear error term can be transformed into a linear feedback system.
Let us define the linear feedback system as follows:

.
x = Ax + BuL, (19)

where:
uL = −Kx, (20)

The purpose is to derive the gain matrix (K) make the system (11) to the origin for
linear control of (12). Furthermore, the proposed controller will make the closed-loop
system Lyapunov stable and Q = QT > 0, R = RT > 0.

J =
∫ ∞

0

(
xTQx + uL

T RuL
)
dt, (21)

For the system (17), the controller calculation (20) can make Equation (21) as a mini-
mum, which is computed as shown in Equation (13).

AT P + PA−Q + PBR−1BT P = 0, (22)

K = −R−1BT P, (23)

Thus, the closed-loop system of Equations (19) and (20) is obtained as follows:

.
x = (A− BK)x, (24)

From the controllability condition, the determinant of the system matrix will be:

|A− BK| 6= 0. (25)

The system’s response to any given input can be fully determined. When the K state
feedback control gain matrix is chosen correctly, the dynamic system will go to zero.
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The master and slave of the 4D hyperchaotic system with control become:

A =


1 0 0 0
−10 0 1 0

0 0 0 1
0 1 0 0

, f (x) =


M(x)× x2 + px1x3

x1x2 − x1x2
x2

1 + qx1x3
0

, f (y) =


M(y)× y2 + py1y3

y1y2 − yy2
y2

1 + qy1y3
0


The control matrix In×n is a unit matrix, and B = In×n. Because all conditions are

satisfied with Equation (24), then all states of the system can be controlled. Therefore, the
Lyapunov exponent nonlinear term −F (x, y) in u controller (10) was found.

The simulation block diagram based on these values is given in Figures 7 and 8.
According to the LQR method [39] given in the previous part, the performance index needs
to be determined to calculate the linear control to uL K gain matrix. For this purpose, it is
possible to take Q = 100× I4×4, R = I4×4, and the P and K matrices can be easily calculated
as follows:

P = K =


13.9065 −4.1415 −0.2871 −0.1351
−4.1415 9.1334 0.4281 0.5049
−0.2871 0.4281 10.0164 0.5123
−0.1351 0.5049 0.5123 10.0244

.
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Therefore, the controller design was completed. In the Matlab/Simulink, the master
and slave system initial values were set as x0 = [4, 4, 4, 4] and y0 = [2, 2, 2, 5]. The
simulation was performed by 0.001 s step and Runge-Kutta ODE45 solver for 5 s, and
the results are given. The controller was active at the beginning. The error vector was
equal to zero at t = 0.7 s. A comparison with other references in Table 1 shows that the
synchronization results are excellent.

Table 1. Comparison of our proposed synchronization method with other methods.

References Types of System Order Methods Time Required

[27] Autonomous 5 Sliding mode control t = 6.3 s
[26] Non-autonomous 3 Linear feedback control t = 8 s
[28] Autonomous 4 Sliding mode control t = 4.8 s
[29] Autonomous 3 Sliding mode control t = 4.1 s
[40] Non-autonomous 5 Feedback control method t = 13 s

[34] Autonomous 2 Fuzzy neural network Function
approximation t = 1 s

[41] Autonomous 3 Function approximation
technique t = 1 s

[42] Non-autonomous 3 Feedback controller t = 40 s
[43] Non-autonomous 4 Generalized function projective t = 6 s

this paper Autonomous 4 Linear quadratic regulator t = 0.7 s

Figure 9 demonstrates that the error vector was equal to zero as soon as the controller
started to work. Figure 10 shows the result of the master-slave system simulation. By
increasing the value of the elements in the diagonal matrix Q, the continuous time to
reach a steady state will be shortened, and the size of the control will increase. The
simulation results show that our designed LQR controller with a memristor-based chaotic
system had good synchronization performance and stability. In addition, the master-slave
systems achieved synchronization quickly. Moreover, the system design is simple, and the
synchronization control is extremely convenient.

The system we designed has more advantages than other synchronous control systems.
First, our control method has good universality and can be widely applied to chaotic
systems with different parameters. Second, the linear feedback controller can achieve
a highly accurate controlling performance. Third, our synchronous control time is very
short. Further, our controllers also have good robustness. As shown in Figure 11, a
sine interference signal with an amplitude of 0.2 was added to the nonlinear term of the
controller, and the simulation time was 100 s. We can observe that the four errors of the
system synchronization were still controlled to 0 in a very short time; although there was
a sine disturbance signal, the LQR controller still controlled the system error very well
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around e = 0 and did not make the system lose control because of the sensitive nature of
the chaotic system.
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5. Circuit Simulation

Based on hardware experimental circuits and Multisim circuit simulation models, the
above complex dynamics implied by the proposed memristor-based hyperchaotic system
can be demonstrated. Since it is difficult to specify the memristor’s initial conditions in
hardware experiments [44–47], the dynamic behaviors of the memristor-based hyperchaotic
system were obtained by Multisim circuit simulation.

Using Multisim Version 14.0 software with the circuit implementation of the memristor-
based hyperchaotic system shown in Figure 1b, the circuit simulation model under typical
circuit parameters was designed, as shown in Figure 12. When the simulated end time
equals 100 s, the typical parameters p = 0.2, q = 20, α = 1/7, β = 2/7, the value of the
corresponding component in the circuit can be set as follows: R1 = 5.0 MΩ, R2 = 143 kΩ,
R3 = R5 = R8 = R10 = R17 = 1 MΩ, R4 = 857 kΩ, R9 = 50 kΩ, R6 = R7 = R13 = R15 = 100 kΩ,
C1 = C2 = C3 = C4 = 1 µF, and the gains of seven multipliers are set to 1.
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6. Conclusions 

This paper first proposed a new hyperchaotic oscillator with a memristor nonlinear-

ity and then discusses the various dynamical properties, including equilibrium states, at-

tractors, Lyapunov exponents, and bifurcations of this system. Theoretical and experi-

mental analyses indicate that compared to the initial chaotic system, the hyperchaotic sys-

tem with added memristor exhibited more intense chaotic behavior with richer dynamical 

behavior and its trajectory preserved unsymmetrical distribution. Due to its complex hy-

perchaotic properties, it has the potential for future applications in information encryp-

tion. Further, we established a synchronization model of a chaotic system and analyzed 

its characteristics in detail. Moreover, we designed a synchronizing controller by applying 

the optimal linear quadratic regulator. Simulation results show that the control system 

achieved perfect performance, rapid response speed, and convenient controlling features. 

Finally, we implemented a detailed verification of the chaotic circuit by Multisim simula-

tion. Compared to other existing synchronous controlling schemes, our synchronization 

method has the advantage of the short time required for synchronization; therefore, our 

proposed method is more advantageous. In future research, we will explore how to im-

prove the robustness of the controller and apply the results of the work to simulate chaotic 

communication for better practical applications. 
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Figure 12. Multisim model of the memristor-based circuits.

The memristor-based hyperchaotic system was found to have circuit-simulated phase
portraits in different planes in Figure 13. The circuit simulation results are consistent with
the numerical simulation results in Figure 2.
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Figure 13. Phase map of the memristor-based hyperchaotic system. (a) x-y phase map, (b) w-y
phase map.

6. Conclusions

This paper first proposed a new hyperchaotic oscillator with a memristor nonlinearity
and then discusses the various dynamical properties, including equilibrium states, attrac-
tors, Lyapunov exponents, and bifurcations of this system. Theoretical and experimental
analyses indicate that compared to the initial chaotic system, the hyperchaotic system with
added memristor exhibited more intense chaotic behavior with richer dynamical behavior
and its trajectory preserved unsymmetrical distribution. Due to its complex hyperchaotic
properties, it has the potential for future applications in information encryption. Further,
we established a synchronization model of a chaotic system and analyzed its characteristics
in detail. Moreover, we designed a synchronizing controller by applying the optimal linear
quadratic regulator. Simulation results show that the control system achieved perfect
performance, rapid response speed, and convenient controlling features. Finally, we im-
plemented a detailed verification of the chaotic circuit by Multisim simulation. Compared
to other existing synchronous controlling schemes, our synchronization method has the
advantage of the short time required for synchronization; therefore, our proposed method
is more advantageous. In future research, we will explore how to improve the robustness
of the controller and apply the results of the work to simulate chaotic communication for
better practical applications.

Author Contributions: Investigation, Q.F.; Methodology, Q.F.; Software, Q.F.; Supervision, C.X. and
X.X.; Validation, X.X.; Writing—original draft, Q.F. All authors have read and agreed to the published
version of the manuscript.



Mathematics 2023, 11, 11 15 of 16

Funding: This work was supported by the National Natural Science Foundation of China (No.
61927803, No. 60551002, No. 61502538, No. 61071025) and the Hunan Provincial Natural Science
Foundation of China (No. 2018JJ3680).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available upon request from
the references.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Q.; Zeng, H.; Li, J. Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 2015,

79, 2295–2308. [CrossRef]
2. Bao, B.; Zou, X.; Liu, Z.; Hu, F. Generalized Memory Element And Chaotic Memory System. Int. J. Bifurc. Chaos 2013, 23, 12.

[CrossRef]
3. Chua, L.O. The fourth element. Proc. IEEE 2012, 100, 1920–1927. [CrossRef]
4. Chua, L. Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 2011, 102, 765–783. [CrossRef]
5. Buscarino, A.; Fortuna, L.; Frasca, M.; Gambuzza, L.V. A gallery of chaotic oscillators based on hp memristor. Int. J. Bifurc. Chaos

2013, 23, 14. [CrossRef]
6. Bao, B.C.; Liu, Z.; Xu, B.P. Dynamical analysis of memristor chaotic oscillator. Acta Phys. Sin. 2010, 59, 3785–3793. [CrossRef]
7. Chua, L.O.; Kang, S.M. Memristive devices and systems. Proc. IEEE 1976, 64, 209–223. [CrossRef]
8. Muthuswamy, B.; Kokate, P. Memristor-Based Chaotic Circuits. IETE Tech. Rev. 2009, 26, 417–429. [CrossRef]
9. Wu, R.; Wang, C. A New Simple Chaotic Circuit Based on Memristor. Int. J. Bifurc. Chaos 2016, 26, 11. [CrossRef]
10. Buscarino, A.; Fortuna, L.; Frasca, M.; Gambuzza, L.V. A chaotic circuit based on hewlett-packard memristor. Chaos 2012,

22, 023136. [CrossRef]
11. Bao, B.; Jiang, P.; Wu, H.; Hu, F. Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn.

2015, 79, 2333–2343. [CrossRef]
12. Joshi, M.; Ranjan, A. An Autonomous Simple Chaotic Jerk System with Stable and Unstable Equilibria Using Reverse Sine

Hyperbolic Functions. Int. J. Bifurc. Chaos 2020, 30, 10. [CrossRef]
13. Joshi, M.; Ranjan, A. Investigation of dynamical properties in hysteresis-based a simple chaotic waveform generator with two

stable equilibrium. Chaos Solitons Fractals 2020, 134, 109693. [CrossRef]
14. Korneev, I.A.; Vadivasova, T.E.; Semenov, V.V. Hard and soft excitation of oscillations in memristor-based oscillators with a line of

equilibria. Nonlinear Dyn. 2017, 89, 2829–2843. [CrossRef]
15. Luo, J.; Xu, X.; Ding, Y.; Yuan, Y.; Yang, B.; Sun, K.; Yin, L. Application of a memristor-based oscillator to weak signal detection.

Eur. Phys. J. Plus 2018, 133, 239. [CrossRef]
16. Lin, H.; Wang, C.; Yao, W.; Tan, Y. Chaotic dynamics in a neural network with different types of external stimuli. Commun.

Nonlinear Sci. Numer. Simul. 2020, 90, 105390. [CrossRef]
17. Peng, H.-H.; Xu, X.-M.; Yang, B.-C.; Yin, L.-Z. Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak

Signal Detection. J. Phys. Soc. Jpn. 2016, 85, 8. [CrossRef]
18. Lin, H.; Wang, C.; Sun, Y.; Wang, T. Generating N-Scroll Chaotic Attractors from a Memristor-Based Magnetized Hopfield Neural

Network. IEEE Trans. Circuits Syst. II Express Briefs 2022, 1. [CrossRef]
19. Lin, H.; Wang, C.; Cui, L.; Sun, Y.; Xu, C.; Yu, F. Brain-Like Initial-Boosted Hyperchaos and Application in Biomedical Image

Encryption. IEEE Trans. Ind. Inform. 2022, 18, 8839–8850. [CrossRef]
20. Lin, H.; Wang, C.; Xu, C.; Zhang, X.; Iu, H.H.C. A Memristive Synapse Control Method to Generate Diversified Multi-Structure

Chaotic Attractors. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2022, 1. [CrossRef]
21. Volos, C.K.; Akgul, A.; Pham, V.-T.; Baptista, M.S. Antimonotonicity, Crisis and Multiple Attractors in a Simple Memristive

Circuit. J. Circuits Syst. Comput. 2018, 27, 14. [CrossRef]
22. Wang, C.; Liu, X.; Xia, H. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors

system. Chaos 2017, 27, 033114. [CrossRef]
23. Wang, C.; Xia, H.; Zhou, L. A Memristive Hyperchaotic Multiscroll Jerk System with Controllable Scroll Numbers. Int. J. Bifurc.

Chaos 2017, 27, 15. [CrossRef]
24. Zhao, Q.; Wang, C.; Zhang, X. A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos

2019, 29, 013141. [CrossRef] [PubMed]
25. Qiu, H.; Xu, X.; Jiang, Z.; Sun, K.; Xiao, C. A color image encryption algorithm based on hyperchaotic map and Rubik’s Cube

scrambling. Nonlinear Dyn. 2022, 110, 2869–2887. [CrossRef]
26. Cheukem, A.; Tsafack, A.S.K.; Kingni, S.T.; André, C.C.; Pone, J.R.M. Permanent magnet synchronous motor: Chaos control using

single controller, synchronization and circuit implementation. SN Appl. Sci. 2020, 2, 420. [CrossRef]
27. Xiu, C.; Zhou, R.; Zhao, S.; Xu, G. Memristive hyperchaos secure communication based on sliding mode control. Nonlinear Dyn.

2021, 104, 789–805. [CrossRef]

http://doi.org/10.1007/s11071-014-1812-4
http://doi.org/10.1142/S0218127413501356
http://doi.org/10.1109/JPROC.2012.2190814
http://doi.org/10.1007/s00339-011-6264-9
http://doi.org/10.1142/S0218127413300152
http://doi.org/10.7498/aps.59.3785
http://doi.org/10.1109/PROC.1976.10092
http://doi.org/10.4103/0256-4602.57827
http://doi.org/10.1142/S0218127416501455
http://doi.org/10.1063/1.4729135
http://doi.org/10.1007/s11071-014-1815-1
http://doi.org/10.1142/S0218127420500704
http://doi.org/10.1016/j.chaos.2020.109693
http://doi.org/10.1007/s11071-017-3628-5
http://doi.org/10.1140/epjp/i2018-12041-y
http://doi.org/10.1016/j.cnsns.2020.105390
http://doi.org/10.7566/JPSJ.85.044005
http://doi.org/10.1109/TCSII.2022.3212394
http://doi.org/10.1109/TII.2022.3155599
http://doi.org/10.1109/TCAD.2022.3186516
http://doi.org/10.1142/S0218126618500263
http://doi.org/10.1063/1.4979039
http://doi.org/10.1142/S0218127417500912
http://doi.org/10.1063/1.5081076
http://www.ncbi.nlm.nih.gov/pubmed/30709131
http://doi.org/10.1007/s11071-022-07756-1
http://doi.org/10.1007/s42452-020-2204-7
http://doi.org/10.1007/s11071-021-06302-9


Mathematics 2023, 11, 11 16 of 16

28. Plata, C.; Prieto, P.J.; Ramirez-Villalobos, R.; Coria, L.N. Chaos Synchronization for Hyperchaotic Lorenz-Type System via
Fuzzy-Based Sliding-Mode Observer. Math. Comput. Appl. 2020, 25, 16. [CrossRef]

29. Noussaiba, G.; Hamidi, F.; Boussaid, B.; Abdelkrim, M.N. Sliding mode controller for global chaos synchronization of two chaotic
systems. In Proceedings of the 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia,
20–23 July 2020; pp. 1133–1138.

30. Rajagopal, K.; Karthikeyan, A.; Srinivasan, A.K. FPGA implementation of novel fractional-order chaotic systems with two
equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 2017, 87, 2281–2304. [CrossRef]

31. Rajagopal, K.; Guessas, L.; Karthikeyan, A.; Srinivasan, A.; Adam, G. Fractional Order Memristor No Equilibrium Chaotic System
with Its Adaptive Sliding Mode Synchronization and Genetically Optimized Fractional Order PID Synchronization. Complexity
2017, 2017, 19. [CrossRef]

32. Chao, Z.; Wang, C.; Yao, W.; Lin, H. Observer-based synchronization of memristive neural networks under DoS attacks and
actuator saturation and its application to image encryption. Appl. Math. Comput. 2022, 425, 127080.

33. Chao, Z.; Wang, C.; Sun, Y.; Yao, W.; Lin, H. Cluster output synchronization for memristive neural networks. Inf. Sci. 2022,
589, 459–477.

34. Wang, R.; Zhang, Y.; Chen, Y.; Chen, X.; Xi, L. Fuzzy neural network-based chaos synchronization for a class of fractional-order
chaotic systems: An adaptive sliding mode control approach. Nonlinear Dyn. 2020, 100, 1275–1287. [CrossRef]

35. Li, C.; Sprott, J. Chaotic flows with a single nonquadratic term. Phys. Lett. A 2014, 378, 178–183. [CrossRef]
36. Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
37. Chen, G.; Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. Chaos 1999, 9, 1465–1466. [CrossRef]
38. Lu, J.; Chen, G. A new chaotic attractor coined. Int. J. Bifurc. Chaos 2002, 12, 659–661. [CrossRef]
39. Fitch, A.L.; Yu, D.; Iu, H.H.C.; Sreeram, V. Hyperchaos in a memristor-based modified canonical Chua’s circuit. Int. J. Bifurc.

Chaos 2012, 22, 8. [CrossRef]
40. Pang, W.; Wu, Z.; Xiao, Y.; Jiang, C. Chaos Control and Synchronization of a Complex Rikitake Dynamo Model. Entropy 2020,

22, 671. [CrossRef]
41. Wang, Y.; Bai, Y.; Svinin, M. Function Approximation Technique Based Adaptive Control for Chaos Synchronization between

Different Systems with Unknown Dynamics. Int. J. Control. Autom. Syst. 2021, 19, 2611–2621. [CrossRef]
42. Azil, S.; Odibat, Z.; Shawagfeh, N. On the dynamics of a Caputo-like discrete fractional rössler system: Chaos, stabilization and

synchronization. Phys. Scr. 2022, 97, 035203. [CrossRef]
43. Al-Azzawi, S.F.; Al-Talib, Z.S. Generalized function projective synchronization via nonlinear controller strategy. J. Interdiscip.

Math. 2022, 25, 1753–1765. [CrossRef]
44. Bao, B.; Jiang, P.; Xu, Q.; Chen, M. Hidden attractors in a practical Chua’s circuit based on a modified Chua’s diode. Electron. Lett.

2016, 52, 23–24. [CrossRef]
45. Xu, Q.; Lin, Y.; Bao, B.; Chen, M. Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos

Solitons Fractals 2016, 83, 186–200. [CrossRef]
46. Bao, B.; Hu, F.; Chen, M.; Xu, Q.; Yu, Y. Self-Excited and Hidden Attractors Found Simultaneously in a Modified Chua’s Circuit.

Int. J. Bifurc. Chaos 2015, 25, 10. [CrossRef]
47. Chen, M.; Li, M.; Yu, Q.; Bao, B.; Xu, Q.; Wang, J. Dynamics of self-excited attractors and hidden attractors in generalized

memristor-based Chua’s circuit. Nonlinear Dyn. 2015, 81, 215–226. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/mca25010016
http://doi.org/10.1007/s11071-016-3189-z
http://doi.org/10.1155/2017/1892618
http://doi.org/10.1007/s11071-020-05574-x
http://doi.org/10.1016/j.physleta.2013.11.004
http://doi.org/10.1175/1520-0469(1963)020&lt;0130:DNF&gt;2.0.CO;2
http://doi.org/10.1142/S0218127499001024
http://doi.org/10.1142/S0218127402004620
http://doi.org/10.1142/S0218127412501337
http://doi.org/10.3390/e22060671
http://doi.org/10.1007/s12555-020-0412-y
http://doi.org/10.1088/1402-4896/ac518f
http://doi.org/10.1080/09720502.2021.2008625
http://doi.org/10.1049/el.2015.2493
http://doi.org/10.1016/j.chaos.2015.12.007
http://doi.org/10.1142/S0218127415500753
http://doi.org/10.1007/s11071-015-1983-7

	Introduction 
	Hyperchaotic Systems Based on Memristor Circuit 
	Construction of the System 
	Equilibrium Point and Stability Analysis 

	Properties of the MHS 
	Hyperchaotic Behavior Depending on Parameters 
	Hyperchaotic Behavior Relying on Memristor Initial Condition 

	Synchronization by Using the LQR Method 
	Circuit Simulation 
	Conclusions 
	References

