On Coefficient Estimates for a Certain Class of Analytic Functions

Dorina Răducanu (D)

check for updates

Citation: Răducanu, D. On Coefficient Estimates for a Certain Class of Analytic Functions. Mathematics 2023, 11, 12. https://doi.org/10.3390/ math11010012

Academic Editor: Georgia Irina Oros

Received: 20 November 2022
Revised: 14 December 2022
Accepted: 16 December 2022
Published: 20 December 2022

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Iuliu Maniu, 50, 50091 Braşov, Romania; draducanu@unitbv.ro

Abstract

In this paper, we consider a subclass $\mathcal{S Q}$ of normalized analytic functions f satisfying $\Re \sqrt{f^{\prime}(z)}>1 / 2$. For the functions in the class $\mathcal{S Q}$, we determine upper bounds for a number of coefficient estimates, among which are initial coefficients, the second Hankel determinant, and the Zalcman functional. Upper estimates for higher-order Schwarzian derivatives are also obtained.

Keywords: analytic functions; coefficient estimates; Hankel determinant; Schwarzian derivative

MSC: 30C45; 30C50

1. Introduction

Let \mathcal{A} be the family of all analytic and normalized functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

defined on the open unit disk $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$.
The class of Schwarz functions ω, which are analytic in \mathcal{U} and satisfy $|\omega(z)|<1$, $\omega(0)=0$, is denoted by \mathcal{B}. If $\omega \in \mathcal{B}$, then its power series expansion is given by

$$
\begin{equation*}
\omega(z)=\sum_{n=1}^{\infty} c_{n} z^{n} \tag{2}
\end{equation*}
$$

For two functions f and g analytic in \mathcal{U}, we say that f is subordinate to g, written $f \prec g$, if $\omega \in \mathcal{B}$ exists such that

$$
f(z)=g(\omega(z)), \quad z \in \mathcal{U}
$$

If, in particular, g is univalent in \mathcal{U}, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(\mathcal{U}) \subset g(\mathcal{U})$.
Let $f \in \mathcal{A}$ given by (1). The Hankel determinant $H_{2}(1)=a_{3}-a_{2}^{2}$ is the well known Fekete-Szegö functional, which is also a particular case of the Zalcman functional a_{n+m-1} $-a_{n} a_{m}$ [1]. The second Hankel determinant is given by $H_{2}(2)=a_{2} a_{4}-a_{3}^{2}$. For related results to upper bounds of the Hankel determinant and the Zalcman functional, see for example [2-9].

The Schwarzian derivative for $f \in \mathcal{A}$ is defined by

$$
S(f)(z)=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}, \quad z \in U .
$$

The higher-order Schwarzian derivatives are defined inductively (see $[10,11]$) as follows:

$$
\begin{gather*}
\sigma_{3}(f)=S(f) \tag{3}\\
\sigma_{n+1}(f)=\left(\sigma_{n}(f)\right)^{\prime}-(n-1) \sigma_{n}(f) \frac{f^{\prime \prime}}{f^{\prime}}, \quad n \geq 4 \tag{4}
\end{gather*}
$$

Let $S_{n}=\sigma_{n}(f)(0)$. If $f \in \mathcal{A}$ is of the form (1), then

$$
\begin{align*}
& S_{3}=6\left(a_{3}-a_{2}^{2}\right) \\
& S_{4}=24\left(a_{4}-3 a_{2} a_{3}+2 a_{2}^{3}\right) \tag{5}\\
& S_{5}=24\left(5 a_{5}-20 a_{2} a_{4}-9 a_{3}^{2}+48 a_{3} a_{2}^{2}-24 a_{2}^{4}\right)
\end{align*}
$$

The related results for higher-order Schwarzian derivatives may be found in [12,13].
Denote by $\mathcal{S} \mathcal{Q}$ the class of analytic functions f satisfying

$$
\begin{equation*}
\Re \sqrt{f^{\prime}(z)}>\frac{1}{2}, \quad z \in U \tag{6}
\end{equation*}
$$

or in terms of subordination

$$
\begin{equation*}
f^{\prime}(z) \prec \frac{1}{(1-z)^{2}}, \quad z \in U . \tag{7}
\end{equation*}
$$

Recently, several authors have investigated various coefficient estimates for functions belonging to different subclasses of univalent functions (see, for example [14-19], to mention only a few).

Based on the results obtained in previous research, in this paper, we investigate the initial coefficient bounds, the Zalcman functional, and the second Hankel determinant for functions in the class $\mathcal{S Q}$. Bounds for the higher-order Schwarzian derivatives for the class $\mathcal{S Q}$ are also obtained.

In order to prove our results, the next lemmas for Schwarz functions will be used.
Lemma 1 ([20]). Let $\omega(z)=c_{1} z+c_{2} z^{2}+\ldots$ be a Schwarz function. Then, for any real numbers α, β such that

$$
(\alpha, \beta) \in\left\{|\alpha| \leq \frac{1}{2},-1 \leq \beta \leq 1\right\} \cup\left\{\frac{1}{2} \leq|\alpha| \leq 2, \frac{4}{27}(|\alpha|+1)^{3}-(|\alpha|+1) \leq \beta \leq 1\right\}
$$

the following estimate holds:

$$
\left|c_{3}+\alpha c_{1} c_{2}+\beta c_{1}^{3}\right| \leq 1
$$

Lemma 2 ([21]). Let $\omega(z)=c_{1} z+c_{2} z^{2}+\ldots$ be a function in the class \mathcal{B}. Then, the next estimates hold

$$
\begin{gathered}
\left|c_{1}\right| \leq 1, \quad\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2} \\
\left|c_{3}\right| \leq 1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|} \\
\left|c_{4}\right| \leq 1-\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2} .
\end{gathered}
$$

The next result obtained by Efraimidis will be also needed.
Lemma 3 ([22]). Let $\omega(z)=c_{1} z+c_{2} z^{2}+\ldots$ be a Schwarz function. Then, for any complex number λ, the following estimates hold:

$$
\begin{gather*}
\left|c_{2}+\lambda c_{1}^{2}\right| \leq \max \{1,|\lambda|\} \tag{8}\\
\left|c_{4}+(1+\lambda) c_{1} c_{3}+c_{2}^{2}+(1+2 \lambda) c_{1}^{2} c_{2}+\lambda c_{1}^{4}\right| \leq \max \{1,|\lambda|\} \tag{9}
\end{gather*}
$$

2. Coefficient Estimates

In this section, we obtain sharp bounds for the first five Taylor coefficients for functions in the class $\mathcal{S Q}$.

Theorem 1. Let $f \in \mathcal{S Q}$ be of the form (1). Then, the first five initial coefficients of f are bounded by one. The estimates are sharp.

Proof. Assume that f is in $\mathcal{S Q}$. Then, from (7), we obtain that there exists a Schwarz function ω of the form (2) such that

$$
\begin{equation*}
f^{\prime}(z)=\frac{1}{(1-\omega(z))^{2}}, \quad z \in U \tag{10}
\end{equation*}
$$

Making use of the series (1) and (2) into (10) and equating the coefficients, we obtain

$$
\begin{align*}
& a_{2}=c_{1} \\
& a_{3}=\frac{1}{3}\left(2 c_{2}+3 c_{1}^{2}\right) \\
& a_{4}=\frac{1}{2}\left(c_{3}+3 c_{1} c_{2}+2 c_{1}^{3}\right) \tag{11}\\
& a_{5}=\frac{1}{5}\left(2 c_{4}+6 c_{1} c_{3}+3 c_{2}^{2}+12 c_{1}^{2} c_{2}+5 c_{1}^{4}\right)
\end{align*}
$$

It is obvious that $\left|a_{2}\right| \leq 1$. Since

$$
a_{3}=\frac{2}{3}\left(c_{2}+\frac{3}{2} c_{1}\right) .
$$

the bound $\left|a_{3}\right| \leq 1$ follows easily from (8) with $\lambda=3 / 2$. For the fourth coefficient, we have

$$
\left|a_{4}\right|=\frac{1}{2}\left|\left(c_{3}+2 c_{1} c_{2}+c_{1}^{3}\right)+\left(c_{1} c_{2}+c_{1}^{3}\right)\right| \leq \frac{1}{2}\left(\left|c_{3}+2 c_{1} c_{2}+c_{1}^{3}\right|+\left|c_{1} c_{2}+c_{1}^{3}\right|\right) .
$$

The inequality $\left|c_{3}+2 c_{1} c_{2}+c_{1}^{3}\right| \leq 1$ follows from Lemma 1 with $\alpha=2$ and $\beta=1$. Applying (8) with $\lambda=1$, we obtain

$$
\left|c_{1} c_{2}+c_{1}^{3}\right|=\left|c_{1}\right|\left|c_{2}+c_{1}^{2}\right| \leq 1
$$

Finally, we have $\left|a_{4}\right| \leq 1$. Observe that

$$
\begin{aligned}
\left|a_{5}\right| & =\frac{2}{5}\left|\left(c_{4}+3 c_{1} c_{3}+c_{2}^{2}+5 c_{1}^{2} c_{2}+2 c_{1}^{4}\right)+\frac{1}{2}\left(c_{2}^{2}+2 c_{1}^{2} c_{2}+c_{1}^{4}\right)\right| \\
& \leq \frac{2}{5}\left|c_{4}+3 c_{1} c_{3}+c_{2}^{2}+5 c_{1}^{2} c_{2}+2 c_{1}^{4}\right|+\frac{1}{5}\left|c_{2}^{2}+2 c_{1}^{2} c_{2}+c_{1}^{4}\right|
\end{aligned}
$$

From (9) with $\lambda=2$, we immediately obtain $\left|c_{4}+3 c_{1} c_{3}+c_{2}^{2}+5 c_{1}^{2} c_{2}+2 c_{1}^{4}\right| \leq 2$. For the bound of the second term, the triangle inequality and the inequality of $\left|c_{2}\right|$ in Lemma 2 give

$$
\left|c_{2}^{2}+2 c_{1}^{2} c_{2}+c_{1}^{4}\right| \leq\left|c_{2}\right|^{2}+2\left|c_{1}\right|^{2}\left|c_{2}\right|+\left|c_{1}\right|^{4} \leq\left(1-\left|c_{1}\right|^{2}\right)^{2}+2\left|c_{1}\right|^{2}\left(1-\left|c_{1}\right|^{2}\right)+\left|c_{1}\right|^{4}=1
$$

and therefore $\left|a_{5}\right| \leq 1$.
The estimates for all five coefficients are sharp for the function $f(z)=\frac{z}{1-z}$.

3. Bounds for Hankel Determinant and Zalcman Functional

In this section, the bounds for Hankel determinants $H_{2}(1), H_{2}(2)$, and the Zalcman functional $a_{4}-a_{2} a_{3}$ and $a_{5}-a_{3}^{2}$ are obtained.

Theorem 2. Let $f \in \mathcal{S Q}$ be of the form (1). Then,

$$
\left|H_{2}(1)\right| \leq \frac{2}{3} \text { and }\left|H_{2}(2)\right| \leq \frac{4}{9}
$$

The bounds are sharp.
Proof. Suppose that $f \in \mathcal{S Q}$ has the form (1). The first inequality follows easily:

$$
\left|H_{2}(1)\right|=\left|a_{3}-a_{2}^{2}\right|=\frac{2}{3}\left|c_{2}\right| \leq \frac{2}{3} .
$$

Making use of (11), we have

$$
\left|H_{2}(2)\right|=\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{1}{18}\left|9 c_{1} c_{3}+3 c_{1}^{2} c_{2}-8 c_{2}^{2}\right|
$$

By triangle inequality, we obtain

$$
\left|H_{2}(2)\right| \leq \frac{1}{18}\left(9\left|c_{1}\right|\left|c_{3}\right|+3\left|c_{1}\right|^{2}\left|c_{2}\right|+8\left|c_{2}\right|^{2}\right) .
$$

Applying the inequalities for $\left|c_{2}\right|$ and $\left|c_{3}\right|$ in Lemma 2, we receive

$$
\begin{aligned}
& \left|H_{2}(2)\right| \leq \frac{1}{18}\left[9\left|c_{1}\right|\left(1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)+3\left|c_{1}\right|^{2}\left|c_{2}\right|+8\left|c_{2}\right|^{2}\right] \\
& =\frac{1}{18}\left[9\left|c_{1}\right|\left(1-\left|c_{1}\right|^{2}\right)+\left|c_{2}\right|^{2} \frac{8-\left|c_{1}\right|}{1+\left|c_{1}\right|}+3\left|c_{1}\right|^{2}\left|c_{2}\right|\right] \\
& \leq \frac{1}{18}\left[9\left|c_{1}\right|\left(1-\left|c_{1}\right|^{2}\right)+\left(1-\left|c_{1}\right|^{2}\right)^{2} \frac{8-\left|c_{1}\right|}{1+\left|c_{1}\right|}+3\left|c_{1}\right|^{2}\left(1-\left|c_{1}\right|^{2}\right)\right] \\
& =\frac{2}{9}\left(-\left|c_{1}\right|^{4}-\left|c_{1}\right|^{2}+2\right) \leq \frac{4}{9} .
\end{aligned}
$$

If $c_{2}=1$ and $c_{k}=0, k \neq 2$, then $a_{2}=0, a_{3}=2 / 3$, and $a_{4}=0$. This shows that the equality in the assertion of our theorem holds for the function given by (10) with $\omega(z)=z^{2}$.

Theorem 3. If $f \in \mathcal{S} Q$ is of the form (1), then the next inequalities hold

$$
\left|a_{4}-a_{2} a_{3}\right| \leq \frac{8 \sqrt{3}}{27} \text { and }\left|a_{5}-a_{3}^{2}\right| \leq 0.7789 \ldots
$$

Proof. Assume that $f \in \mathcal{S Q}$. From (11), we obtain

$$
\left|a_{4}-a_{2} a_{3}\right|=\frac{1}{6}\left|3 c_{3}+5 c_{1} c_{2}\right|
$$

Then, by triangle inequality, we have

$$
\left|a_{4}-a_{2} a_{3}\right| \leq \frac{1}{6}\left(3\left|c_{3}\right|+5\left|c_{1}\right|\left|c_{2}\right|\right) .
$$

In view of Lemma 2, we obtain

$$
\begin{gather*}
\left|a_{4}-a_{2} a_{3}\right| \leq \frac{1}{6}\left[3\left(1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)+5\left|c_{1}\right|\left|c_{2}\right|\right] \\
=\frac{1}{6}\left(3-3\left|c_{1}\right|^{2}-\frac{3\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}+5\left|c_{1}\right|\left|c_{2}\right|\right) \tag{12}
\end{gather*}
$$

Writing $\left|c_{1}\right|=x$ and $\left|c_{2}\right|=y$ in (12), we obtain

$$
\left|a_{4}-a_{2} a_{3}\right| \leq g(x, y)
$$

where

$$
g(x, y)=\frac{1}{6}\left(3-3 x^{2}-\frac{3 y^{2}}{1+x}+5 x y\right)
$$

Since $\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2}$, the region of variability of (x, y) coincides with

$$
D=\left\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1-x^{2}\right\}
$$

Therefore, we need to find the maximum value of $g(x, y)$ over the region D. The critical points of $g(x, y)$, given by the system

$$
\left\{\begin{array}{l}
-6 x+\frac{3 y^{2}}{(1+x)^{2}}+5 y=0 \\
-\frac{6 y}{1+x}+5 x=0
\end{array}\right.
$$

are $(0,0)$ and $\left(\frac{22}{75}, \frac{1067}{3375}\right)$. Elementary calculations show that $(0,0)$ is a maximum point and $g(0,0)=1 / 2$. On the boundary of D, we have

$$
\begin{aligned}
g(x, 0) & =\frac{1}{6}\left(3-3 x^{2}\right)=\frac{1}{2}\left(1-x^{2}\right) \leq \frac{1}{2} \\
g(0, y) & =\frac{1}{6}\left(3-3 y^{2}\right)=\frac{1}{2}\left(1-y^{2}\right) \leq \frac{1}{2} \\
g\left(x, 1-x^{2}\right) & =\frac{4}{3}\left(x-x^{3}\right) \leq \frac{8 \sqrt{3}}{27}=0.5132 \ldots, \text { for } x=\frac{1}{\sqrt{3}} .
\end{aligned}
$$

From all these inequalities, we obtain

$$
g(x, y) \leq \frac{8 \sqrt{3}}{27}, \text { for all }(x, y) \in D
$$

which is the desired bound for $\left|a_{4}-a_{2} a_{3}\right|$. The Schwarz function

$$
\omega(z)=z \frac{z+c_{1}}{1+c_{1} z}=c_{1} z+\left(1-c_{1}^{2}\right) z^{2}-c_{1}\left(1-c_{1}^{2}\right) z^{3}+\ldots
$$

where $c_{1}=\frac{1}{\sqrt{3}}, c_{2}=\frac{2}{3}$, and $c_{3}=-\frac{2}{3 \sqrt{3}}$, which shows that this inequality is sharp.
Now, we continue with the estimate of $\left|a_{5}-a_{3}^{2}\right|$. From (11), we obtain

$$
\left|a_{5}-a_{3}^{2}\right|=\frac{1}{5}\left|2 c_{4}+6 c_{1} c_{3}+\frac{16}{3} c_{1}^{2} c_{2}+\frac{7}{9} c_{2}^{2}\right| .
$$

Using the triangle inequality and the inequalities for $\left|c_{4}\right|,\left|c_{3}\right|$ in Lemma 2, we obtain

$$
\begin{align*}
\left|a_{5}-a_{3}^{2}\right| \leq \frac{1}{5}\left[2 \left(1-\left|c_{1}\right|^{2}\right.\right. & \left.\left.-\left|c_{2}\right|^{2}\right)+6\left|c_{1}\right|\left(1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)+\frac{16}{3}\left|c_{1}\right|^{2}\left|c_{2}\right|+\frac{7}{9}\left|c_{2}\right|^{2}\right] \\
& =\frac{1}{5}\left[2+6\left|c_{1}\right|-2\left|c_{1}\right|^{2}-6\left|c_{1}\right|^{3}-\frac{6\left|c_{1}\right|\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}-\frac{11}{9}\left|c_{2}\right|^{2}+\frac{16}{3}\left|c_{1}\right|^{2}\left|c_{2}\right|\right] . \tag{13}
\end{align*}
$$

Writing $\left|c_{1}\right|=x$ and $\left|c_{2}\right|=y$ in (13), we have $\left|a_{5}-a_{3}^{2}\right| \leq h(x, y)$, where

$$
h(x, y)=\frac{1}{5}\left(2+6 x-2 x^{2}-6 x^{3}-\frac{6 x y^{2}}{1+x}-\frac{11}{9} y^{2}+\frac{16}{3} x^{2} y\right) .
$$

Taking into account the inequality $\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2}$, the region of variability of (x, y) coincides with

$$
D=\left\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1-x^{2}\right\} .
$$

Thus, we we need to find the maximum value of $h(x, y)$ over the region D. The solutions of the system

$$
\left\{\begin{array}{l}
6-4 x-18 x^{2}-\frac{6 y^{2}}{(1+x)^{2}}+\frac{32}{3} x y=0 \\
-\frac{12 x y}{1+x}-\frac{22}{9} y+\frac{16}{3} x^{2}=0
\end{array}\right.
$$

are the critical points of $h(x, y)$. The maximum of $h(x, y)$ is attained in $(0.5285 \ldots, 0.2259 \ldots)$, and its value is $h(0.5285 \ldots, 0.2259 \ldots)=0.7789 \ldots$ On the boundary of the region D, we have

$$
\begin{aligned}
h(x, 0) & =\frac{1}{5}\left(2-2 x^{2}-6 x^{3}+6 x\right) \leq \frac{32(10+7 \sqrt{7})}{1215}=0.7511 \ldots \\
h(0, y) & =\frac{1}{5}\left(2-\frac{11}{9} y^{2}\right) \leq \frac{2}{5}=0.4 \\
h\left(x, 1-x^{2}\right) & =\frac{1}{45}\left(7+106 x^{2}-113 x^{4}\right) \leq \frac{80}{113}=0.7079 \ldots
\end{aligned}
$$

It follows that $h(x, y) \leq 0.7789 \ldots$ for $(x, y) \in D$, which is the desired bound for $\left|a_{5}-a_{3}^{2}\right|$.

4. Bounds for Higher-Order Schwarzian Derivatives

In this section, we investigate the upper bounds of $\left|S_{3}\right|,\left|S_{4}\right|$, and $\left|S_{5}\right|$, where S_{3}, S_{4}, S_{5} are given by (5).

Theorem 4. Let $f \in \mathcal{S Q}$ be given by (1). Then, the following estimates hold:

$$
\left|S_{3}\right| \leq 4, \quad\left|S_{4}\right| \leq 12, \quad\left|S_{5}\right| \leq 73.176 \ldots
$$

Proof. Let $f \in \mathcal{S Q}$. From (11), we have

$$
\left|S_{3}\right|=6\left|a_{3}-a_{2}^{2}\right|=4\left|c_{2}\right| \leq 4
$$

For $c_{2}=1$ and $c_{k}=0, c_{k} \neq 2$, we obtain $a_{2}=0$ and $a_{3}=2 / 3$. This shows that the equality holds for the function given by (10) with $\omega(z)=z^{2}$. Further

$$
\left|S_{4}\right|=24\left|a_{4}-3 a_{2} a_{3}+2 a_{2}^{3}\right|=12\left|c_{3}-c_{1} c_{2}\right| .
$$

The inequality $\left|c_{3}-c_{1} c_{2}\right| \leq 1$ follows from Lemma 1 with $\alpha=-1$ and $\beta=0$. Hence, $\left|S_{4}\right| \leq 12$. If $c_{3}=1$ and $c_{k}=0, k \neq 3$, then $a_{2}=0, a_{3}=0$ and $a_{4}=1 / 2$. This means that equality holds for the function given by (10) with $\omega(z)=z^{3}$.

We continue with the estimate for $\left|S_{5}\right|$. Taking into account (11), we obtain

$$
\left|S_{5}\right|=24\left|2 c_{4}-4 c_{1} c_{3}-c_{2}^{2}+2 c_{1}^{2} c_{2}\right| .
$$

By the triangle inequality, we have

$$
\left|S_{5}\right| \leq 24\left(2\left|c_{4}\right|+4\left|c_{1}\right|\left|c_{3}\right|+\left|c_{2}\right|^{2}+2\left|c_{1}\right|^{2}\left|c_{2}\right|\right) .
$$

Applying the inequalities for $\left|c_{3}\right|$ and $\left|c_{4}\right|$ in Lemma 2, we obtain

$$
\begin{align*}
\left|S_{5}\right| \leq & 24\left[2\left(1-\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)+4\left|c_{1}\right|\left(1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}\right)+\left|c_{2}\right|^{2}+2\left|c_{1}\right|^{2}\left|c_{2}\right|\right] \\
& =24\left(2-2\left|c_{1}\right|^{2}+4\left|c_{1}\right|-4\left|c_{1}\right|^{3}-\left|c_{2}\right|^{2}-\frac{4\left|c_{1}\right|\left|c_{2}\right|^{2}}{1+\left|c_{1}\right|}+2\left|c_{1}\right|^{2}\left|c_{2}\right|\right) \tag{14}
\end{align*}
$$

If we replace $\left|c_{1}\right|=x$ and $\left|c_{2}\right|=y$ in (14), then $\left|S_{5}\right| \leq k(x, y)$ where

$$
k(x, y)=24\left(2-4 x^{3}-2 x^{2}+4 x-y^{2}-\frac{4 x y^{2}}{1+x}+2 x^{2} y\right)
$$

Since $\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2}$, the region of variability of (x, y) coincides with

$$
D=\left\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1-x^{2}\right\} .
$$

In order to obtain the upper bound of $\left|S_{5}\right|$, we need to find the maximum value of $k(x, y)$ over the region D. The critical points of $k(x, y)$ are the solution of the system

$$
\left\{\begin{array}{l}
1-x-3 x^{2}-\frac{y^{2}}{(1+x)^{2}}+x y=0 \\
-\frac{4 x y}{1+x}-y+x^{2}=0
\end{array}\right.
$$

The maximum value of $k(x, y)$ is attained in $(0.44402 \ldots, 0.088414 \ldots)$. In this case, $k(0.44402 \ldots, 0.088414 \ldots)=73.176 \ldots$ Next, we verify the behaviour of the function $k(x, y)$ on the boundary of D :

$$
\begin{aligned}
k(x, 0) & =24\left(2-2 x^{2}-4 x^{3}+4 x\right) \leq \frac{8(35+13 \sqrt{13})}{9}=72.7752 \ldots \\
k(0, y) & =24\left(2-y^{2}\right) \leq 48 \\
k\left(x, 1-x^{2}\right) & =24\left(1+6 x^{2}-7 x^{4}\right) \leq \frac{384}{7}=54.8571 \ldots
\end{aligned}
$$

In view of the above inequalities, we obtain $k(x, y) \leq 73.176 \ldots$ Finally, the proof of the theorem is completed.

5. Conclusions

In this paper, we investigate a number of coefficient problems for the class $\mathcal{S Q}$. The upper bounds for the initial coefficients, the second Hankel determinant, the Zalcman functional, and the higher-order Schwarzian derivatives have been derived. In our research, we have used the relationship between the coefficients of functions in the considered class $\mathcal{S Q}$ and the coefficients for the corresponding Schwarz functions. The results obtained in this note could be the subject of further investigation related with the Fekete-Szegö type functional such as $a_{3}-\mu a_{2}^{2}, a_{2} a_{4}-\mu a_{3}^{2}$ or $a_{4}-\mu a_{2} a_{3}$.

Funding: This research received no external funding
Data Availability Statement: Not applicable
Acknowledgments: The author thanks the referees for their helpful suggestions.
Conflicts of Interest: The author declares no conflict of interest

References

1. Brown, J.E.; Tsao, A. On the Zalcman conjecture for starlike and typically real functions. Math. Z. 1986, 191, 467-474. [CrossRef]
2. Allu, V.; Pandey, A. On the generalized Zalcman comjecture for the class of univalent functionsusing variational method. arXiv 2022, arXiv:2209.10595.
3. Allu, V.; Arora, V.; Shaji, A. On the second Hankel determinant of logarithmic coefficients for certain univalent functions. arXiv 2021, arXiv:2112.03067.
4. Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328-339. [CrossRef]
5. Obradović, M.; Tuneski, N. On third order Hankel determinant for inverse functions of certain classes of univalent functions. Eur. J. Math. Appl. 2022, 2, 7.
6. Obradović, M.; Tuneski, N. Zalcman and generalized Zalcman conjecture for a subclass of univalent functions. Novi Sad J. Math. 2022, 52, 185-190.
7. Raducanu, D.R.; Zaprawa, P. Second Hankel determinant for close-to-convex functions. C. R. Math. 2017, 355, 1063-1071. [CrossRef]
8. Sim, Y.J.; Thomas, D.K.; Zaprawa, P. The second Hankel determinant for starlike and convex functions of order α. Complex Var. Elliptic Equ. 2022, 67, 2433-2443. [CrossRef]
9. Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2021, 115, 49. [CrossRef]
10. Dorff, M.; Szynal, J. Remark on the higher-order Schwarzian derivatives for convex univalent functions. Tr. Petrozavodsk. Gos. Univ. Ser. Mat. 2009, 15, 7-11.
11. Schippers, E. Distortion theorems for higher-order Schwarzian derivatives of univalent functions. Proc. Am. Math. Soc. 2000, 128, 3241-3249. [CrossRef]
12. Cho, N.E.; Kumar, V.; Ravichandran, V. Sharp bounds on the higher-order Schwarzian derivatives for Janowski classes. Symmetry 2018, 10, 348. [CrossRef]
13. Hu, Z.; Wang, X.; Fan, J. Estimate for Schwarzian derivative of certain close-to-convex functions. AIMS Math. 2021, 6, 10778-10788. [CrossRef]
14. Răducanu, D. Coefficient estimatesfor a subclass of starlike functions. Mathematics 2020, 8, 1646. [CrossRef]
15. Obradović, M.; Tuneski, N. The third logarithmic coefficient for the class S. Turk. J. Math. 2020, 44, 1950-1954. [CrossRef]
16. Obradović, M.; Tuneski, N. Coefficients of the inverse of functions for the subclass $\mathcal{U}(\lambda)$. J. Anal. 2022, 30, 399-404. [CrossRef]
17. Srivastava, H.M.; Hussain, S.; Raziq, A.; Raza, M. The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination. Carpathian J. Math. 2018, 34, 103-113. [CrossRef]
18. Lee, S.K.; Ravichandran, V.; Supramanian, S. Bounds for the second order Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013 , 281. [CrossRef]
19. Zaprawa, P. On coefficient problems for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2022, 28, 17. [CrossRef]
20. Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α, β)-convex functions. Ann. Univ. Mariae Curie Sklodowaka A 1981, 35, 125-143.
21. Carlson, F. Sur les coefficients d'une fonction bornée dans le cercle unité. Ark. Mat. Astr. Fys. 1940, 27 A, 8.
22. Efraimidis, I. A generalization of Livingston's coefficient inequalities for functions with positive real part. J. Math. Anal. Appl. 2016, 435, 369-379. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

