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Abstract: In this paper, we consider a subclass SQ of normalized analytic functions f satisfying
<
√

f ′(z) > 1/2. For the functions in the class SQ, we determine upper bounds for a number of
coefficient estimates, among which are initial coefficients, the second Hankel determinant, and the
Zalcman functional. Upper estimates for higher-order Schwarzian derivatives are also obtained.

Keywords: analytic functions; coefficient estimates; Hankel determinant; Schwarzian derivative

MSC: 30C45; 30C50

1. Introduction

Let A be the family of all analytic and normalized functions

f (z) = z +
∞

∑
n=2

anzn (1)

defined on the open unit disk U = {z ∈ C : |z| < 1}.
The class of Schwarz functions ω, which are analytic in U and satisfy |ω(z)| < 1,

ω(0) = 0, is denoted by B. If ω ∈ B, then its power series expansion is given by

ω(z) =
∞

∑
n=1

cnzn. (2)

For two functions f and g analytic in U , we say that f is subordinate to g, written
f ≺ g, if ω ∈ B exists such that

f (z) = g(ω(z)), z ∈ U.

If, in particular, g is univalent in U, then f ≺ g if and only if f (0) = g(0) and f (U) ⊂ g(U).
Let f ∈ A given by (1). The Hankel determinant H2(1) = a3 − a2

2 is the well known
Fekete-Szegö functional, which is also a particular case of the Zalcman functional an+m−1
−anam [1]. The second Hankel determinant is given by H2(2) = a2a4 − a2

3. For related
results to upper bounds of the Hankel determinant and the Zalcman functional, see for
example [2–9].

The Schwarzian derivative for f ∈ A is defined by

S( f )(z) =
(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

, z ∈ U.

The higher-order Schwarzian derivatives are defined inductively (see [10,11]) as follows:

σ3( f ) = S( f ) (3)

σn+1( f ) = (σn( f ))′ − (n− 1)σn( f )
f ′′

f ′
, n ≥ 4. (4)

Let Sn = σn( f )(0). If f ∈ A is of the form (1), then
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S3 = 6(a3 − a2
2)

S4 = 24(a4 − 3a2a3 + 2a3
2) (5)

S5 = 24(5a5 − 20a2a4 − 9a2
3 + 48a3a2

2 − 24a4
2).

The related results for higher-order Schwarzian derivatives may be found in [12,13].
Denote by SQ the class of analytic functions f satisfying

<
√

f ′(z) >
1
2

, z ∈ U (6)

or in terms of subordination

f ′(z) ≺ 1
(1− z)2 , z ∈ U. (7)

Recently, several authors have investigated various coefficient estimates for func-
tions belonging to different subclasses of univalent functions (see, for example [14–19], to
mention only a few).

Based on the results obtained in previous research, in this paper, we investigate the
initial coefficient bounds, the Zalcman functional, and the second Hankel determinant for
functions in the class SQ. Bounds for the higher-order Schwarzian derivatives for the class
SQ are also obtained.

In order to prove our results, the next lemmas for Schwarz functions will be used.

Lemma 1 ([20]). Let ω(z) = c1z + c2z2 + . . . be a Schwarz function. Then, for any real numbers
α, β such that

(α, β) ∈
{
|α| ≤ 1

2
,−1 ≤ β ≤ 1

}
∪
{

1
2
≤ |α| ≤ 2,

4
27

(|α|+ 1)3 − (|α|+ 1) ≤ β ≤ 1
}

the following estimate holds:
|c3 + αc1c2 + βc3

1| ≤ 1.

Lemma 2 ([21]). Let ω(z) = c1z + c2z2 + . . . be a function in the class B. Then, the next
estimates hold

|c1| ≤ 1, |c2| ≤ 1− |c1|2

|c3| ≤ 1− |c1|2 −
|c2|2

1 + |c1|
|c4| ≤ 1− |c1|2 − |c2|2.

The next result obtained by Efraimidis will be also needed.

Lemma 3 ([22]). Let ω(z) = c1z + c2z2 + . . . be a Schwarz function. Then, for any complex
number λ, the following estimates hold:

|c2 + λc2
1| ≤ max{1, |λ|} (8)

|c4 + (1 + λ)c1c3 + c2
2 + (1 + 2λ)c2

1c2 + λc4
1| ≤ max{1, |λ|}. (9)

2. Coefficient Estimates

In this section, we obtain sharp bounds for the first five Taylor coefficients for functions
in the class SQ.

Theorem 1. Let f ∈ SQ be of the form (1). Then, the first five initial coefficients of f are bounded
by one. The estimates are sharp.

Proof. Assume that f is in SQ. Then, from (7), we obtain that there exists a Schwarz
function ω of the form (2) such that
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f ′(z) =
1

(1−ω(z))2 , z ∈ U. (10)

Making use of the series (1) and (2) into (10) and equating the coefficients, we obtain

a2 = c1

a3 =
1
3
(2c2 + 3c2

1)

a4 =
1
2
(c3 + 3c1c2 + 2c3

1) (11)

a5 =
1
5
(2c4 + 6c1c3 + 3c2

2 + 12c2
1c2 + 5c4

1).

It is obvious that |a2| ≤ 1. Since

a3 =
2
3
(c2 +

3
2

c1).

the bound |a3| ≤ 1 follows easily from (8) with λ = 3/2. For the fourth coefficient, we have

|a4| =
1
2

∣∣∣(c3 + 2c1c2 + c3
1) + (c1c2 + c3

1)
∣∣∣ ≤ 1

2

(
|c3 + 2c1c2 + c3

1|+ |c1c2 + c3
1|
)

.

The inequality |c3 + 2c1c2 + c3
1| ≤ 1 follows from Lemma 1 with α = 2 and β = 1.

Applying (8) with λ = 1, we obtain

|c1c2 + c3
1| = |c1||c2 + c2

1| ≤ 1.

Finally, we have |a4| ≤ 1. Observe that

|a5| =
2
5

∣∣∣∣(c4 + 3c1c3 + c2
2 + 5c2

1c2 + 2c4
1) +

1
2
(c2

2 + 2c2
1c2 + c4

1)

∣∣∣∣
≤ 2

5
|c4 + 3c1c3 + c2

2 + 5c2
1c2 + 2c4

1|+
1
5
|c2

2 + 2c2
1c2 + c4

1|.

From (9) with λ = 2, we immediately obtain |c4 + 3c1c3 + c2
2 + 5c2

1c2 + 2c4
1| ≤ 2. For the

bound of the second term, the triangle inequality and the inequality of |c2| in Lemma 2 give

|c2
2 + 2c2

1c2 + c4
1| ≤ |c2|2 + 2|c1|2|c2|+ |c1|4 ≤ (1− |c1|2)2 + 2|c1|2(1− |c1|2) + |c1|4 = 1

and therefore |a5| ≤ 1.
The estimates for all five coefficients are sharp for the function f (z) = z

1−z .

3. Bounds for Hankel Determinant and Zalcman Functional

In this section, the bounds for Hankel determinants H2(1), H2(2), and the Zalcman
functional a4 − a2a3 and a5 − a2

3 are obtained.

Theorem 2. Let f ∈ SQ be of the form (1). Then,

|H2(1)| ≤
2
3

and |H2(2)| ≤
4
9

.

The bounds are sharp.

Proof. Suppose that f ∈ SQ has the form (1). The first inequality follows easily:

|H2(1)| = |a3 − a2
2| =

2
3
|c2| ≤

2
3

.

Making use of (11), we have

|H2(2)| = |a2a4 − a2
3| =

1
18
|9c1c3 + 3c2

1c2 − 8c2
2|.
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By triangle inequality, we obtain

|H2(2)| ≤
1

18

(
9|c1||c3|+ 3|c1|2|c2|+ 8|c2|2

)
.

Applying the inequalities for |c2| and |c3| in Lemma 2, we receive

|H2(2)| ≤
1

18

[
9|c1|

(
1− |c1|2 −

|c2|2
1 + |c1|

)
+ 3|c1|2|c2|+ 8|c2|2

]

=
1

18

[
9|c1|(1− |c1|2) + |c2|2

8− |c1|
1 + |c1|

+ 3|c1|2|c2|
]

≤ 1
18

[
9|c1|(1− |c1|2) + (1− |c1|2)2 8− |c1|

1 + |c1|
+ 3|c1|2(1− |c1|2)

]
=

2
9
(−|c1|4 − |c1|2 + 2) ≤ 4

9
.

If c2 = 1 and ck = 0, k 6= 2, then a2 = 0, a3 = 2/3, and a4 = 0. This shows that the equality
in the assertion of our theorem holds for the function given by (10) with ω(z) = z2.

Theorem 3. If f ∈ SQ is of the form (1), then the next inequalities hold

|a4 − a2a3| ≤
8
√

3
27

and |a5 − a2
3| ≤ 0.7789 . . .

Proof. Assume that f ∈ SQ. From (11), we obtain

|a4 − a2a3| =
1
6
|3c3 + 5c1c2|.

Then, by triangle inequality, we have

|a4 − a2a3| ≤
1
6
(3|c3|+ 5|c1||c2|).

In view of Lemma 2, we obtain

|a4 − a2a3| ≤
1
6

[
3
(

1− |c1|2 −
|c2|2

1 + |c1|

)
+ 5|c1||c2|

]

=
1
6

(
3− 3|c1|2 −

3|c2|2
1 + |c1|

+ 5|c1||c2|
)

. (12)

Writing |c1| = x and |c2| = y in (12), we obtain

|a4 − a2a3| ≤ g(x, y)

where

g(x, y) =
1
6

(
3− 3x2 − 3y2

1 + x
+ 5xy

)
.

Since |c2| ≤ 1− |c1|2, the region of variability of (x, y) coincides with

D =
{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2

}
.

Therefore, we need to find the maximum value of g(x, y) over the region D. The critical
points of g(x, y), given by the system

−6x +
3y2

(1 + x)2 + 5y = 0

− 6y
1 + x

+ 5x = 0
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are (0, 0) and (
22
75

,
1067
3375

). Elementary calculations show that (0, 0) is a maximum point and

g(0, 0) = 1/2. On the boundary of D, we have

g(x, 0) =
1
6
(3− 3x2) =

1
2
(1− x2) ≤ 1

2

g(0, y) =
1
6
(3− 3y2) =

1
2
(1− y2) ≤ 1

2

g(x, 1− x2) =
4
3
(x− x3) ≤ 8

√
3

27
= 0.5132 . . . , for x =

1√
3

.

From all these inequalities, we obtain

g(x, y) ≤ 8
√

3
27

, for all (x, y) ∈ D

which is the desired bound for |a4 − a2a3|. The Schwarz function

ω(z) = z
z + c1

1 + c1z
= c1z + (1− c2

1)z
2 − c1(1− c2

1)z
3 + . . . ,

where c1 =
1√
3

, c2 =
2
3

, and c3 = − 2
3
√

3
, which shows that this inequality is sharp.

Now, we continue with the estimate of |a5 − a2
3|. From (11), we obtain

|a5 − a2
3| =

1
5

∣∣∣∣2c4 + 6c1c3 +
16
3

c2
1c2 +

7
9

c2
2

∣∣∣∣.
Using the triangle inequality and the inequalities for |c4|, |c3| in Lemma 2, we obtain

|a5 − a2
3| ≤

1
5

[
2(1− |c1|2 − |c2|2) + 6|c1|

(
1− |c1|2 −

|c2|2
1 + |c1|

)
+

16
3
|c1|2|c2|+

7
9
|c2|2

]
=

1
5

[
2 + 6|c1| − 2|c1|2 − 6|c1|3 −

6|c1||c2|2
1 + |c1|

− 11
9
|c2|2 +

16
3
|c1|2|c2|

]
. (13)

Writing |c1| = x and |c2| = y in (13), we have |a5 − a2
3| ≤ h(x, y), where

h(x, y) =
1
5

(
2 + 6x− 2x2 − 6x3 − 6xy2

1 + x
− 11

9
y2 +

16
3

x2y
)

.

Taking into account the inequality |c2| ≤ 1 − |c1|2, the region of variability of (x, y)
coincides with

D =
{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2

}
.

Thus, we we need to find the maximum value of h(x, y) over the region D. The solutions of
the system 

6− 4x− 18x2 − 6y2

(1 + x)2 +
32
3

xy = 0

− 12xy
1 + x

− 22
9

y +
16
3

x2 = 0

are the critical points of h(x, y). The maximum of h(x, y) is attained in (0.5285 . . . , 0.2259 . . .),
and its value is h(0.5285 . . . , 0.2259 . . .) = 0.7789 . . . On the boundary of the region D,
we have

h(x, 0) =
1
5
(2− 2x2 − 6x3 + 6x) ≤ 32(10 + 7

√
7)

1215
= 0.7511 . . .

h(0, y) =
1
5
(2− 11

9
y2) ≤ 2

5
= 0.4

h(x, 1− x2) =
1

45
(7 + 106x2 − 113x4) ≤ 80

113
= 0.7079 . . .
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It follows that h(x, y) ≤ 0.7789 . . . for (x, y) ∈ D, which is the desired bound for
|a5 − a2

3|.

4. Bounds for Higher-Order Schwarzian Derivatives

In this section, we investigate the upper bounds of |S3|, |S4|, and |S5|, where S3, S4, S5
are given by (5).

Theorem 4. Let f ∈ SQ be given by (1). Then, the following estimates hold:

|S3| ≤ 4, |S4| ≤ 12, |S5| ≤ 73.176 . . .

Proof. Let f ∈ SQ. From (11), we have

|S3| = 6|a3 − a2
2| = 4|c2| ≤ 4

For c2 = 1 and ck = 0, ck 6= 2, we obtain a2 = 0 and a3 = 2/3. This shows that the equality
holds for the function given by (10) with ω(z) = z2. Further

|S4| = 24|a4 − 3a2a3 + 2a3
2| = 12|c3 − c1c2|.

The inequality |c3 − c1c2| ≤ 1 follows from Lemma 1 with α = −1 and β = 0. Hence,
|S4| ≤ 12. If c3 = 1 and ck = 0, k 6= 3, then a2 = 0, a3 = 0 and a4 = 1/2. This means that
equality holds for the function given by (10) with ω(z) = z3.

We continue with the estimate for |S5|. Taking into account (11), we obtain

|S5| = 24|2c4 − 4c1c3 − c2
2 + 2c2

1c2|.

By the triangle inequality, we have

|S5| ≤ 24(2|c4|+ 4|c1||c3|+ |c2|2 + 2|c1|2|c2|).

Applying the inequalities for |c3| and |c4| in Lemma 2, we obtain

|S5| ≤ 24
[

2(1− |c1|2 − |c2|2) + 4|c1|
(

1− |c1|2 −
|c2|2

1 + |c1|

)
+ |c2|2 + 2|c1|2|c2|

]

= 24
(

2− 2|c1|2 + 4|c1| − 4|c1|3 − |c2|2 −
4|c1||c2|2
1 + |c1|

+ 2|c1|2|c2|
)

. (14)

If we replace |c1| = x and |c2| = y in (14), then |S5| ≤ k(x, y) where

k(x, y) = 24
(

2− 4x3 − 2x2 + 4x− y2 − 4xy2

1 + x
+ 2x2y

)
.

Since |c2| ≤ 1− |c1|2, the region of variability of (x, y) coincides with

D =
{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2

}
.

In order to obtain the upper bound of |S5|, we need to find the maximum value of k(x, y)
over the region D. The critical points of k(x, y) are the solution of the system

1− x− 3x2 − y2

(1 + x)2 + xy = 0

− 4xy
1 + x

− y + x2 = 0

The maximum value of k(x, y) is attained in (0.44402 . . . , 0.088414 . . .). In this case,
k(0.44402 . . . , 0.088414 . . .) = 73.176. . . Next, we verify the behaviour of the function k(x, y)
on the boundary of D:
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k(x, 0) = 24(2− 2x2 − 4x3 + 4x) ≤ 8(35 + 13
√

13)
9

= 72.7752 . . .

k(0, y) = 24(2− y2) ≤ 48

k(x, 1− x2) = 24(1 + 6x2 − 7x4) ≤ 384
7

= 54.8571 . . .

In view of the above inequalities, we obtain k(x, y) ≤ 73.176 . . . Finally, the proof of the
theorem is completed.

5. Conclusions

In this paper, we investigate a number of coefficient problems for the class SQ. The
upper bounds for the initial coefficients, the second Hankel determinant, the Zalcman
functional, and the higher-order Schwarzian derivatives have been derived. In our research,
we have used the relationship between the coefficients of functions in the considered class
SQ and the coefficients for the corresponding Schwarz functions. The results obtained in
this note could be the subject of further investigation related with the Fekete–Szegö type
functional such as a3 − µa2

2, a2a4 − µa2
3 or a4 − µa2a3.
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