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Abstract: Few studies have been conducted on thermal plant images. This is because of the difficulty
in extracting and analyzing various color-related patterns and features from the plant image obtained
using a thermal camera, which does not provide color information. In addition, the thermal camera
is sensitive to the surrounding temperature and humidity. However, the thermal camera enables
the extraction of invisible patterns in the plant by providing external and internal heat information.
Therefore, this study proposed a novel plant classification method based on both the thermal and
visible-light plant images to exploit the strengths of both types of cameras. To the best of our
knowledge, this study is the first to perform super-resolution reconstruction using visible-light and
thermal plant images. Furthermore, a method to improve the classification performance through
generative adversarial network (GAN)-based super-resolution reconstruction was proposed. Through
the experiments using a self-collected dataset of thermal and visible-light images, our method shows
higher accuracies than the state-of-the-art methods.
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1. Introduction

There are many studies on plant classification based on images captured with visible-
light cameras. However, in order to obtain external and internal patterns and features of a
plant that cannot be obtained with visible-light cameras, thermal cameras have recently
begun to be used. However, studies on plant image classification using thermal cameras
are scarce. A visible-light camera is sensitive to light and may produce low-quality images
in a low-illumination environment or because of illumination change. Further, a thermal
camera, which is sensitive to temperature and humidity, produces low-quality images
owing to radiation emitted from or reflected by the various objects in the surroundings.
Considering these challenges and strengths of the visible-light and thermal cameras, this
study examined the use of both thermal and visible-light plant images. In addition, super-
resolution reconstruction (SRR) was performed to establish a classification method with
improved performance compared to the previous studies. This is the first study to use
visible-light and thermal images to perform SRR. The proposed method is described in
detail in Section 3. Additionally, various SRR and classification experiments were conducted
by using a self-collected thermal and visible-light plant image database. The novelty and
innovations of this study are as follows:

− Most previous studies focused on plant SRR based on visible-light images; however,
no study exists on thermal-based images. This study examined SRR using thermal and
visible-light plant images for the first time. In addition, this study proposed an SRR-
based multiclass classification method using thermal and visible-light plant images.
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− In this study, a novel method of a plant super-resolution (PlantSR) network was
proposed with low-resolution (LR) thermal images (200 × 200 × 1) or LR visible-light
images (200 × 200 × 3) as the input. In addition, a new residual blocks-in-residual
block (RBRB) was employed in the structures of PlantSR and plant classification,
thereby increasing the accuracy of plant classification.

− In this study, a novel method of a plant multiclass classification (PlantMC) network
was proposed using high-resolution (HR) thermal images and HR visible-light images
as the input. To reduce the processing time of the PlantMC network, the input images,
HR thermal images (600 × 600 × 1) and HR visible-light images (600 × 600 × 3) were
cropped and converted into images with sizes of 200 × 200 × 25 and 200 × 200 × 75,
respectively, through channel-wise concatenation. In addition, the accuracy of plant
classification was improved using a new RBRB in the structure of PlantMC.

− The PlantSR and PlantMC models proposed in the study and the self-collected thermal
and visible-light plant image database were made available to other researchers [1].

The existing classification studies based on plant images can be categorized into plant
image classification with SRR and plant image classification without SRR, where only
visible-light images are used by the previous plant image-based SSR studies. Detailed
explanations of the relevant works are presented in Section 2. Further, the experimental
methods employed in this study are described in Section 3. The results and analysis of the
experiments employing such methods are presented in Section 4. Finally, the discussion
and conclusion are provided in Sections 5 and 6, respectively.

2. Related Works
2.1. Plant Image Classification without Super-Resolution Reconstruction

This subsection discusses the existing plant image classification studies without SRR.
These studies were divided into three parts: visible-light image-based, thermal image-based
and thermal- and visible-light image-based studies.

2.1.1. Visible-Light Image-Based Studies

Existing plant visible-light image-based classification studies are as follows. A study
on crop disease classification [2] was conducted using the PlantDoc database and AAR
network. Another method of crop disease classification [3] was performed using the Plant-
Doc database and DenseNet-121 model. A different study on crop disease classification [4]
employed the PlantDoc database and OMNCNN network to conduct the experimentation.
A demonstration of crop and crop disease classification [5] utilized the PlantDoc database
and five different deep learning methods (MobileNetV1, MobileNetV2, NASNetMobile,
DenseNet121 and Xception). Another study on crop and crop disease classification [6] pro-
posed a trilinear convolutional neural network model (T-CNN), while conducting various
experiments using PlantVillage [7], PlantDoc [8] databases and pre-trained model with
ImageNet. A prior study on plant image classification [9] was conducted using two mod-
els: periodic implicit generative adversarial networks (PI-GANs) and PI-CNN. The study
employed four datasets (PlantVillage, PlantDoc, Fruits-360 and Plants) and performed
various experiments while reducing the number of frames in the video. Augmentation was
performed using PI-GAN and classification was conducted using PI-CNN.

Although these studies used visible-light cameras, the light-sensitive visible-light
cameras have the disadvantage of producing low-quality images due to shadow, low
illumination, illumination change and ambient light and its reflection. In addition, visible-
light cameras cannot be used to capture images at night without light. These limitations
motivated the proposal of thermal plant image-based methods, which are explained in
Section 2.1.2.

2.1.2. Thermal Image-Based Studies

A study on plant image and disease image classification [10] proposed the Plant-
DXAI model, and various experiments were conducted using a paddy crop dataset and
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self-collected dataset. In this study, the CNN-16 network was used to perform plant clas-
sification, and class activation map and discriminator were additionally employed in the
training phase to improve the performance of CNN-16 for disease classification.

These studies only used thermal cameras, which are sensitive to temperature and
humidity and, therefore, produce low-quality images owing to radiation emitted and
reflected by various objects in the environment. To address these challenges, thermal and
visible-light plant image-based methods have been explored, as introduced in Section 2.1.3.

2.1.3. Thermal and Visible-Light Image-Based Studies

In a previous study on plant image classification [11], a classification method based
on both thermal and visible-light images was proposed. According to the method, binary
classification was performed via simultaneous use of thermal and visible-light images. In
addition, the thermal image and stereo visible-light images were obtained for the study
from three types of camera sensors: thermal and dual visible-light cameras. By integrating
the three types of images, the accuracy of classifying them into healthy and diseased plant
images increased. Further, binary classification (healthy or diseased) was performed by pro-
cessing the features extracted with manual feature extraction methods through analysis of
variance (ANOVA) [12] and support vector machine (SVM) [13]. However, such a method
increases the computation time and complexity of the system, owing to the simultaneous
use of three types of cameras. Moreover, this method employs manual feature extraction
methods and, thus, appropriate features cannot be extracted. In addition, only binary
classification was performed using this method and various plant images were not recog-
nized. A study on plant image classification [14] was conducted using nonaligned thermal
and visible-light images. It proposed PlantCR and performed multiclass classification by
considering visible-light and thermal images as the model input and integrating the two
types of images inside the model.

However, the classification performance is limited by the LR images. To overcome this
challenge, plant image classification methods based on plant image SSR were developed,
as further explained in Section 2.2.

2.2. Plant Image Classification with Super-Resolution Reconstruction

In this section, existing plant image classification studies with SRR are explained. A
previous study [15] demonstrated SRR and conducted plant disease classification using
HR images produced with SRR. Each of the LR-, HR- and SRR-produced HR images are
used to perform plant disease classification and the results were compared. In addition,
the study compared the performance of the super-resolution convolutional neural network
(SRCNN) with those of cubic, bicubic, lanczos and nearest neighbor (NN). Further, AlexNet
was used for disease classification. Another study [16] demonstrated SRR and performed
plant disease diagnosis using HR images produced with SRR. In the study, GAN [17] was
used to achieve SRR, and 23 residual-in-residual dense blocks (RRDBs) were employed by
the generator network. In addition, multiclass classification was executed using CNNDiag
as the disease classification method.

However, these studies used visible-light cameras, and there are no studies on SRR
using thermal plant images. In addition, there are very few multiclass classification studies
that have used thermal images, including the studies introduced in Section 2. However,
no study was conducted for both SRR and classification using thermal and visible-light
images. Such a gap motivates this study to demonstrate multiclass classification using
thermal and visible-light plant images and conduct SRR to further improve the accuracy.
The proposed methods, PlantSR and PlantMC, are thoroughly explained in Section 3.

The aforementioned studies are summarized in Table 1 for comparison.
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Table 1. Summary of existing classification and SRR studies on plant image databases.

Categories Modalities Tasks Methods Advantages Disadvantages

Classification
without SRR

Visible-light
image-based

Multiclass
classification

AAR network [2],
DenseNet-121 [3],

OMNCNN [4],
CNNs [5],

T-CNN [6], and
PI-CNN [9]

− Provides high-quality (HQ)
image in both day and high
illumination environment

− Provides color information
− Extracts features automatically
− Considers multiclass problem

− Provides dark image in a
nighttime or low illumination
environment

− Provides low-quality (LQ)
image in both day and high
illumination environment
owing to shadow, illumination
change, ambient light, and
its reflection.

Thermal
image-based

Multiclass
classification PlantDXAI [10]

− Provides thermal information
− Extracts features automatically
− Considers multiclass problem

− Does not provide
color information

− Sensitive to temperature and
humidity of the environment

Thermal and
visible-light

images-based

Binary
classification SVM [11]

− Provides HQ image in both
day and high illumination
environment

− Provides color and thermal
information

− Very challenging to extract
appropriate features

− Does not consider
multiclass problem

− Computationally expensive
owing to use of three
camera sensors

Multiclass
classification PlantCR [14]

− Provides HQ image in both
day and high
illumination environment

− Provides color and
thermal information

− Extracts features automatically
− Considers multiclass problem

Computationally expensive owing to
use of two camera sensors

Classification
with SRR

Visible-light
image-based

Multiclass
classification

Modified
SRCNN +

AlexNet [15],
GAN-based SRR +

CNNDiag [16]

− Provides HR and HQ image in
both day and high illumination
environment

− Provides color information
− Higher performance by using

classification with SRR
− Extracts features automatically
− Considers multiclass problem

− Provides dark image in
nighttime or low illumination
environment

− Provides LQ image in both day
and high illumination
environment owing to shadow,
illumination change, ambient
light, and its reflection.

Thermal and
visible-light

images-based

Multiclass
classification

PlantSR +
PlantMC

(Proposed
method)

− Provides HR and HQ image in
both day and high illumination
environment

− Provides thermal and color
information

− Higher performance by using
classification with SRR

− Extracts features automatically
− Considers multiclass problem

Computationally expensive owing to
use of two camera sensors

3. Materials and Methods
3.1. Overall Procedure of the Proposed Method

In this section, the method proposed by this study is explained in detail. A flowchart
describing the method is provided in Figure 1. As is evident, the plant thermal and
visible-light images are considered as input and categorized into twenty-eight classes by
integrating the extracted features. To improve the classification performance, the LR input
image of 200 × 200 dimensions was expanded into a 600 × 600 HR image through PlantSR.
Subsequently, the HR image was used as input for PlantMC by cropping it into an image of
200 × 200 dimensions to reduce the processing time of classification. Detailed explanations
of preprocessing are provided in Section 3.2. In addition, detailed descriptions of the
proposed structure of PlantSR and PlantMC networks are presented in Sections 3.3 and 3.4,
respectively, using tables and figures. In addition, the dimensions of input and output
images and parameters used for the structures are explained.

3.2. Preprocessing

In this section, the preprocessing introduced in Figure 1, which involves cropping
the HR image of 600 × 600 dimensions into a 200 × 200 × N image, is explained in detail.
Examples of preprocessing thermal and visible-light images are shown in Figures 2 and 3,
with Figure 2 focusing on further details. The preprocessing procedure entails cropping
the input image into 200 × 200 dimensions by shifting it from left to right and top to
bottom. Twenty-five cropped images (200 × 200 × 1) were then used to produce one
200 × 200 × 25 image (Figure 2) through channel-wise concatenation. In the shifting pro-
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cess, the image was cropped while overlapping at half the size (p = 100) of the output image
(s = 200) to not overlook the image pattern. In the case of the visible-light image, the number
of channels is 3, which becomes 75 after the preprocessing operation (Figure 3). The output
images produced in Figures 2 and 3 are used as input to the proposed PlantMC. Simply, in
the preprocessing stage, we reduce the size of input images to decrease the processing time.
To achieve that, an input image is sliced into smaller images and the images are combined
into a single image but with more channels, as shown in Figures 2 and 3. In other words,
we reduce the spatial size but increase the number of channels in an image. We confirmed
that the preprocessing operation decreases the processing time, as shown in Section 4.4.
Moreover, we can also confirm that the preprocessing operation does not decrease the
accuracy of the proposed method, as shown in experiments in Section 4.2.
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3.3. Detailed Structure of the Proposed PlantSR Network

The dimensions of input and output images in the generator network are 200 × 200 × X
and 600 × 600 × X, respectively, where X represents the number of channels, which is
one for the thermal image and three for the visible-light image. Tables 2 and 3 present
the descriptions of the generator and discriminator networks, respectively. As shown in
Tables 2–7, input (input image), input layer, group layer (group), up-sampling layer (Up3),
convolution layer (conv2d), activation layers (tanh and sigmoid), leaky rectified linear unit
(LReLU), fully connected layer (FC), RBRB layer (RBRB), max pooling layer (max_pool),
residual block (res_block), parametric rectified linear unit (prelu) and additional operation
layer (add) were employed to construct the generator and discriminator networks. The
output (class#) of the FC layer was 2 (real or fake). The “Times” column in Tables 4 and 5
represents the number of times by which the corresponding layer is repeated. Each layer
in the column of parameters indicates the sum of parameters of only that layer. Up3
indicates triple up-sampling. The filter size and stride of the conv2d layers were (3 × 3)
and (1 × 1), respectively, as presented in Tables 2–7. The padding of the conv2d layers
was (0 × 0) in Table 5 and (1 × 1) in Tables 4 and 7. Here, “#” indicates “number of” in
all contents. In the generator network (Table 2), the number of parameters based on the
thermal and visible-light images was 6,166,081 and 6,169,539, respectively. However, in
the discriminator network (Table 3), the number of parameters based on the thermal and
visible-light images was 998,593 and 1,002,051, respectively. Tables 2 and 3 list the number
of parameters when the visible-light image was used. The italic format in Figure 4 indicates
the layer number of the discriminator network.

Table 2. Description of the generator network of PlantSR.

Layer# Layer Type Filter# Parameter# Layer Connection

1 input layer 0 0 input
2 group_1 128 741,760 input layer
3 Up3 0 0 group_1
4 group_2 64 258,560 Up3
5 conv2d (tanh) X 1,731 group_2

Total number of trainable parameters: 1,002,051

Table 3. Description of the discriminator network of PlantSR.

Layer# Layer Type Filter# Parameter# Layer Connection

1 input layer 0 0 input
2 group_1 64 334,400 input layer
3 group_2 64 369,536 group_1
4 LReLU 0 0 group_2
5 FC (sigmoid) Class# 1,382,977 LReLU

Total number of trainable parameters: 2,086,913
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Table 4. Group layer of generator network.

Times Layer Type Layer Connection

1 input layer input
2 conv2d input layer
1 RBRB conv2d

Table 5. Group layer of discriminator network.

Times Layer Type Layer Connection

1 input layer input
2 conv2d input layer
1 max_pool conv2d
2 RBRB max_pool

Table 6. Description of RBRB.

Layer Type Layer Connection

input layer input
res_block_1 input layer
res_block_2 res_block_1

add res_block_2 & input layer

Table 7. Description of a residual block.

Layer Type Layer Connection

input layer input
conv2d_1 input layer

prelu conv2d_1
conv2d_2 prelu

add conv2d_2 & input layer
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3.4. Detailed Structure of the Proposed PlantMC Network

The structure of the proposed PlantMC network is provided in Table 8 and Figure 5.
The dimensions of the input and output images of the PlantMC network were 200 × 200
× X and 28 × 1, respectively, where X represents the number of channels and is 25 for
thermal images and 75 for visible-light images, respectively. The configuration of the group
used in Table 8 is identical to that of the discriminator network group shown in Table 5,
with the exception of the stride size of the second conv2d being (2 × 2). The input layers
(input layer_1 and 2), concatenate layer (concat) and activation layer (softmax) were used
to describe the PlantMC network, as provided in Table 8, in contrast to Tables 2 and 3.
The output of the FC layer (class#) is 28. The parameter# column in Table 8 presents the
two types of parameter numbers in distinct formats and compares them. For example, the
parameter number obtained using the thermal and visible images with dimensions of 600
× 600 × 1 and 600 × 600 × 3, respectively, produced by PlantSR, is provided in non-italic
format. However, the parameter number when the preprocessed thermal and visible-light
images with dimensions of 200 × 200 × 25 and 200 × 200 × 75, respectively, is shown in
italic format for comparison. As shown in Table 8, the number of parameters was lower by
159,744 when using images obtained using preprocessing. The remaining values in Table 8
were consistent with the descriptions in Section 3.3.

Table 8. Description of the proposed PlantMC.

Layer# Times Layer Type Filter# Parameter# Layer Connection

1 1 input layer_1 & 2 0 0 0 input
2 2 group_1 64/128 1,735,872 1,749,696 input layer_1
3 2 group_2 64/128 1,737,024 1,778,496 input layer_2
4 1 concat 0 0 0 group_1 & group_2
5 1 group_3 128 1,623,808 1,623,808 concat
6 1 FC (softmax) class# 229,404 14,364 group_3

Total number of trainable parameters: 5,326,108/5,166,364

3.5. Details of Database and Experimental Setup

We focused on using both thermal and visible-light images to increase the accuracy
of plant classification in this study. However, the existing open datasets, such as PlantVil-
lage [7] and PlantDoc [8] or the others, do not provide thermal images. Therefore, we did
not use the datasets in our experiments. Therefore, in this study, the experiments were
conducted using the TherVisDb [18] dataset comprising images of various roses and rose
leaves. The dataset was obtained in July 2022. The details of the dataset are described in
three different tables. In detail, Table 9 describes the names of flowers and class indices; the
number of images of each class and three subsets for the 3-fold cross-validation; the number
of images in the validation set; the number of thermal and visible-light images, separately;
and the total number of images in the dataset. In the table, the ‘Image#’ column represents
the sum of numbers of thermal and visible-light images. The ‘Sets 1-3’ column indicates
the dataset split for 3-fold cross-validation. Table 10 describes the weather information of
the day when we collected our dataset, including humidity, temperature, wind speed, fine
dust, ultra-fine dust and UV index. Moreover, Table 11 describes other information, such
as image dimension, depth and extension, before and after augmentation. Moreover, the
number of total classes and information of camera sensors were described. In addition,
examples of thermal images and corresponding visible-light images in the dataset are
presented in Figure 6.
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Table 9. Description of classes and dataset split.

Class Index Class Names Image# Thermal Image# Visible-Light
Image# Set 1 Set 2 Set 3 Validation Set

1 Alexandra 240 120 120 72 72 72 24
2 Belvedere 96 48 48 28 28 28 12
3 Blue river 272 136 136 82 82 82 26
4 Charm of paris 272 136 136 82 82 82 26
5 Cleopatra 304 152 152 88 88 88 40
6 Cocktail 224 112 112 70 70 70 14
7 Duftrausch 352 176 176 104 104 104 40
8 Echinacea sunset 128 64 64 38 38 38 14
9 Eleanor 288 144 144 88 88 88 24

10 Elvis 448 224 224 134 134 134 46
11 Fellowship 416 208 208 124 124 124 44
12 Goldeise 288 144 144 86 86 86 30
13 Goldfassade 368 184 184 112 112 112 32
14 Grand classe 528 264 264 158 158 158 54
15 Just joey 144 72 72 42 42 42 18
16 Kerria japonica 208 104 104 62 62 62 22
17 Margaret 224 112 112 66 66 66 26
18 Oklahoma 624 312 312 186 186 186 66
19 Pink perfume 240 120 120 72 72 72 24
20 Queen elizabeth 240 120 120 72 72 72 24
21 Rose gaujard 624 312 312 186 186 186 66
22 Rosenau 608 304 304 182 182 182 62
23 Roseraie du chatelet 704 352 352 214 214 214 62
24 Spiraea salicifolia l 128 64 64 38 38 38 14
25 Stella de oro 96 48 48 28 28 28 12
26 Twist 576 288 288 172 172 172 60
27 Ulrich brunner fils 240 120 120 72 72 72 24
28 White symphonie 560 280 280 168 168 168 56

Total 9440 4720 4720 2826 2826 2826 962
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Table 10. Weather information for the surrounding environment at the time of image acquisition.

Types of Weather Measurement Numerical Values with Units

Humidity 91%
Temperature 30 ◦C
Wind speed 3 m/s

Fine dust 24 µg/m3

Ultra-fine dust 22 µg/m3

UV index 8

Table 11. Other relevant information in the dataset.

Lists Thermal
Image

Visible Light
Image Units

Before
augmentation

Image size 640 × 512 × 1 640 × 512 × 3 pixel
Depth 14 24 bit

Class number 28 28 -
Image extension bmp bmp -
Camera sensor Flir Tau® 2 [19] Logitech C270 [20] -

After
augmentation

Image size 300 × 300 × 1 300 × 300 × 3 pixel
Depth 8 24 bit

Image extension png png -
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Figure 6. Example images of TherVisDb. From left to right: images of blue river, charm of Paris,
Cleopatra and cocktail. (a) Visible-light images and (b) corresponding thermal images.

In the “Before augmentation” part in Table 11, a single image included many plants;
therefore, such images were cropped into images with a size of 300 × 300 to increase the
number of images detailed in the “After augmentation” part in Table 11. The number of
images produced as such for each class in the dataset is provided in Table 9. In the training
phase, each training set was expanded using augmentation methods (rotating three times
by 90◦ and flipping horizontally). In addition, down-sizing of images from dimensions
of 300 × 300 to 200 × 200 was performed to conduct SRR. The computer hardware and
software used in this study are described in Table 12.
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Table 12. Description of hardware and software of desktop computer.

Hardware
Software

Library (Version)

Processor Intel(R) Core(TM) i7-6700 CPU@3.40 GHz
(8 CPUs)

OpenCV [21] (4.3.0),
Python [22] (3.5.4),

Keras API [23] (2.1.6-tf),
TensorFlow [24] (1.9.0)

Main memory 32 GB RAM

GPU Nvidia GeForce GTX TITAN X (12 GB)

4. Experimental Results

This section is divided into four parts: training setup, testing, experimental comparison
and processing time. In Section 4.1, the setup of the training phase, characterized by, for
example, the hyperparameters and training loss, is described. In Section 4.2, the results
obtained from the training phase are presented. Thereafter, the experimental results
produced by the existing and proposed methods are compared in Section 4.3. Finally, the
processing time of the proposed method is measured in Section 4.4.

4.1. Training Setup

The training setup of the proposed methods is presented in Table 13. The training loss
and validation accuracy curves of PlantSR and PlantMC are shown in Figure 7. Figure 7a,b
show the training and validation loss curves of the PlantSR per epoch. Figure 7c,d show the
loss and accuracy curves of the PlantMC per epoch. As is evident, the network developed
in this study was sufficiently trained without being overfitted by the training data. In
addition, Table 13 presents search spaces and selected values of the hyperparameters for
the network.

Table 13. Search spaces and selected values of hyperparameters for the proposed methods.

Parameters
PlantSR PlantMC

Search Space Selected Value Search Space Selected Value

Learning rate [0.00001, 0.0001, 0.001] 0.0001 [0.00001, 0.0001, 0.001] 0.0001
Epochs [1~100] 92 [1~100] 74

Batch size [1, 8, 16] 8 [1, 8, 16] 8
Optimizer Adam [25] Adam Adam Adam

Loss binary cross-entropy [26] binary cross-entropy categorical cross-entropy [27] categorical cross-entropy

4.2. Testing

The testing results are presented in this section. To measure the accuracy of PlantSR,
Equation (1) for peak signal-to-noise ratio (PSNR) [28] and Equation (2) for structural
similarity index measure (SSIM) [29] were used. Further, Equations (3)–(6) were employed
to calculate the accuracy of PlantMC.

PSNR = 10log10

 2552(√
∑M

j=1 ∑N
i=1(X(i,j)−Y(i,j))2

)2

MN

 (1)

where X, Y, M and N represent original image, restored image, image width and image
height, respectively.

SSIM =
(2µYµX + C1)(2σXY + C2)

(µY
2 + µX

2 + C1)(σY
2 + σX

2 + C2)
(2)

where µX and σX represent the mean and standard deviation of the pixel values of a ground-
truth image, respectively, µY and σY represent the mean and standard deviation of the pixel
values of the restored image, respectively, and σXY is the covariance in the two images.
Moreover, C1 and C2 are positive constants.
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TPR = (#TP)/(#TP + #FN) (3)

PPV = (#TP)/(#TP + #FP) (4)

ACC = (#TP + #TN)/(#TP + #TN + #FP + #FN) (5)

where the numbers of true positive (#TP), false positive (#FP), false negative (#FN) and
true negative (#TN) were provided to calculate true-positive rate (TPR), positive predictive
values (PPV), accuracy (ACC) [30] and F1-score [31].

F1-score = 2·(PPV·TPR)/(PPV + TPR) (6)
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Tables 14–16 present the results of performing classification using the image recon-
structed with PlantSR as the input for PlantMC. Table 14 presents and compares each of
the results of 3-fold cross-validation. As shown in Table 14, accuracies obtained in the three
folds are almost similar to each other and fold-1 showed the highest accuracy, whereas
fold-3 showed the lowest. Table 15 compares the results from the method using RBRB (two
residual blocks followed by an addition operation, as shown in Table 6) and those from
the method not using RBRB (two residual blocks not followed by an addition operation).
Evidently, the accuracy results produced using RBRB were greater. Therefore, we used
the RBRB in further experiments in this study; moreover, we propose the RBRB in this
study for the increased accuracy of the plant image classification. The results using images
modified through preprocessing, of 200 × 200 × 25 (75) dimensions, those using images
without preprocessing, of 600 × 600 × 1 (3) dimensions, are provided for comparison in
Table 16. Although preprocessing did not improve the accuracy by a significant amount, it
decreased the number of parameters and reduced the memory size, as demonstrated in
Table 8. In addition, it reduced the processing time, as is evident in Section 4.4.

Table 14. Comparison of accuracies obtained in different folds using PlantSR + PlantMC.

Methods PPV TPR F1-Score ACC

Fold-1 91.25 91.46 91.46 99.94
Fold-2 90.26 89.86 89.61 98.82
Fold-3 90.08 89.73 89.40 98.90

Average 90.53 90.35 90.16 99.22

Table 15. Comparison of accuracies obtained by using classification methods with and without RBRB.

Methods PPV TPR F1-Score ACC

PlantMC
without RBRB 89.47 90.11 89.75 98.21

PlantMC with
RBRB 90.53 90.35 90.16 99.22

Table 16. Comparison of accuracies obtained using classification methods using images with different
sizes and channels.

Methods PPV TPR F1-Score ACC

PlantMC using 600 × 600 × 1 (3) 90.4 90.45 90.1 99.21
PlantMC using 200 × 200 × 25 (75) 90.53 90.35 90.16 99.22
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Table 17 presents the results of using thermal images as the input to PlantSR (PlantSR
(Th)) and results of using visible-light images as the input to PlantSR (PlantSR (V)). In
addition, PlantMC results, with and without PlantSR, are compared. Further, the accuracy
of each proposed method is provided with class-based comparisons. As demonstrated,
the accuracy of classification with SRR (PlantSR + PlantMC) was higher than that of
classification without SRR (PlantMC). Moreover, Spiraea salicifolia l and White symphonie
showed the highest PSNRs of 27.44 and 28.33 in PlantSR (Th) and PlantSR (V), respectively,
whereas Oklahoma and Kerria japonica showed the lowest PSNRS of 26.47 and 27.38
in PlantSR (Th) and PlantSR (V), respectively. Moreover, Kerria japonica showed the
highest F1-scores of 99.63 and 100 in both PlantMC and PlantSR+PlantMC, respectively,
whereas Cleopatra showed the lowest F1-scores of 71.62 and 72.37 in both PlantMC and
PlantSR + PlantMC, respectively.

Table 17. Detailed accuracy of each class by the proposed PlantSR and PlantMC with
and without PlantSR.

# Class Names
PlantSR (Th) PlantSR (V) PlantMC PlantSR + PlantMC

PSNR SSIM PSNR SSIM PPV TPR F1-Score ACC PPV TPR F1-Score ACC

1 Alexandra 26.87 0.87 27.41 0.88 91.48 99.39 95.27 99.43 92.32 99.52 95.79 100
2 Belvedere 26.59 0.89 28.18 0.88 99.68 82.73 90.42 98.95 100 83.69 91.19 99.75
3 Blue river 27.27 0.86 27.6 0.95 92.61 83.19 87.65 99.24 93.23 84.17 88.47 100
4 Charm of paris 27 0.84 27.46 0.87 81.52 85 83.22 98.66 81.74 85.9 83.77 99.63
5 Cleopatra 27.3 0.92 27.67 0.89 57.59 94.7 71.62 98.37 58.43 95.05 72.37 98.55
6 Cocktail 27.12 0.93 27.57 0.95 90.31 90.66 90.49 99.2 91.08 91.54 91.31 99.76
7 Duftrausch 27.36 0.93 27.8 0.93 93.58 96.76 95.14 99.02 94.15 97.17 95.64 99.19
8 Echinacea sunset 27.42 0.9 28.14 0.85 91.94 91.63 91.79 99.22 92.43 91.95 92.19 99.54
9 Eleanor 27.4 0.91 27.9 0.87 99.18 99.57 99.38 99.99 99.63 100 99.95 100
10 Elvis 27.12 0.9 27.93 0.92 92.9 85.39 88.99 98.12 93.66 86.36 89.86 98.98
11 Fellowship 26.88 0.88 28.02 0.86 89.51 85.98 87.71 98.51 89.72 85.98 87.81 99.47
12 Goldeise 27.41 0.92 27.68 0.92 92.75 81.46 86.74 98.5 93.44 82.16 87.44 99.35
13 Goldfassade 27.08 0.91 27.58 0.88 91.51 86.96 89.18 99.16 91.63 87.56 89.55 99.9
14 Grand classe 27.24 0.85 28.13 0.89 81.11 85.5 83.24 97.44 81.4 85.54 83.42 97.89
15 Just joey 27.4 0.89 27.84 0.92 86.45 76.46 81.14 98.62 87.25 76.96 81.78 98.83
16 Kerria japonica 27.11 0.89 27.38 0.94 99.89 99.37 99.63 99.22 100 100 100 99.26
17 Margaret 27.18 0.91 27.91 0.93 82.59 86.1 84.31 98.87 83.47 86.62 85.02 99.45
18 Oklahoma 26.47 0.86 27.97 0.93 91.89 86.19 88.95 98.5 92.40 87.06 89.65 98.68
19 Pink perfume 27.37 0.87 27.48 0.88 83.17 90.54 86.7 98.46 83.37 91.27 87.14 98.54
20 Queen elizabeth 27.05 0.92 28.15 0.91 95.81 95.31 95.56 98.97 96.78 95.63 96.2 99.65
21 Rose gaujard 26.66 0.87 27.8 0.91 91.88 84.31 87.93 98.06 92.84 85.25 88.88 98.4
22 Rosenau 26.73 0.88 27.69 0.93 99.46 90.05 94.52 98.42 99.8 90.95 95.17 98.47

23 Roseraie du
chatelet 26.89 0.85 28.2 0.94 82.28 94.23 87.85 97.95 82.75 94.33 88.16 98.06

24 Spiraea salicifolia l 27.44 0.89 28.21 0.95 99.73 99.38 99.55 99.47 99.84 99.75 99.8 100
25 Stella de oro 27.09 0.84 27.78 0.89 99.42 90.33 94.66 98.93 99.96 91.12 95.34 99.4
26 Twist 26.51 0.84 28.05 0.88 90.51 94.44 92.43 98.28 91.45 94.51 92.96 98.93
27 Ulrich brunner fils 26.67 0.84 27.64 0.94 78.88 86.04 82.31 98.77 79.35 86.83 82.92 99.13
28 White symphonie 27.29 0.88 28.33 0.9 92.46 92.17 92.31 98.34 92.77 92.94 92.85 99.23

Average 27.07 0.88 27.84 0.91 90 89.78 89.6 98.74 90.53 90.35 90.16 99.22

Figures 8 and 9 show that the images produced using the proposed method exhibited
sharper contrast than those produced using the bicubic method, which means that the pro-
posed method can generate plant images with higher contrast than the conventional bicubic
method. As shown in Table 18, the accuracy and classification efficiency results obtained
using PlantSR were higher than those obtained using bicubic. Table 18 also demonstrates
that classification performance using bicubic and PlantSR-reconstructed images exhibited
higher efficiency compared to the results using the original image. This analysis supports
the positive influence of SRR on the classification performance. Moreover, it means that the
proposed SRR method increases the performance of the classification method.
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Figure 8. Example thermal images generated by PlantSR. From top to bottom, images of Rose gaujard,
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Table 18. Comparison of accuracies by bicubic and the proposed PlantSR, and PlantMC with bicubic
and PlantSR.

Images
SRR PlantMC SRR + PlantMC

PSNR SSIM PPV TPR F1-Score ACC PPV TPR F1-Score ACC

Original images - - 90 89.78 89.6 98.74 - - - -

Bicubic (Th) 27 0.86 - - - -
90.05 89.97 89.87 98.9Bicubic (V) 27.7 0.89 - - - -

PlantSR (Th) 27.07 0.88 - - - -
90.53 90.35 90.16 99.22PlantSR (V) 27.84 0.91 - - - -
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symphonie, Roseraie du chatelet and Twist. (a) Original image; (b) enlarged image by bicubic; (c)
enlarged image by PlantSR.

4.3. Comparisons with the Existing Methods

In this section, the proposed methods are compared to the state-of-the-art methods
experimentally. As this study is the first to perform SRR and classification using plant ther-
mal and visible-light images, there are no similar existing methods for a fair comparison, as
supported by Table 1. Therefore, the existing methods of SRR and classification using plant
visible-light images [15,16] were used for comparative analysis. The existing plant image
SRR and classification methods [15,16] were compared to the proposed methods (PlantSR,
PlantMC and PlantSR + PlantMC), as presented in Tables 19–21. When the experimental
comparison was conducted, training was executed on the TherVisDb database for the
existing methods [15,16]. The detailed explanations on the SRR and CNN configuration
used by the existing method-1 [15] can be found in [15] and [33], respectively. Further, the
detailed description of the SRR and CNN configuration used by the existing method-2
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can be found in [16,34]. The previous study [16] used a modified VGG-Net proposed in
study [34] as a classification network. The experimental results for plant image SRR and
plant image classification were compared in Sections 4.3.1 and 4.3.2, respectively.

Table 19. Comparison of accuracies obtained by using SRR methods.

Methods PSNR SSIM

Bicubic 27.7 0.89

Method-1 [15] 27.71 0.88

Method-2 [16] 27.73 0.89

PlantMC 27.84 0.91

Table 20. Comparison of accuracies obtained by using classification methods without SRR.

Methods PPV TPR F1-Score ACC

Method-1 [15] 88.13 89.49 88.71 98.21

Method-2 [16] 88.93 89.07 89.03 98.66

PlantMC 90 89.78 89.6 98.74

Table 21. Comparison of accuracies obtained by using classification methods with SRR.

Methods PPV TPR F1-Score ACC

Method-1 with SRR [15] 89.39 90.12 89.98 98.79

Method-2 with SRR [16] 89.75 90.21 90.05 99.1

PlantSR + PlantMC 90.53 90.35 90.16 99.22

4.3.1. Comparisons with Plant Image SRR Methods

In this section, the existing plant image-based SRR methods are used for comparative
analysis. As is evident in Table 1, there is no existing study on plant thermal image-
based SRR method; thus, the plant visible-light image was used for comparison. The SRR
methods employed in Method-1 and Method-2 were used in comparison in Table 19, and
the accuracy results obtained from the proposed method were the highest. Moreover, the
proposed method showed the highest accuracy, whereas the Bicubic showed the lowest
accuracy. In addition, the SRR methods showed very little difference in accuracy. Figure 10
presents a graphical comparison of the SRR methods.

4.3.2. Comparisons with Plant Image Classification Methods

In this section, the existing plant image-based SRR and classification methods were
used for comparative analysis. While only visible-light images were used by Method-1
and Method-2, both thermal and visible-light images were used by the proposed method.
Under both experimental conditions, the proposed method produced the highest accurate
results, as is evident in Tables 20 and 21. These results confirmed that the use of thermal and
visible-light images simultaneously, as in the proposed method, was efficient. In addition,
Tables 18, 20 and 21 demonstrate that classification results using SRR are more accurate,
thereby confirming that SRR is effective in plant classification. Moreover, in all cases, the
proposed method showed higher accuracies than the other methods.
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In Tables 19–21, the outperformance of the proposed method is not significant. Be-
cause the previous networks (method-1 [15] and method-2 [16]) used larger numbers of
parameters, layers and additional networks for super-resolution reconstruction (SRR),
the proposed method could not outperform their results significantly. For example, a
classification network of method-1 [15] has over 62 million parameters, whereas our classi-
fication network has only 5 million parameters. Moreover, they used a super-resolution
convolutional neural network (SRCNN) for SRR, which was pretrained with the ImageNet
database, including huge numbers of images. However, the SRCNN was not used in our
method, which makes it difficult to achieve a significant result compared to the previous
method [15]. The classification networks of method-2 [16] and the proposed method are
similar; however, their SRR network has a total of 115 convolution layers, whereas our SRR
network has only 12 convolution layers. Accordingly, it is difficult to achieve a significant
result compared to the previous method [16].

4.4. Processing Time of the Methods

The processing time of the proposed PlantSR and PlantMC in the testing phase is
shown in Table 22. Table 22 presents the frame rates of PlantSR methods using thermal
and visible-light images, which were 14.6 and 15.93 frames per second (fps), respectively.
The frame rate of the PlantSRs + PlantMC method was 5.63 fps. In addition, the frame rate
when PlantSR-produced thermal and visible-light images with dimensions of 600 × 600 × 1
and 600 × 600 × 3, respectively, were used was 17.17 fps. As demonstrated, the frame
rate obtained according to the method proposed in Figures 2 and 3, which involves using
preprocessed thermal and visible-light images with dimensions of 200 × 200 × 25 and
200 × 200 × 75, was 21.68 fps.

Table 22. Processing time of the methods per image (unit: ms).

Database Processing Time

PlantSR using thermal image 68.45
PlantSR using visible-light image 62.75
PlantMC using 600 × 600 × 1 (3) 58.24

PlantMC using 200 × 200 × 25 (75) 46.12
PlantSRs + PlantMC using 200 × 200 × 25 (75) 177.32
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5. Discussion

In this study, SRR and classification using plant thermal and visible-light images
were examined. Using the two types of images as separate inputs for the proposed
method (PlantSR) produced bigger images with sharper contrast, as demonstrated in
Figures 8 and 9. Further, the proposed method (PlantMC) exhibited higher improved per-
formance when PlantSR was employed to produce and integrate the two types of images,
as shown in Table 17. As demonstrated by Tables 20 and 21, the proposed method delivered
higher performance than the methods introduced by the existing studies. In addition, the
method of using the preprocessed thermal and visible-light images with dimensions of
200 × 200 × 25 (75) was faster than the method using the PlantSR-produced images with
dimensions of 600 × 600 × 1 (3). The measures of accuracy of the two methods did not
differ significantly, as shown in Table 16. Furthermore, the results of the method with RBRB
(two residual blocks followed by an addition operation, as shown in Table 6) that is newly
developed in this study were compared to those of the method without RBRB (two residual
blocks not followed by an addition operation) in Table 15. Evidently, the accuracy results
with the application of RBRB were higher.

Figures 11 and 12 show error cases by the proposed method, PlantMC. The classi-
fication error of PlantMC was influenced by the image that is wrongly reconstructed by
PlantSR. As is evident, when the image was too bright or too dark, even brighter or darker
images were produced. In contrast, the images produced using the bicubic appeared clearer
than those produced by PlantSR.
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6. Conclusions

In this study, the SRR and plant classification methods based on thermal and visible-
light images were proposed and tested. The TherVisDb dataset was utilized in various
experiments in the study. The dataset contained various images of roses and rose leaves.
Based on the plant image classification experiment using TherVisDb, the accuracy of the
proposed method appeared higher than that of existing methods, with an accuracy of
99.22% and F1-score of 90.16%. In addition, the results of the plant image SRR experiment
using TherVisDb revealed that the proposed method was more accurate than the existing
method, as is evident from the PSNR of 27.84 and SSIM of 0.91.

The experimental results provided in Table 18 confirmed that the accuracy of classi-
fication increased when the images were expanded using PlantSR. As explained for the
preprocessing in Section 3.2, by reducing the dimensions of PlantSR-produced images and
increasing the number of channels in exchange, the processing time, number of parameters
and memory size of PlantMC were decreased, as is evident in Tables 8 and 22.

Further, Table 15 indicates that the use of RBRB newly developed in this study was
confirmed to produce higher accuracy than the method using the basic residual block.
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In future work, various deep learning methods will be considered to reduce the
SRR and classification errors exhibited in Figures 11 and 12. Furthermore, the SRR and
classification process to increase the accuracy of the proposed method will be explored.
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