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Abstract: In this paper, we define a subclass of starlike functions associated with the Van der Pol
numbers. For this class, we derive structural formula, radius of starlikeness of order α, strong
starlikeness, and some inclusion results. We also study radii problems for various classes of analytic
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1. Introduction and Preliminaries

Van der Pol [1] studied the sequence V0, V1, V2, · · · by using

ψV (ς) =
ς3

6(eς(ς− 2) + (ς + 2))
=

∞

∑
m=0

Vm

m!
ςm, (1)

where the numbers Vm were later named Van der Pol numbers. These numbers are used in
unsmoothing a smoothed function of three variables. The Bernoulli numbers are analogous
to Vm for functions of one variable. The first few of these numbers are V0 = 1, V1 = −1

2 ,
V2 = 1

5 , V3 = −1
120 ; see [2]. The numbers Vm can be related with the Rayleigh function;

see [2]. The Rayleigh functions can be represented in terms of the zeros of the Bessel
function; see [3–5]. Howard [6] showed that Euler and Bernoulli polynomials have identical
properties to the Van der Pol polynomials.

Geometric function theory is the study of the geometric properties of analytic func-
tions in D ={ς : |ς| < 1, ς ∈ C}. The Riemann mapping theorem is considered as the
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cornerstone of the theory. The analytic and univalent functions and their generaliza-
tions have various applications, such as fluid mechanics [7], image processing, and signal
processing [8], while conformal mappings (locally univalent functions) are very useful
in cryptography.

Now we give some notions of the theory which will be helpful in our study.
Denote byAm the class of functions k which are analytic and have the expansion of

the form k(ς) = ς + dm+1ς2 + dm+2ς3 + · · · in D ={ς : |ς| < 1, ς ∈ C}. The class A1 = A
is well-known. A function k ∈ A is given as

k(ς) = ς +
∞

∑
m=2

dmςm, ς ∈ D. (2)

Let S represent a class of univalent functions in A. We denote by B a family of
self maps ω, analytic (holomorphic) in D with ω(0) = 0. The function ω with such
properties is known as a Schwarz function. Consider that functions k and g are both analytic
(holomorphic) in D. Then we write mathematically f ≺ g, read as f is subordinated to
g such that k(ς) = g(ω(ς)) for ω ∈ B and ς ∈ D. If g is univalent (one-to-one) with
k(0) = g(0), then k(D) ⊂ g(D).

This concept is very useful in studying various problems in function theory. Ma
and Minda [9] beautifully utilized this concept to unify various classes of starlike and
convex functions. These are defined analytically as S∗(ψ) := {k ∈ A : ςk′(ς)/k(ς) ≺ ψ(ς)}
and C(ψ) := {k ∈ A : 1 + ςk′′(ς)/k′(ς) ≺ ψ(ς)}, respectively. The analytic and univalent
function ψ satisfies ψ(0) = 1 and Re{ψ′(ς)} > 0, ς ∈ D and ψ(D) is a convex set in C. We
see that the class S∗(ψ) generalizes many classes. Some are given as follows:

i. S∗ = S∗
(

1+ς
1−ς

)
.

ii. S∗[A, B] := S∗
(

1+Aς
1+Bς

)
, −1 ≤ B < A ≤ 1, see [10].

iii. S∗(α) := .S∗
(

1+(1−2α)ς
1−ς

)
, 0 ≤ α < 1, see [11].

iv. S∗s := S∗(1 + sin(ς)), see [12].
v. S∗L := S∗(

√
1 + ς), see [13].

vi. S∗RL := S∗
(√

2− (
√

2− 1)
√

1−ς

1+2(
√

2−1)ς

)
, see [14].

vii. S∗C := S∗
(

1 + 4ς
3 + 2ς2

3

)
, see [15].

viii. S∗e := S∗(eς), see [16].
ix. S∗cos := S∗(cos(ς)), see [17].
x. S∗l := S∗(

√
1 + ς2 + ς), see [18].

xi. BS(α) := S∗(1 + ς
1−ας2 ), 0 ≤ α ≤ 1, see [19].

xii. S∗lim := S∗
(

1 +
√

2ς + ς2

2

)
, see [20,21].

The geometry of analytic functions related with some familiar sequences of numbers
has been explored by some researchers working in the theory. The class SL related with
Fibonacci numbers was introduced and investigated by Sokół [22]. The class S∗B related with
Bell numbers was introduced by Cho et al. [23] and Kumar et al. [24], whereas functions
related with generalized Telephone numbers were utilized by Deniz [25] to introduce a
subclass of S∗. The generating function for Euler numbers was recently used to introduce a
subclass of starlike functions (see [26]), while the generating function for Bernoulli numbers
is considered in [27] to investigate a subclass of S∗.

Motivated by the above contributions, we study starlike functions related with Van
der Pol numbers.
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The function ψV (ς) defined in (1) is analytic in D and maps D onto a convex set and
ReψV (ς) > 0. We define the class S∗V of starlike functions by using the generating function
of Van der Pol numbers as follows:

S∗V :=
{

k ∈ A :
ςk′(ς)
k(ς)

≺ ς3

6(eς(ς− 2) + (ς + 2))

}
.

From the above definition, k ∈ S∗V if and only if h(ς) ≺ ψV (ς) =
ς3

6(eς(ς−2)+(ς+2)) and

k(ς) = ς exp
(∫ ς

0

h(u)− 1
u

du
)

, (3)

where h is analytic in D. The set S∗V , is non-empty; we present some examples for functions
in it. Consider hi : D→ C, (i = 1, 2, 3, 4) given by

h1(ς) = 1 +
2
5

ς, h2(ς) =
4 + 2ς

4 + ς
, h3(ς) = 1 +

cos(1)
2

ς, h4(ς) = e
ς
3 .

The function ψV (ς) is univalent in D. Furthermore, hi(0) = h0(0) = 1 and hi(D) ⊂ h0(D),
(i = 1, 2, 3, 4). This implies hi(ς) ≺ ψV (ς). Therefore, from (3), we obtain the functions
ki ∈ S∗V , (i = 1, 2, 3, 4) with ki(0) = k′i(0)− 1 = 0 to every hi, respectively, as follows:

k1(ς) = ςe
2ς
5 , k2(ς) = ς +

ς2

4
, k3(ς) = ςe

cos(1)
2 ς, k4(ς) = ς exp

(∫ ς

0

e
t
3 − 1

t
dt

)
.

We have the following layout of our work.
In Section 2, we find the growth result and some inclusion results for the class S∗V . In

Section 3, we give sharp radii problems for various classes of analytic functions. In the last
section, we derive coefficient bounds and Hankel determinants for the class S∗V .

2. Inclusion Results

Firstly, we study the order of starlikeness and strong starlikeness for the class S∗V .

Lemma 1. Let ψV (ς) =
ς3

6(eς(ς−2)+(ς+2)) . Then for ς = teiϕ, t ∈ (0, 1),

min
|ς|=t

ReψV (ς) = ψV (t) = min
|ς|=t
|ψV (ς)|

and
max
|ς|=t

ReψV (ς) = ψV (−t).

Proof. For ϕ ∈ [0, 2π), x = t cos(ϕ) and y = t sin(ϕ); we have ReψV (ς) =
u
r , where

u = t3 cos(3ϕ)(ex(t cos(y + ϕ)− 2 (y)) + x + 2)

+t3 sin(3ϕ)(ex(t sin(y + ϕ)− 2 sin(y)) + y), (4)

r = 6 (ex(t cos(y + ϕ)− 2 (y)) + x + 2)2 + 6 ex(t sin(y + ϕ)− 2 (y)) + y2 (5)

Let g(ϕ) = u
r . Then g′(ϕ) = 0 has 0 and π roots. Furthermore, we see that g′′(0) > 0

and g′′(π) < 0 for t ∈ (0, 1). Therefore, g has minima at ϕ = 0 and maxima at ϕ = π. Hence,

min
|ς|=t

ReψV (ς) = ψV (t) =
t3

6(t(et + 1)− 2(et − 1))
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and

max
|ς|=t

ReψV (ς) = ψV (−t) = − t3

6(−t(e−t + 1)− 2(e−t − 1))
.

Similarly,

|ψV (ς)|2 =
(u

r

)2
+
(v

r

)2
= g1(ϕ),

where

v = −t3 cos(3 ϕ)(ex(t sin(t sin(ϕ) + ϕ)− 2 sin(y)) + y)
+t3 sin(3ϕ)(ex(t cos(y + ϕ)− 2 cos(y)) + x + 2)

and u and r are given in (4) and (5), respectively. Some computations show that g1 has a
minimum value at ϕ = 0. Hence, we conclude that

min
|ς|=t
|ψV (ς)| = ψV (t) =

t3

6(t(et + 1)− 2(et − 1))
.

Theorem 1. The class S∗V satisfies the following relations:
(i) S∗V ⊂ S∗(α), for 0 ≤ α ≤ 1

6(3−e) .
(ii) S∗V ⊂M(α) for α ≥ e

6(3−e) ,
(iii) S∗V ⊂ SS

∗(β), where β ≥ 2h(ϕ1)/π ≈ 0.3199041635,
where ϕ1 ≈ 4.811266810 is the root of the equation h′(ϕ) = 0 and h is defined in (7).

Proof. (i) Let k ∈ S∗V . Then, it is easy to see that

ςk′(ς)
k(ς)

≺ ς3

6(eς(ς− 2) + (ς + 2))
.

Therefore,

min
|ς|=1

Re
(

ς3

6(eς(ς− 2) + (ς + 2))

)
< Re

ςk′(ς)
k(ς)

< max
|ς|=1

Re
(

ς3

6(eς(ς− 2) + (ς + 2))

)
.

Hence, by using Lemma 1, we conclude that

1
6(3− e)

< Re
ςk′(ς)
k(ς)

<
e

6(3− e)
. (6)

Thus, S∗V ⊂ S∗(α), where 0 ≤ α ≤ 1
6(3−e) .

(ii) Result follows from (6).
(iii) Let k ∈ S∗V . Then∣∣∣∣arg

ςk′(ς)
k(ς)

∣∣∣∣ < max
|ς|=1

arg
ς3

6(eς(ς− 2) + (ς + 2))
= max
|ς|=1

h(ϕ),

where

h(ϕ) = tan−1


−t3 cos(3ϕ)(−2 sin(y) + ex(t sin(y + ϕ)) + y)

+t3 sin(3ϕ)(−2 cos(y) + ex(t cos(y + ϕ)) + x + 2)
t3 cos(3ϕ)(−2 cos(y) + ex(t cos(y + ϕ)) + x + 2)
+t3 sin(3ϕ)(−2 sin(y) + ex(t sin(y + ϕ)) + y)

. (7)
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It is easy to see that h′(ϕ) = 0 has two roots in [0, 2π], namely

ϕ0 = 1.471918497 and ϕ1 = 4.811266810.

Furthermore, we see that h′′(ϕ1) = −0.5177687016. Hence, max(h(ϕ)) = h(ϕ1) =
0.5025042849. Thus,

k ∈ SS∗
(

2
π

h(ϕ1)

)
.

Theorem 2. The S∗(α)-radii, for S∗V is t0, where t0 is the solution of t3− 6α
[
et(t− 2) + (t + 2)

]
=

0 and 1/6(3− e) ≤ α < 1.

Proof. Let k ∈ S∗V . Then from Lemma 1, we can write

t3

6(et(t− 2) + (t + 2))
≤ Re

(
ςk′(ς)
k(ς)

)
≤ t3

6(e−t(t + 2) + (t− 2))
.

Hence,

Re
(

ςk′(ς)
k(ς)

)
≥ t3

6(et(t− 2) + (t + 2))
≥ α

for t3 − 6α
[
et(t− 2) + (t + 2)

]
= 0 > 0. Thus, the radius of S∗(α), for S∗V is the smallest

root t0 ∈ (0, 1) of t3 − 6α
[
et(t− 2) + (t + 2)

]
= 0.

3. Radius Problems

Consider the class

Pm(α) :=

{
p(ς) = 1 +

∞

∑
k=m

cmςm : Rep(ς) > 0

}
.

Furthermore, Pm := Pm(0). Let

S∗V ,m := Am ∩ S∗V , S∗m(α) := Am ∩ S∗(α).

Ali et al. [28] investigated the class Sm := {k ∈ Am : k(ς)
ς ∈ Pm}. Now consider the

following useful results to prove our results.

Lemma 2 ([29]). If p ∈ Pm(α), then, for |ς| = t,∣∣∣∣ ςp′(ς)
p(ς)

∣∣∣∣ ≤ 2(1− α)mtm

(1− tm)(1 + (1− 2α)tm)
.

Lemma 3 ([30]). If p ∈ Pm(α), then, for |ς| = t,∣∣∣∣p(ς)− (1 + (1− 2α))t2m

1− t2m

∣∣∣∣ ≤ 2(1− α)tm

1− t2m .

The main purpose of the next result is to obtain the disks of maximum radius and

minimum radius centered at (a, 0) such that ∆V := ψV (D), where ψV (ς) =
ς3

6(ς(eς+1)−2(eς−1))
is contained in the smallest disk and contains the largest disk.

Lemma 4. Let 1
6(3−e) < a < e

6(3−e) . Then, the following inclusions hold:

{ω ∈ C : |ω− a| < ta} ⊂ ∆V ⊂ {ω ∈: |ω− a| < Ta},
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where

ta =

{
a− 1

6(3−e)
1

6(3−e) < a ≤ a◦,
e

6(3−e) − a, a◦ ≤ a < e
6(3−e) ,

and

Ta =


e

6(3−e) − a 1
6(3−e) < a ≤ a∗,√

h(ϕa), a∗ < a ≤ a∗∗,
a− 1

6(3−e) , a∗∗ < a < e
6(3−e) ,

where ϕa is the zero of h′(ϕ). The function h is given by (8) with a◦ ≈ 1.099999, a∗ ≈
1.0683509192, and a∗∗ ≈ 1.1944463972.

Proof. Let ψV (ς) =
ς3

6(eς(ς−2)+(ς+2)) . Then

ψV
(

eiϕ
)
=

e3iϕ

6
(

eeiϕ(eiϕ − 2
)
+
(
eiϕ + 2

))
represents the boundary of ψV (D). Let x = cos(ϕ) and y = sin(ϕ). Then the square of the
distance of (a, 0) to the boundary of ∆V is given by the function

h(ϕ) =

(
u1

r1
− a
)2

+

(
v1

r1

)2
, (8)

where

u1 = cos(3ϕ)(ex(−2 cos(y) + cos(y + ϕ)) + x + 2)

+ sin(3ϕ)(−2 sin(y) + ex(sin(y + ϕ)) + y),

v1 = − cos(3ϕ)(−2 sin(y) + ex(sin(y + ϕ)) + y)
+ sin(3ϕ)(−2 cos(y) + ex(cos(y + ϕ)) + x + 2),

r1 = 6(−2 cos(y) + ex(cos(y + ϕ)) + x + 2)2

+6(−2 sin(y) + ex(sin(y + ϕ)) + y)2.

To prove that |ω− a| < ta is a disk with maximum radius contained in ∆V , we have to
show that min0≤ϕ≤π

√
h(ϕ) = ta. Since h(ϕ) = h(−ϕ), we consider 0 ≤ ϕ ≤ π only. We

suppose that
1

6(3− e)
< a ≤ a∗,

where a∗ ≈ 1.0683509192. We see that the equation h′(ϕ) = 0 has the roots 0 and π. The
graph of the function h′(ϕ) is positive in the interval [0, π]. Hence, it is increasing; therefore,

min
0≤ϕ≤π

√
h(ϕ) =

√
h(0) = a− 1

6(3− e)
.

Now, we consider a∗ < a ≤ a∗∗, where a∗∗ ≈ 1.1944463972. Then h′(ϕ) = 0 has
0, ϕa ∈ (0, π), and π roots. The root ϕa depends upon a. We notice that h′(ϕ) > 0 in
(0, ϕa) and h′(ϕ) < 0 in (ϕ0, π). We also see that h(0) < h(π) for a∗ < a ≤ a◦, where
a◦ ≈ 1.099999. Hence,

min
0≤ϕ≤π

√
h(ϕ) =

√
h(0) = a− 1

6(3− e)
.

Similarly, we see that h(π) < h(0) for 1.099999 < a < a∗∗. Therefore,

min
0≤ϕ≤π

√
h(ϕ) =

√
h(π) =

e
6(3− e)

− a.
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For a∗∗ < a < e
6(3−e) , we notice that h′(ϕ) < 0 in (0, π). Hence,

min
0≤ϕ≤π

√
h(ϕ) =

√
h(π) =

e
6(3− e)

− a.

For the case of the minimum radius of a circle centered at (a, 0) which contains
ψV (D) = ς3

6(ς(eς+1)−2(eς−1)) , we calculate the maximum distance of (a, 0) to a point on the

boundary of ∆V = ψV (D). We notice that h is increasing for 1
6(3−e) < a ≤ a∗. Therefore,

max
0≤ϕ≤π

√
h(ϕ) =

√
h(π) =

e
6(3− e)

− a.

When a∗ < a ≤ a∗∗, the function h′(ϕ) has 0, ϕa, and π. The root ϕa depends on
a. The graph of h′(ϕ) indicates that h′(ϕ) > 0 when ϕ ∈ (0, ϕa) and h′(ϕ) < 0 when
ϕ ∈ (ϕa, π). We conclude that max

0≤ϕ≤π

√
h(ϕ) =

√
h(ϕa). Furthermore, h is decreasing when

a∗∗ < a < e
6(3−e) and

max
0≤ϕ≤π

√
h(ϕ) =

√
h(0) = a− 1

6(3− e)
.

Hence, we obtain the required result.

Example 1. (a) The function k(ς) = ς + d2ς2 is in S∗V , if and only if

|d2| ≤
17− 6e

35− 12e
≈ 0.29480.

(b) The function k(ς) = ς

1−λς2 is in S∗V , if and only if

|λ| ≤ 7e− 18
18− 5e

≈ 0.22540.

Proof. (a) We know that k(ς) = ς + d2ς2 ∈ S∗ if and only if |d2| ≤ 1
2 . Since S∗V ⊂ S∗, we

have |d2| ≤ 1
2 , whenever k ∈ S∗V . The function

ω(ς) =
ςk′(ς)
k(ς)

=
1 + 2d2ς

1 + d2ς
,

maps D onto ∣∣∣∣∣ω− 1− 2|d2|2

1− |d2|2

∣∣∣∣∣ < |d2|
1− |d2|2

.

Since 1−2|d2|2

1−|d2|2
≤ 1,

1
6(3− e)

≤ 1− 2|d2|2

1− |d2|2
and

|d2|
1− |d2|2

≤ 1− 2 |d2|2

1− |d2|2
− 1

6(3− e)
.

The above two inequalities give us

|d2| ≤
√

17− 6e
35− 12e

and |d2| ≤
17− 6e

35− 12e
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respectively. Thus, we have

|d2| ≤ min

{√
17− 6e

35− 12e
,

17− 6e
35− 12e

}
=

17− 6e
35− 12e

.

(b) Logarithmic differentiation of the function k(ς) = ς

1−λς2 yields

ω(ς) =
ςk′(ς)
k(ς)

=
1 + λς

1− λς
.

The function ω maps D onto ∣∣∣∣∣ ςk′(ς)
k(ς)

− 1 + |λ|2

1− |λ|2

∣∣∣∣∣ ≤ 2|λ|
1− |λ|2

.

Hence, by using Lemma 4, it is contained in ∆V provided

1 + |λ|2

1− |λ|2
≤ e

6(3− e)
and

2|λ|
1− |λ|2

≤ e
6(3− e)

− 1 + |λ|2

1− |λ|2
.

Thus,

|λ| <
√

7e− 18
18− 5e

and |λ| ≤ 7e− 18
18− 5e

,

respectively. Thus, we have

|λ| ≤ min

{√
7e− 18
18− 5e

,
7e− 18
18− 5e

}
=

7e− 18
18− 5e

.

Hence, we obtain the result.

Theorem 3. The S∗V ,m-radius for Sm is

RS∗V ,m
(Sm) =

 17− 6e

6m(3− e) +
√

36m2(3− e)2 + (17− 6e)2

 1
m

.

Proof. Let k ∈ Sm. Consider the function h : D −→ C defined by

h(ς) =
k(ς)

ς
, h ∈ Pm.

Taking logarithmic differentiation, it follows that

ςk′(ς)
k(ς)

− 1 =
ςh′(ς)
h(ς)

.

By applying Lemma 2, we obtain∣∣∣∣ ςk′(ς)
k(ς)

− 1
∣∣∣∣ = ∣∣∣∣ ςh′(ς)

h(ς)

∣∣∣∣ ≤ 2mtm

1− t2m .

By using Lemma 4, the image of |ς| ≤ t under ςk′(ς)
k(ς) is contained in ∆V , if

2mtm

1− t2m ≤
17− 6e
6(3− e)

.
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This implies that
t2m(17− 6e) + 12m(3− e)tm − (17− 6e) ≤ 0.

Hence, the S∗V ,m-radius of Sm is the root of t2m(17− 6e)+ 12m(3− e)tm− (17− 6e) = 0

in (0, 1). Consider the function k0(ς) =
ς(1+ςm)

1−ςm . Then Re k(ς)
ς > 0 in D. Thus, k0 ∈ Sm and

ςk′0(ς)
k(ς) = 1 + 2mςm

1−ς2m . Furthermore, k0 gives a sharp result, since at ς = RS∗B,m
(Sm), we have

ςk′0(ς)
k0(ς)

− 1 =
2mςm

1− ς2m =
17− 6e
6(3− e)

.

This completes the proof.

Consider the class F defined as
F =

{
k ∈ Am : Re

(
k(ς)
g(ς)

)
> 0 and Re

(
g(ς)

ς

)
> 0, g ∈ Am

}
,

Theorem 4. The sharp S∗V ,m-radius for F is

RS∗V ,m
(F) =

 17− 6e

6m(3− e) +
√
(17− 6e)2 + 36m2(3− e)2

 1
m

.

Proof. (1) Let k ∈ F and define p, h : D→ C by p(ς) = g(ς)
ς and h(ς) = k(ς)

g(ς) . Then, clearly
p, h ∈ Pm. Since k(ς) = ςp(ς)h(ς), by Lemma 2 it implies that∣∣∣∣ ςk′(ς)

k(ς)
− 1
∣∣∣∣ ≤ 4mtm

1− t2m ≤ 1− 1
6(3− e)

for t ≤
(

17−6e
6m(3−e)+

√
36m2(3−e)2+(17−6e)2

) 1
m
= RS∗V ,m

(F). Consider

k0(ς) = ς

(
1 + ςm

1− ςm

)2
and g0(ς) = ς

(
1 + ςm

1− ςm

)
.

Thus, clearly

Re
(

k0(ς)

g0(ς)

)
> 0 and Re

(
g0(ς)

ς

)
> 0

and hence, k ∈ F. A computation shows that at ς = RS∗V ,m
(F)e

iπ
m

ςk′(ς)
k(ς)

= 1 +
4mςm

1− ς2m = 2− 1
6(3− e)

.

This confirms the sharpness.

Theorem 5. The sharp S∗V -radii for the classes S∗L , S∗C, S∗e , and S∗lim are

(1) RS∗V (S
∗
L) =

(17−6e)(19−6e)
36(3−e)2 ≈ 0.65109,

(2) RS∗V (S
∗
C) =

1
2

(
−6 + 2e +

√
−15 + 11e− 2e2

)
/(3− e) ≈ 0.37751,

(3) RS∗B (S
∗
e ) = ln( 1

18−6e ) + 1 ≈ 0.47528,

(4) RS∗V (S
∗
lim) =

(
−9
√

2+3e
√

2+
√

9−3e
3(−3+e)

)
≈ 0.32624.
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Proof. (1) Let k ∈ S∗L . Then, we have ςk′(ς)
k(ς) ≺

√
1 + ς. Thus, for |ς| ≤ t < RS∗V (S

∗
L),

we have ∣∣∣∣ ςk′(ς)
k(ς)

− 1
∣∣∣∣ = ∣∣∣√1 + ς− 1

∣∣∣ ≤ 1−
√

1− t ≤ 1− 1
6(3− e)

.

By using Lemma 4, we obtain the hypothesis. Consider the function

k0(ς) =
4ς exp

[
2(
√

1 + ς− 1)
]

(1 +
√

1 + ς)2 .

Since ςk′0(ς)
k0(ς)

=
√

1 + ς, k0 ∈ S∗L . Furthermore, ςk′0(ς)
k0(ς)

=
√

1 + ς = 1
6(3−e) at ς =

(17−6e)(19−6e)
36(3−e)2 ; hence, the sharpness of the result is verified.

(2) Let k ∈ S∗C. Then ςk′(ς)
k(ς) ≺ 1 + 4ς

3 + 2ς2

3 . Thus, for |ς| = t, we obtain∣∣∣∣ ςk′(ς)
k(ς)

− 1
∣∣∣∣ =

∣∣∣∣1 + 4ς

3
+

2ς2

3
− 1
∣∣∣∣

≤ 1−
(

1 +
4t
3
+

2t2

3

)
≤ 1− 1

6(3− e)

for t ≤ 1
2

(
−6 + 2e +

√
15e− 3e2 − 18

)
/(3− e). Consider the function k1 given by

k1(ς) = ςexp
{

4ς + ς2

3

}
.

Since ςk′1(ς)
k1(ς)

= 1 + 4ς
3 + 2ς2

3 , it follows that k1 ∈ S∗C and at ς = RS∗V (S
∗
C), we have

ςk′1(ς)
k1(ς)

=
1

6(3− e)
.

Hence, the result is sharp.
(3) For k ∈ S∗e , we have∣∣∣∣ ςk′(ς)

k(ς)
− 1
∣∣∣∣ = |eς − 1| ≤ et − 1 ≤ e

6(3− e)
− 1.

Sharpness is guaranteed by k2 such that ςk′2(ς)
k2(ς)

= eς.

(4) Suppose k ∈ S∗lim. Then, ςk′(ς)
k(ς) ≺ 1 +

√
2ς + ς2

2 (see [21]). Thus, for |ς| = t,
we obtain ∣∣∣∣ ςk′(ς)

k(ς)
− 1
∣∣∣∣ =

∣∣∣∣1 +√2ς +
ς2

2
− 1
∣∣∣∣

≤ 1−
(

1 +
√

2t +
t2

2

)
≤ 1− 1

6(3− e)

for t ≤ −
√

2 +
√

e2+1
e . For sharpness, consider k3 given by

k3(ς) = ςexp

{
4
√

2ς + ς2

4

}
.
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Since ςk′3(ς)
k3(ς)

= 1 +
√

2ς + ς2

2 , it follows that k3 ∈ S∗lim and at ς = RS∗v (S
∗
lim), we have

ςk′3(ς)
k3(ς)

=
1

6(3− e)
.

Hence, the result is sharp.

4. Coefficient Estimates

Pommerenke [31] introduced the qth Hankel determinant for analytic functions. It is
given as

Hq,m(k) :=

∣∣∣∣∣∣∣∣∣
dm dm+1 . . . dm+q−1
dm+1 dm+2 . . . dm+q
...

... . . .
...

dm+q−1 dm+q . . . dm+2q−2

∣∣∣∣∣∣∣∣∣, (9)

where m ≥ 1 and q ≥ 1. We note that

H2,1(k) = d3 − d2
2, H2,2(k) = d2d4 − d2

3

and
H3,1(k) = 2d2d3d4 − d3

3 − d2
4 + d3d5 − d2

2d5. (10)

To find the sharp upper bound of H3,1 for subclasses of analytic function is much
difficult. Only a few papers [32–37] are devoted to finding a sharp bound for H3,1. In this
section, we find the sharp coefficient bound and sharp results for the Hankel determinants
H2,1, H2,2, and H3,1.

In order to prove our theorems, we will use the following useful results related to the
functions in the class P .

Let P represent the class of functions p which are analytic and defined for ς ∈ D
given by

p(ς) = 1 +
∞

∑
m=1

cmςm (11)

having positive real part in D.

Lemma 5 ([9]). Let h ∈ P be given by (11). Then

∣∣∣c2 − ξc2
1

∣∣∣ ≤

−4ξ + 2, ξ < 0,
2, 0 ≤ ξ ≤ 1,
4ξ − 2, ξ > 1.

Lemma 6. Let h ∈ P and of the form (11). Then∣∣∣c2 − ξc2
1

∣∣∣ ≤ 2 max{1, |2ξ − 1|}.

Lemma 7 ([38,39]). If h ∈ P of the form (11) with c1 > 0, then

c2 =
1
2
[c2

1 + (4− c2
1)x], (12)

c3 =
1
4
[c3

1 + 2c1(4− c2
1)x− c1(4− c2

1)x2 + 2(4− c2
1)(1− |x|

2)y], (13)

c4 =
1
8
[c4

1 + 3c2
1(4− c2

1)x + (4− 3c2
1)(4− c2

1)x2 + c2
1(4− c2

1)x3

+4(4− c2
1)(1− |x|

2)(c1y− c1xy− xy2)

+4(4− c2
1)(1− |x|

2)(1− |y|2)z] (14)
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for some x, y, z ∈ D := {ς, |ς| ≤ 1}.

Lemma 8 ([40]). Let h ∈ P given by (11). Let 0 ≤ J ≤ 1 and J(2J − 1) ≤ K ≤ J. Then

|c3 − 2J c1c2 + Kc3
1| ≤ 2.

Lemma 9 ([41]). Let h ∈ P be given by (11), 0 < j < 1, 0 < k < 1 and let

8j(1− j){(kl − 2m)2 + (k(j + k)− k)2}+ k(1− k)(l − 2jk)2 ≤ 4k2 j(1− k)2(1− j).

Then
|mc4

1 + jc2
2 + 2kc1c3 −

3
2

lc2
1c2 − c4| ≤ 2.

Lemma 10 ([42]). Let D := {ς ∈ C : |ς| ≤ 1}, and J, K, L are real numbers; let

Y(J, K, L) := max
{
|J + Kς + Lς2|+ 1− |ς|2 : ς ∈ D

}
.

If JL ≥ 0, then

Y(J, K, L) =


|J|+ |K|+ |L|, |K| ≥ 2(1− |L|),

1 + |J|+ K2

4(1− |L|) , |K| < 2(1− |L|).

Theorem 6. Let k ∈ S∗V be of the form (2). Then

|dm| ≤
1

2(m− 1)
, m = 2, 3, 4, 5.

These bounds are sharp.

Proof. Let k ∈ S∗V . Then

ςk′(ς)
k(ς)

=
(ω(ς))3

6
(
ω(ς)

(
eω(ς) + 1

)
− 2
(
eω(ς) − 1

)) , (15)

where ω ∈ B in D. Now for h ∈ P and of the form (11), we can write

ω(ς) =
h(ς)− 1
h(ς) + 1

=
∑∞

m=1 cmςm

2 + ∑∞
m=1 cmςm .

Now

(ω(ς))3

6
(
ω(ς)

(
eω(ς) + 1

)
− 2
(
eω(ς) − 1

))
= 1− 1

4
c1ς +

(
−1
4

c2 +
3

20
c2

1

)
ς2 +

(
−1
4

c3 +
3

10
c1c2 −

17
192

c3
1

)
ς3

+

(
6929

134, 400
c4

1 −
17
64

c2
1c2 +

3
10

c1c3 −
1
4

c4 +
3
20

c2
2

)
ς4 + · · · .

Furthermore, we have

ςk′(ς)
k(ς)

= 1 + d2ς +
(

2d3 − d2
2

)
ς2 +

(
3d4 − 3d2d3 + d3

2

)
ς3

+
(

4d5 − 4d2d4 − 2d2
3 + 4d3d2

2 − d4
2

)
ς4 + · · · . (16)
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Substituting in (15) and comparing the coefficients, we obtain

d2 =
−1
4

c1, (17)

d3 = −1
8

c2 +
17

160
c2

1, (18)

d4 = − 293
5760

c3
1 +

21
160

c1c2 −
1

12
c3, (19)

d5 =
82531

3225600
c4

1 −
67

640
c2c2

1 +
23

240
c1c3 +

29
640

c2
2 −

1
16

c4. (20)

The bound for |d2| can easily be obtained by using the well-known coefficient bounds
for class P . The bound for |d3| is obtained by using Lemma 5 for ξ = 17/20. For |d4|, we
may write (19) as follows:

|d4| =
1
12

∣∣∣∣c3 −
63
40

c1c2 +
293
480

c3
1

∣∣∣∣ = 1
12

∣∣∣c3 − 2Jc1c2 + Kc3
1

∣∣∣,
where J = 63

80 and K = 293
480 . It is easy to verify that 0 ≤ J ≤ 1 and J(2J − 1) ≤ K ≤ J. Then

by using Lemma 8, we have the required result. For d5, we can rewrite (20) as

|d5| =
1

16

∣∣∣∣ 82531
201600

c4
1 +

29
40

c2
2 +

23
15

c1c3 −
67
40

c2c2
1 − c4

∣∣∣∣
=

1
16

∣∣∣∣mc4
1 + jc2

2 + 2kc1c3 −
3
2

lc2c2
1 − c4

∣∣∣∣.
By using Lemma 9 with m = 82531

201600 , j = 29
40 , k = 23

30 , and l = 67
60 , we have

8j(1− j){(kl − 2m)2 + (k(j + k)− k)2}+ k(1− k)(l − 2jk)2 − 4k2 j(1− k)2(1− j)

≤ −44977769161
2032128000000

.

Therefore,

|d5| ≤
1
8

.

For sharpness, consider the function km : D→ C given by

km(ς) = ς exp
∫ ς

0

1
t

(
t3m

6(tm(etm + 1)− 2(etm − 1))
− 1
)

dt, m = 1, 2, 3, 4.

Then
ςk′m(ς)
km(ς)

=
t3m

6(tm(etm + 1)− 2(etm − 1))
, m = 1, 2, 3, 4.
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Hence, km ∈ S∗V , and

k1(ς) = ς exp
∫ ς

0

1
t

(
t3

6(t(et + 1)− 2(et − 1))
− 1
)

dt

= ς− 1
2

ς2 +
7

40
ς3 − 7

144
ς4 + · · · , (21)

k2(ς) = ς exp
∫ ς

0

1
t

 t6

6
(

t2
(

et2 + 1
)
− 2
(

et2 − 1
)) − 1


= ς− 1

4
ς3 +

9
160

ς5 + · · · , (22)

k3(ς) = ς exp
∫ ς

0

1
t

 t9

6
(

t3
(

et3 + 1
)
− 2
(

et3 − 1
)) − 1


= ς− 1

6
ς4 +

11
360

ς7 + · · · , (23)

k4(ς) = ς exp
∫ ς

0

1
t

 t12

6
(

t4
(

et4 + 1
)
− 2
(

et4 − 1
)) − 1


= ς− 1

8
ς5 +

13
640

ς9 + · · · . (24)

Next we investigate the Hankel determinant problems; the first two results study
Fekete–Szego functional, which is a generalized form of H2,1.

Theorem 7. Let k ∈ S∗V be given by (2). Then

|d3 − µd2
2| ≤

1
8


7−10µ

5 , µ ≤ −3
10 ,

2, − 3
10 ≤ µ ≤ 17

10 ,
−7+10µ

5 , µ > 17
10 .

This result is sharp.

Proof. If k ∈ S∗V , then from (17) and (18), we have∣∣∣d3 − µd2
2

∣∣∣ = 1
8

∣∣∣∣c2 −
1

20
(17− 10µ)c2

1

∣∣∣∣.
Then, by using Lemma 5 for ξ = 1

20 (17− 10µ), this completes the result.

Theorem 8. Let k ∈ S∗V be given by (2). Then

|d3 − µd2
2| ≤

1
4

max
{

1,
1
10
|7− 10µ|

}
, µ ∈ C.

Sharpness is obtained by k2 and k3 given in (21) and (22), respectively.

Corollary 1. Let k ∈ S∗V and of the form (2). Then

|H2,1(k)| = |d3 − d2
2| ≤

3
40

.

This inequality is sharp for the function k3 defined by (22).
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Theorem 9. Let k ∈ S∗V and of the form (2). Then

|H2,2(k)| ≤
1

16
.

This inequality is sharp for the function k3 defined by (22).

Proof. From (17)–(19) , we obtain

H2,2(k) =
329c4

1
230400

−
c2

1c2

60
−

c2
2

64
+

c1c3

48
. (25)

Now we can write
H2,2(k) =

1
230400

φ, (26)

where
φ = 329c4

1 − 1440c2
1c2 + 4800c3c1 − 3600c2

2.

The class S∗V as well as the functional H2,2(k) are invariant (rotationally); we suppose
that c := c1, such that 0 ≤ c ≤ 2. Then from (12) and (13) and by simplifying, we have

φ = −91c4 − 120(4− c2)xc2 − 300(4− c2)
(

c2 + 12
)

x2 + 2400c(4− c2)(1− |x|2)y,

where x and y are such that |x| ≤ 1, |y| ≤ 1.

First assume that c = 2. Then
|φ| ≤ 1456,

From (26), we obtain

|H2,2(k)| ≤
91

14400
,

and when c = 0,
|φ| = 14400|x|2 ≤ 14400,

so that
|H2,2(k)| ≤

1
16

.

Next assume that c ∈ (0, 2). Using triangle inequality, we obtain

|φ| ≤ 2400c(4− c2)Ψ(J, K, L),

where
Ψ(J, K, L) =

∣∣∣J + Kx + Lx2
∣∣∣+ 1− |x|2, x ∈ D,

with J =
−91c3

2400(4− c2)
, K = −c

20 , and L = −
(
c2 + 12

)
8c

. So clearly

JL =
91c2(c2 + 12

)
2400(4− c2)

> 0, for c ∈ (0, 2).

Note now that

|K| − 2(1− |L|) = 3c2 − 20c + 30
10c

> 0, c ∈ (0, 2),

which shows that |K| ≥ 2(1− |L|).
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Using Lemma 10, we have

|φ| ≤ 2400c(4− c2)(|J|+ |K|+ |L|) := g(c),

where
g(c) = −329c4− 1920c2 + 14, 400.

Since g′(c) < 0 for c ∈ (0, 2), max g(c) = g(0) = 14, 400, and hence from (26), we obtain
the result.

It is sharp for k2 given in (22). This completes the proof.

Theorem 10. Let k ∈ S∗V and of the form (2). Then

|d2d3 − d4| ≤
1
6

.

This result is sharp.

Proof. From (17)–(19), we obtain

|d2d3 − d4| =
48
576

∣∣∣∣c3 − c1c2 +
11
48

c3
1

∣∣∣∣ = 48
576

∣∣∣c3 − 2Jc1c2 + Kc3
1

∣∣∣,
where J = 1

2 and K = 11
48 . It is clear that 0 ≤ J ≤ 1 and J(2J− 1) ≤ K ≤ J. By the application

of Lemma 8, we obtain the result. It is sharp for k4 defined by (23).

Theorem 11. Let k ∈ S∗V and of the form (2). Then

|H3,1(k)| ≤
1

36
.

This bound is sharp.

Proof. Using (17)–(20), we obtain

H3,1(k) =
1

4644864000
(161371c6

1 − 17236800c3
2 + 21772800c1c2c3 − 1597860c4

1c2

+658560c3
1c3 + 4, 944, 240c2

1c2
2 − 12700800c2

1c4 + 36288000c2c4 − 32256000c2
3).

Using Lemma 7 and after simplification we obtain

H3,1(k) =
1

4644864000

(
v1(c, x) + v2(c, x)y + v3(c, x)y2 + ψ(c, x, y)z

)
,

where x, y, z ∈ D and

v1(c, x) := −5459c6 + (4− c2)((4− c2)(252, 000x4c2 − 1044540c2x2 + 453600x3 + 693000x3c2)

+ 2721600c2x2 − 51330c4x + 680400c4x3 − 895440c4x2),

v2(c, x) := −6720c(4− c2)(1− |x|2)(30(4− c2)(8x + 5x2)− 64c2 + 405xc2),

v3(c, x) := −100800(4− c2)(1− |x|2)(10(4− c2)(x2 + 8) + 27c2 x̄),

ψ(c, x, y) := 907200(4− c2)(1− |x|2)(1− |y|2)(3c2 + 10x(4− c2)).
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Now, by using |x| = x, |y| = y and |z| ≤ 1, we obtain

H3,1(k) ≤
1

4644864000

(
|v1(c, x)|+ |v2(c, x)|y + |v3(c, x)|y2 + |ψ(c, x, y)|

)
≤G(c, x, y),

where

G(c, x, y) :=
1

4644864000

(
g1(c, x) + g2(c, x)y + g3(c, x)y2 + g4(c, x)(1− y2)

)
,

with

g1(c, x) := 5459c6 + (4− c2)((4− c2)(252000x4c2 + 1044540c2x2 + 453600x3 + 693000x3c2)

+ 2721600c2x2 + 51330c4x + 680400c4x3 + 895440c4x2),

g2(c, x) := 6720c(4− c2)(1− x2)(30(4− c2)(8x + 5x2) + 64c2 + 405xc2),

g3(c, x) :=100800(4− c2)(1− x2)(10(4− c2)(x2 + 8) + 27c2x),

g4(c, x) :=907200(4− c2)(1− x2)(3c2 + 10x(4− c2)).

To prove the result, we maximize G(c, x, y) over Λ : [0, 2]× [0, 1]× [0, 1]. We discuss
all the cases one by one.

I. Firstly, we prove that interior of Λ has no critical point.

Let (c, x, y) ∈ (0, 2)× (0, 1)× (0, 1). Then

∂G
∂y

=
1

691200
(4− c2)(1− x2)[30y(x− 1)(10(4− c2)(x− 8) + 27c2)

+ c(30x(4− c2)(8 + 5x) + c2(405x + 64))].

So ∂G
∂y = 0 when

y =
c(30x(4− c2)(8 + 5x) + c2(405x + 64))

30(1− x)(10(4− c2)(x− 8) + 27c2)
:= y0.

If y0 is in Λ, a critical point, then y0 ∈ (0, 1), and

c3(405x + 64) + 30cx(8 + 5x)(4− c2) + 300(x− 1)(x− 8)(4− c2) < 810(1− x)c2 (27)

and

c2 >
40(x− 8)
10x− 107

. (28)

Suppose g(x) := 40(8− x)/(107− 10x). Now g′(x) < 0 for (0, 1). This implies that g(x) is
decreasing in (0, 1). Hence, c2 > 280/97. We see that (27) is satisfied for c > 1.760524723
and x < 341

810 . Now we prove that G(c, x, y) < 1
36 in (1.760524723, 2)× (0, 341

810 )× (0, 1). We
see that 1− x2 < 1 for x < 341

810 ; we may write

g1(c, x) ≤ 5459c6 + (4− c2)

(
34138222033916

23914845
c2 +

4441003952
32805

− 326949173771
23914845

c4
)

:= Φ1(c),

g2(c, x) ≤ 6720c(4− c2)

(
1116434

2187
+

233743
2187

c2
)

:= Φ2(c),

g3(c, x) ≤ 100800(4− c2)

(
10730162

32805
− 2309657

32805
c2
)

:= Φ3(c),

g4(c, x) ≤ 907200(4− c2)

(
−98

81
c2 +

1364
81

)
:= Φ4(c).
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Therefore

G(c, x, y) ≤ 1
1194393600

[
Φ1(c) + Φ4(c) + Φ2(c)y + [Φ3(c)−Φ4(c)]y2

]
:= ψ(c, y).

Now
∂ψ

∂y
=

1
1194393600

[Φ2(c) + 2[Φ3(c)−Φ4(c)]y]

and
∂2ψ

∂y2 =
1

1194393600
[Φ3(c)−Φ4(c)].

Since Φ3(c)−Φ4(c) ≤ 0 for c ∈ (1.760524723, 2), ∂2ψ

∂y2 ≤ 0 for y ∈ (0, 1). This shows that ∂ψ
∂y

is decreasing. Hence, for y ∈ (0, 1),

∂ψ

∂y
≤ ∂ψ

∂y
|y=0 = φ2(c) ≥ 0.

Therefore,

ψ(c, y) ≤ ψ(c, 1) =
1

1194393600
[φ1(c) + φ2(c) + φ3(c)] := κ(c).

We see that κ takes its maximum value 0.02473632401 at c = 1.760524723. Thus,

G(c, x, y) <
1
36
≈ 0.027778, (c, x, y) ∈ (1.760524723, 2)×

(
0,

341
810

)
× (0, 1).

Hence, G(c, x, y) < 1
36 . Therefore, G has no optimal solution in the interior of Λ.

II. Next we obtain the maxima inside the six faces of Λ.

On the face c = 0, we have

j1(x, y) := G(0, x, y) =
20(1− x2)(x− 1)(x− 8)y2 − x(171x2 − 180)

5760
, x, y ∈ (0, 1).

As j1 has no point of maxima in (0, 1)× (0, 1) since x, y ∈ (0, 1),

∂j1
∂y

=
(1− x2)(x− 1)(x− 8)y

144
6= 0.

On the face c = 2, we write

G(2, x, y) =
5459

72, 576, 000
, x, y ∈ (0, 1).

On the face x = 0, G(c, x, y) reduces to G(c, 0, y), given by

j2(c, y) =

100800(4− c2)(320− 107c2)y2 + 430080c3(4− c2)y + 5459c6 − 2721600c4 + 10886400c2

4644864000
,

where c ∈ (0, 2) and y ∈ (0, 1). We solve ∂j2
∂y = 0 and ∂j2

∂c = 0 to obtain the required result.

On solving ∂j2
∂y = 0, we obtain

y =
32c3

15(107c2 − 320)
=: y1. (29)
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For y1 ∈ (0, 1), which is possible only if c > c0, c0 ≈ 1.72935. The equation ∂j2
∂c = 0 implies

(−25132800 + 7190400c2)y2 + (860160c− 358400c3)y + 5459c4 − 1814400c2 + 3628800 = 0. (30)

By substituting Equation (29) in Equation (30) and simplifying, we obtain

−2313362944c6 + 1490403c8 + 18418671360c4 − 48254976000c2 + 41287680000 = 0. (31)

After some simplifications, we have a solution c ≈ 1.40960 of (31) in (0, 2). This value does
not satisfy (29). Thus we conclude that j2 has no point of maxima in (0, 2)× (0, 1).
On x = 1, we have

j3(c, y) := G(c, 1, y) =
367829c6 − 11675640c4 + 39090240c2 + 7257600

4644864000
, c ∈ (0, 2).

Solving ∂j3
∂c = 0, we obtain c := c0 ≈ 1.35379 as a critical point. We see that j3 has maxima

approximately equal to 0.00903 at c0.
On y = 0, G(c, x, y) can be written as

j4(c, x) : = G(c, x, 0)

=
1

4644864000

 5459c6 + (4− c2)((4− c2)(252000x4c2 − 8618400x3

+693000x3c2 + 9072000x + 1044540c2x2) + 51330c4x
+680400c4x3 + 895440c4x2 + 2721600c2)

.

We see that by using the numerical method, the system ∂j4
∂x = 0 and ∂j4

∂c = 0 has no solution
in (0, 2)× (0, 1).

On y = 1, G(c, x, y) reduces to

j5(c, x) : = G(c, x, 1)

=
1

4644864000



5459c6 + (4− c2)((4− c2)(1044540c2x2 + 1008000cx2

+252000x4c2 + 1612800cx− 1008000cx4 + 693000x3c2

−1612800cx3 − 7056000x2 + 453600x3 − 1008000x4

+8064000) + 51, 330c4x− 2721600c3x3 − 430080c3x2

+2721600c2x2 − 2721600x3c2 + 680400c4x3 + 430080c3

+895440c4x2 + 2721600c3x + 2721600c2x)

.

Similarly, ∂j5
∂x = 0 and ∂j5

∂c = 0 has no solution in (0, 2)× (0, 1).

III. On the vertices of Λ, we have

G(0, 0, 0) = 0, G(0, 0, 1) =
1

36
, G(0, 1, 1) =

1
640

, G(0, 1, 0) =
1

640
,

G(2, 1, 0) = G(2, 0, 0) = G(2, 1, 1) = G(2, 0, 1) =
5459

72576000
.

IV. Lastly, we find points of maxima of G(c, x, y) on the 12 edges of Λ.

G(c, 0, 0) =
5459c6 − 2721600c4 + 10886400c2

4644864000
≤ G(λ1, 0, 0)

=
1992069

238405448

√
1549387− 1239527205

119202724
≈ 0.00235, c ∈ (0, 2).

where

c =: λ1 =
12

5459

√
34391700− 27295

√
1549387 ≈ 1.41851.
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G(c, 0, 1) =
5459c6 − 430080c5 + 8064000c4 + 1720320c3 − 64512000c2 + 129024000

4644864000
≤ G(0, 0, 1)

=
1

36
≈ 0.02778, c ∈ (0, 2).

G(c, 1, 0) =
367829c6 − 11675640c4 + 39090240c2 + 7257600

4644864000
≤ G(λ2, 1, 0)

=
16177950997

61371251382117600

√
161779509970− 2381135977308821

24548500552847040
≈ 0.00903, c ∈ (0, 2),

where

c := λ2 =
2

367, 829

√
357886582130− 735658

√
161779509970 ≈ 1.35379.

G(0, x, 0) =
x(20− 19x2)

640
≤ G(0,

2
57

√
285, 0) =

√
285

1368
≈ 0.01234, x ∈ (0, 1)

G(0, x, 1) =
−20x4 + 9x3 − 140x2 + 160

5760
≤ G(0, 0, 1) =

1
36

, x ∈ (0, 1).

G(2, x, 0) =
5459

72576000
, x ∈ (0, 1).

G(2, x, 1) =
5459

72576000
, x ∈ (0, 1).

G(0, 0, y) =
1

36
y2 ≤ 1

36
, y ∈ (0, 1).

G(0, 1, y) =
1

640
≈ 0.00156, y ∈ (0, 1).

G(2, 0, y) =
5459

72576000
, y ∈ (0, 1).

G(2, 1, y) =
5459

72576000
, y ∈ (0, 1).

Since all cases have been dealt with, we have the required result. The result is sharp for
k3 given in (23), which is equivalent to choosing d2 = d3 = d5 = 0 and d4 = 1

6 , which
from (10), gives |H3,1(k)| = 1

36 .

5. Conclusions

We have defined and studied the starlike functions associated with Van der Pol
numbers. We have studied certain geometrical characteristics of the said functions which
include the derivation of structural formula, finding the radius of starlikeness of order α
and strong starlikeness, and establishing some inclusion results. We have also studied the
radii problems for various classes of analytic functions. Furthermore, we have investigated
some coefficient-related problems which include the sharp initial coefficient bounds and
sharp bounds of Hankel determinants of order two and three. This work would be helpful
in finding the bounds of the fourth Hankel determinant, Toelpitz determinants, bounds of
logarithmic coefficients and their related Hankel determinants for the functions of defined
class S∗V and their associated convex functions.
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