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Abstract: The Gauss–Bonnet formula finds applications in various fundamental fields. Global or
local analysis on the basis of this formula is possible only in integral form since the Gauss–Bonnet
formula depends on the choice of a simple region of an orientable smooth surface S. The objective
of the present paper is to construct a differential relation of the metric properties concerned at a
point on S. Pointwise analysis on S is possible through the differential relation, which is expected to
provide new geometrical insights into existing studies where the Gauss–Bonnet formula is applied in
integral form.
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1. Introduction

Let S be an orientable smooth surface in R3 and R a region of S with boundary.
Then the Gauss–Bonnet formula, which can be found in textbooks of classical differential
geometry (e.g., [1,2]), states that:∫∫

R
K +

∫
∂R

κg = 2πχ(R), (1)

where K is the Gaussian curvature over S, κg is the geodesic curvature over the boundary
∂R of R in S, and χ(R) is the Euler–Poincaré characteristic of R. Common to various
applications of the Gauss–Bonnet formula so far, any local or global analysis is viable only
in integral form, since the relation between geometry and topology depends on the choice
of R. For instance, the deflection angle of light by gravitational lensing has been calculated
on the basis of the Gauss–Bonnet formula, and the setup for integral regions is indispensable
for this calculation [3–17]. As a pioneering example of such an application, Gibbons and
Werner considered two regions of a static, spherically symmetric spacetime [5]: one is
bounded by two geodesics connecting the source and observer, and the other is a simply
connected, asymptotically flat region. The integral of Gaussian curvature over the former is
the key term for the calculation of the deflection angle. More precisely, the deflection angle
of light can be calculated for asymptotically flat spacetimes, as follows:

α = −
∫∫

So
Kdσ, (2)

where K is the Gaussian curvature over an optical surface and dσ is its element. This
formula can have different forms depending on physical situations (see, e.g., [4,9,12,13]),
but the integral of K is essential in common.

Turning the point of view from a simple region of S to its single point p, five metric
properties are concerned at p: the Gaussian curvature, the normal to S, the geodesic
curvatures of intersecting curves at p, their speeds, and the angles of intersection between
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those curves. To the best of our knowledge, the differential relation between these five
geometric objects has not been uncovered so far. If this differential relation is constructed,
it will be employable for pointwise analysis on S. Further, as those five properties are
associated in the Gauss–Bonnet formula, it could provide new geometrical insights into
existing applications of the formula that inevitably relied on integral analysis. The objective
of the present paper is thus to construct a differential relation between the above-described
five geometric objects for a general extension of application of the Gauss–Bonnet formula
to differential analysis.

2. Preliminaries and the Main Results

Let r : U → S be a parametrization of S in an open set U ⊆ R2. We consider a rect-
angular domain D ⊂ U: [uc − ∆u/2, uc + ∆u/2]× [vc − ∆v/2, vc + ∆v/2], where (uc, vc)
is the coordinate of the center σc of D. In addition, we use P to denote the image under
r(u, v) of D. This image has four external angles and these are denoted by θi, i = 1, 2, 3, 4,
which are ordered in the positive orientation from the angle formed at the lower right
vertex of P. In addition, the positively oriented boundary of P consists of four curves and
these are denoted by ci, i = 1, 2, 3, 4, which are ordered in the same orientation from the
upper one. Apart from these curves, we use γi, i = 1, 2, 3, 4, to denote the subsets of r(u, v)
corresponding to the sides of D. These are represented as follows:

γ1(u) := r(u, vc + ∆v/2), u ∈ [uc − ∆u/2, uc + ∆u/2]; (3)

γ2(v) := r(uc − ∆u/2, v), v ∈ [vc − ∆v/2, vc + ∆v/2]; (4)

γ3(u) := r(u, vc − ∆v/2), u ∈ [uc − ∆u/2, uc + ∆u/2]; (5)

γ4(v) := r(uc + ∆u/2, v), v ∈ [vc − ∆v/2, vc + ∆v/2]. (6)

The trajectories of the boundary paths c1 and c2 are overlapped with those of γ1(u)
and γ2(v), respectively, but with opposite orientation. On the other hand, c3 and c4 are
compatible with γ3(u) and γ4(v), respectively. Figure 1 illustrates the introduced notations
on D and P.

Figure 1. A rectangular region in the uv-plane and the image under r of the rectangle.

Remark 1. It can be easily seen that P is a simple region of S and χ(P) = 1.

We present two definitions for the surface S and the parametrization r(u, v).

Definition 1. We define two real-valued functions Fa, Fb : r−1(S)→ R, as follows:

Fa(u, v) := κg
(
r(u, v = const)

)∣∣r′(u, v = const)
∣∣, (u, v) ∈ U; (7)
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Fb(u, v) := κg
(
r(u = const, v)

)∣∣r′(u = const, v)
∣∣, (u, v) ∈ U, (8)

where κg is the geodesic curvature of a coordinate curve on the map of r(u, v) and |r′(u, v =
const)| and |r′(u = const, v)| are the speeds of the coordinate curves v = const. and u = const.,
respectively.

Remark 2. Given that S is orientable and smooth, it can be easily seen that Fa(u, v) and Fb(u, v)
are at least of class C1(U). First, these two functions are explicitly written as follows:

Fa(u, v) =
〈ruu, n ∧ ru〉
|ru|2

, (9)

Fb(u, v) =
〈rvv, n ∧ rv〉
|rv|2

, (10)

where the subscripts u, v, uu, and vv denote the first- and second-order derivatives of r(u, v) with
respect to u and v and n is the unit normal to S. The coordinates of r(u, v) are of class Cω(U) since
S is smooth. In addition, every 2-form on S is positive by the definition of an orientable surface in [2],
so that |ru|, |rv| 6= 0 in U. These two facts yield that the first-order derivatives of Fa(u, v) and
Fb(u, v) with respect to u and v are continuous in U.

Definition 2. Two intersecting coordinate lines at some point (u, v) ∈ U quadrisect a region
centered at the point, and the images under r(u, v) of the coordinate lines form an oriented angle of
intersection on each quadrant. These are measured by the positively turning displacements from
ru to rv, from rv to −ru, from −ru to −rv, and from −rv to ru, where ru and rv are the tangent
vectors to the coordinate curves v = const. and u = const., respectively. For such angles on each
point of S, we define four intersection angle functions such that φi : r−1(S) → R, i = 1, 2, 3, 4,
which are ordered in the positive orientation from the angle formed on the first quadrant. Figure 2
illustrates φi at pc = r(σc).

Figure 2. The intersection angle formed by two intersecting coordinate curves on (a–d) each of the
four quadrants.

Remark 3. The four intersection angle functions are related to each other; φ1 and φ2 are vertically
opposite to φ3 and φ4, respectively, and φ1 and φ3 are adjacent to φ2 and φ4, respectively. Therefore,
three relations between φi are established: φ1 = φ3, φ2 = φ4, and φ2 = π − φ1. In order to reduce
the notations φi, we substitute φ1 with φ and then, the others are naturally expressed in terms of φ
by those three relations: φ1 = φ3 = φ and φ2 = φ4 = π − φ.

The definition of φi seems redundant, but it helps the reader to systematically under-
stand the process of expressing the sum of θi in differential form in the proof of Theorem 1.
The following states our main results.
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Theorem 1. Let S be an orientable smooth surface in R3, and let r : U → S be a parametrization
of S in an open set U ⊆ R2. Then for each (u, v) ∈ U

K
∣∣N∣∣+(∂Fb

∂u
− ∂Fa

∂v

)
− ∂2φ

∂u∂v
= 0, (11)

where K is the Gaussian curvature over S, N is the normal to S, Fa and Fb are the products of the
geodesic curvatures of the coordinate curves v = const. and u = const. and the speeds of those
curves, respectively, and φ is the positively oriented angle of intersection from the coordinate curve
v = const. to u = const. on S.

Corollary 1. The Gaussian curvature, which is explicitly expressed from the differential relation of
Theorem (1), is intrinsic for orientable smooth surfaces in R3.

3. Real Analyticity of φ

We present a lemma that states the real analyticity of φ. For the proof of this lemma,
we recall three propositions proven in [18].

Proposition 1 ([18], Proposition 2.2.3). Let f be a real analytic function defined on an open set
U ⊆ Rm. Then f is continuous and has continuous, real analytic partial derivatives of all orders.
Further, the indefinite integral of f with respect to any variable is real analytic.

Proposition 2 ([18], Proposition 2.2.2). Let U, V ⊆ Rm be open. If f : U → R and g : V → R
are real analytic, then f + g, f · g are real analytic on U ∩V, and f /g is real analytic on U ∩V ∩
{x : g(x) 6= 0}.

Proposition 3 ([18], Proposition 2.2.8). If f1, f2, . . . , fm are real analytic in some neighborhood of
the point α ∈ Rk and g is real analytic in some neighborhood of the point ( f1(α), f2(α), . . . , fm(α)) ∈
Rm, then g[ f1(x), f2(x), . . . , fm(x)] is real analytic in a neighborhood of α.

Lemma 1. The intersection angle function φ(u, v) is real analytic in U.

Proof. As mentioned in Remark 2, |ru|, |rv| 6= 0 in U. Accordingly, when r(u, v) is given
as ( f (u, v), g(u, v), h(u, v)), φ(u, v) can be explicitly written by the formula of the angle
between two nonzero vectors, as follows:

φ(u, v) = arccos
(
〈ru, rv〉
|ru||rv|

)
= arccos

(
fu fv + gugv + huhv√

f 2
u + g2

u + h2
u
√

f 2
v + g2

v + h2
v

)
, (12)

where the subscripts u and v denote the first-order derivatives of f (u, v), g(u, v), and h(u, v)
with respect to u and v. We shall prove this lemma by showing that the composite arc cosine
function in Equation (12) is real analytic in U, and this will proceed in a bottom-up way.

Since S is smooth, f (u, v), g(u, v), and h(u, v) are real analytic in U. By Proposition 1,
any derivatives of these functions with respect to u and v are thus real analytic, and further,
by Proposition 2, any products of these derivatives and any sums of these products are
also real analytic. The numerator of the input for arccos(x) is thus real analytic in U.
For the denominator,

√
f 2
u + g2

u + h2
u and

√
f 2
v + g2

v + h2
v are the compositions of

√
x and

f 2
u + g2

u + h2
u and

√
x and f 2

v + g2
v + h2

v, respectively. The inputs for
√

x are real analytic
in U for the same reason above. Further, these inputs cannot be equal to zero in U (as
mentioned at the beginning of this proof). Taking into account that the elementary function√

x, x ∈ R+, is real analytic in R+
∗ , by Proposition 3,

√
f 2
u + g2

u + h2
u and

√
f 2
v + g2

v + h2
v are

real analytic in U. Further, by Proposition 2, so is the product of these two composite square
root functions. When put together, the numerator and denominator, again by Proposition 2,
the resultant rational function is real analytic in U. According to the Cauchy–Schwarz
inequality, the rational function, which is the input for arccos(x), can have an absolute
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value less than or equal to 1 in U. However, ru and rv are linearly independent by the
definition of an orientable surface, so that the absolute value is always less than 1 in U.
Taking into consideration that arccos(x), |x| ≤ 1, is real analytic in |x| < 1, by Proposition 3
this fact yields that the composite arc cosine function is real analytic in U.

4. Proofs

The outline for the proof of Theorem 1 is as follows. At a build-up stage, the Gauss–
Bonnet formula is applied to P to obtain a base equation. At the latter part, the base
equation is discretized and then the differential relation is derived by taking the limit of the
discretized equation as (∆u, ∆v)→ (0, 0).

Proof of Theorem 1. The Gauss–Bonnet formula is rewritten for P:∫∫
P

KdA +
∫

∂P
κg(s)ds +

4

∑
i=1

θi = 2π. (13)

First, the integral of Gaussian curvature over P is given by the integral over D, as follows:∫∫
P

KdA =
∫∫

D
K
∣∣N∣∣dudv. (14)

Second, the integrals of geodesic curvature along the positively oriented boundary paths of
P are written. The geodesic curvature of an oriented regular curve contained in an oriented
surface changes sign when the orientation of the curve is reversed [1]. Accordingly,
the geodesic curvatures of c1 and c2 can be represented by those of γ1(u) and γ2(v) with
opposite signs, respectively:

κg(c1) = −κg(γ1(u)), (15)

κg(c2) = −κg(γ2(v)). (16)

On the other hand, the geodesic curvatures of c3 and c4 are compatible with those of γ3(u)
and γ4(v):

κg(c3) = κg(γ3(u)), (17)

κg(c4) = κg(γ4(v)). (18)

The integral of geodesic curvature along ci may be represented by that over γi, as follows:

∫
c1

κg(s)ds = −
∫ uc− ∆u

2

uc+
∆u
2

−κg
(
γ1(u)

)∣∣γ′1(u)∣∣du, (19)

∫
c2

κg(s)ds = −
∫ vc− ∆v

2

vc+
∆v
2

−κg
(
γ2(v)

)∣∣γ′2(v)∣∣dv, (20)

∫
c3

κg(s)ds =
∫ uc+

∆u
2

uc− ∆u
2

κg
(
γ3(u)

)∣∣γ′3(u)∣∣du, (21)

∫
c4

κg(s)ds =
∫ vc+

∆v
2

vc− ∆v
2

κg
(
γ4(v)

)∣∣γ′4(v)∣∣dv. (22)

By means of Definition 1, the integrands in the right sides of Equations (19)–(22) are sub-
stitutable with Fa(u, vc + ∆v/2), Fb(uc − ∆u/2, v), Fa(u, vc − ∆v/2), and Fb(uc + ∆u/2, v),
respectively. Accordingly, the above four integrals are rewritten in terms of Fa(u, v) and
Fb(u, v): ∫

c1

κg(s)ds =
∫ uc− ∆u

2

uc+
∆u
2

Fa

(
u, vc +

∆v
2

)
du, (23)
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∫
c2

κg(s)ds =
∫ vc− ∆v

2

vc+
∆v
2

Fb

(
uc −

∆u
2

, v
)

dv, (24)

∫
c3

κg(s)ds =
∫ uc+

∆u
2

uc− ∆u
2

Fa

(
u, vc −

∆v
2

)
du, (25)

∫
c4

κg(s)ds =
∫ vc+

∆v
2

vc− ∆v
2

Fb

(
uc +

∆u
2

, v
)

dv. (26)

By adding up these integrals,

4

∑
i=1

∫
ci

κg(s)ds =
∮

∂D
(Fadu + Fbdv). (27)

Since the positively oriented boundary ∂D of D is a simple closed, piecewise smooth curve,
and as stated in Remark 2, ∂Fb/∂u and ∂Fa/∂v are continuous in U, Green’s theorem holds
for the above integral. Accordingly, the integral along ∂D may be transformed into that
over D, as follows: ∮

∂D
(Fadu + Fbdv) =

∫∫
D

(
∂Fb
∂u
− ∂Fa

∂v

)
dudv. (28)

Third, the sum of the external angles of P is expressed in differential form. Since the
domain for P is a rectangle, those external angles are measured by the positively turning
displacements from ru to rv, from rv to −ru, from −ru to −rv, and from −rv to ru at the
vertices of P, respectively. This implies that the external angles θi can be represented in
terms of φi(u, v). Further, by the two relations established in Remark 3, θi is consequently
expressed in terms of φ:

θ1 = φ1

(
uc +

∆u
2

, vc −
∆v
2

)
= φ

(
uc +

∆u
2

, vc −
∆v
2

)
, (29)

θ2 = φ2

(
uc +

∆u
2

, vc +
∆v
2

)
= π − φ

(
uc +

∆u
2

, vc +
∆v
2

)
, (30)

θ3 = φ3

(
uc −

∆u
2

, vc +
∆v
2

)
= φ

(
uc −

∆u
2

, vc +
∆v
2

)
, (31)

θ4 = φ4

(
uc −

∆u
2

, vc −
∆v
2

)
= π − φ

(
uc −

∆u
2

, vc −
∆v
2

)
. (32)

Since φ(u, v) is real analytic in U (as stated in Lemma 1), φ(σ), where σ ∈ D is some point
in the neighborhood of σc, may be expanded at σc as a convergent Taylor-series if σ lies
within the region of convergence centered at σc. At this stage, it may be assumed that D
is small enough to satisfy that its vertices lie within the region of convergence. When the
values of φ(u, v) corresponding to the vertices of D are expanded as Taylor-series at σc,
this assumption ensures their convergence. The four Taylor-series expansions are written
as follows:
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φ
(

uc +
∆u
2 , vc − ∆v

2

)
= φ(σc) +

∂φ
∂u

∣∣∣∣∣
σc

(
∆u
2

)
− ∂φ

∂v

∣∣∣∣∣
σc

(
∆v
2

)
+ 1

2

 ∂2φ

∂u2

∣∣∣∣∣
σc

(
∆u
2

)2
− 2 ∂2φ

∂u∂v

∣∣∣∣∣
σc

(
∆u
2

)(
∆v
2

)
+ ∂2φ

∂v2

∣∣∣∣∣
σc

(
∆v
2

)2


+∑∞

n=3

 1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣∣
σc

(−1)k
(

∆u
2

)n−k(∆v
2

)k

,

(33)

φ
(

uc +
∆u
2 , vc +

∆v
2

)
= φ(σc) +

∂φ
∂u

∣∣∣∣∣
σc

(
∆u
2

)
+ ∂φ

∂v

∣∣∣∣∣
σc

(
∆v
2

)
+ 1

2

 ∂2φ

∂u2

∣∣∣∣∣
σc

(
∆u
2

)2
+ 2 ∂2φ

∂u∂v

∣∣∣∣∣
σc

(
∆u
2

)(
∆v
2

)
+ ∂2φ

∂v2

∣∣∣∣∣
σc

(
∆v
2

)2


+∑∞
n=3

 1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣∣
σc

(
∆u
2

)n−k(∆v
2

)k

,

(34)

φ
(

uc − ∆u
2 , vc +

∆v
2

)
= φ(σc)− ∂φ

∂u

∣∣∣∣∣
σc

(
∆u
2

)
+ ∂φ

∂v

∣∣∣∣∣
σc

(
∆v
2

)
+ 1

2

 ∂2φ

∂u2

∣∣∣∣∣
σc

(
∆u
2

)2
− 2 ∂2φ

∂u∂v

∣∣∣∣∣
σc

(
∆u
2

)(
∆v
2

)
+ ∂2φ

∂v2

∣∣∣∣∣
σc

(
∆v
2

)2


+∑∞

n=3

 1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣∣
σc

(−1)n−k
(

∆u
2

)n−k(∆v
2

)k

,

(35)

φ
(

uc − ∆u
2 , vc − ∆v

2

)
= φ(σc)− ∂φ

∂u

∣∣∣∣∣
σc

(
∆u
2

)
− ∂φ

∂v

∣∣∣∣∣
σc

(
∆v
2

)
+ 1

2

 ∂2φ

∂u2

∣∣∣∣∣
σc

(
∆u
2

)2
+ 2 ∂2φ

∂u∂v

∣∣∣∣∣
σc

(
∆u
2

)(
∆v
2

)
+ ∂2φ

∂v2

∣∣∣∣∣
σc

(
∆v
2

)2


+∑∞
n=3

 1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣∣
σc

(−1)n
(

∆u
2

)n−k(∆v
2

)k

.

(36)

By introducing these expanded series into Equations (29)–(32) and then adding up the
resultant equations,

4

∑
i=1

θi = 2π − ∂2φ

∂u∂v

∣∣∣∣∣
σc

∆u∆v + R̃, (37)

where R̃ is the sum of the remainders:

R̃ = ∑∞
n=3

[
1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣∣
σc

{
(−1)k + (−1)

+(−1)n−k + (−1)n+1
}(

∆u
2

)n−k(∆v
2

)k
]

.

(38)

The sum of Equations (14), (28) and (37) follows from the Gauss–Bonnet formula:

∫∫
D

{
K
∣∣N∣∣+(∂Fb

∂u
− ∂Fa

∂v

)}
dudv− ∂2φ

∂u∂v

∣∣∣∣∣
σc

∆u∆v + R̃ = 0, (39)
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where 2π has been canceled out. Since S is orientable and smooth, the integrand of the
double integral in Equation (39) is continuous in D. The mean value theorem for definite
integrals thus holds for the integral term in Equation (39). Accordingly, there exists some
point σ∗ in the open region of D, such that

∫∫
D

{
K
∣∣N∣∣+(∂Fb

∂u
− ∂Fa

∂v

)}
dudv =

{
K(σ∗)

∣∣N(σ∗)
∣∣+(∂Fb

∂u

∣∣∣∣∣
σ∗

− ∂Fa

∂v

∣∣∣∣∣
σ∗

)}
∆u∆v. (40)

By introducing the right side of Equation (40) into Equation (39),{
K(σ∗)

∣∣N(σ∗)
∣∣+(∂Fb

∂u

∣∣∣∣∣
σ∗

− ∂Fa

∂v

∣∣∣∣∣
σ∗

)}
∆u∆v− ∂2φ

∂u∂v

∣∣∣∣∣
σc

∆u∆v + R̃ = 0. (41)

The above equation is then divided by ∆u∆v:{
K(σ∗)

∣∣N(σ∗)
∣∣+(∂Fb

∂u

∣∣∣∣∣
σ∗

− ∂Fa

∂v

∣∣∣∣∣
σ∗

)}
− ∂2φ

∂u∂v

∣∣∣∣∣
σc

+
R̃

∆u∆v
= 0. (42)

By taking the limit of this equation as (∆u, ∆v)→ (0, 0),

lim(∆u,∆v)→(0,0)

{
K(σ∗)

∣∣N(σ∗)
∣∣+( ∂Fb

∂u

∣∣∣∣∣
σ∗

− ∂Fa
∂v

∣∣∣∣∣
σ∗

)}
− ∂2φ

∂u∂v

∣∣∣∣∣
σc

+ lim(∆u,∆v)→(0,0)

(
R̃

∆u∆v

)
= 0.

(43)

Let I(u, v) be the integrand of the double integral in Equation (39). Since I(u, v) is continu-
ous in D (as mentioned above), the extreme value theorem holds for I(u, v). Accordingly,
there exist σm and σM in D, such that

I(σm) ≤ I(σ) ≤ I(σM), ∀σ ∈ D. (44)

By the way,
lim

(∆u,∆v)→(0,0)
I(σm) = lim

(∆u,∆v)→(0,0)
I(σM) = I(σc). (45)

Since I(σm) ≤ I(σ∗) ≤ I(σM), by the squeeze theorem

lim
(∆u,∆v)→(0,0)

I(σ∗) = I(σc). (46)

Therefore, σ∗ tends to σc as (∆u, ∆v) → (0, 0). On the other hand, the remainder term in
Equation (42) is written as follows:

R̃
∆u∆v = ∑∞

n=3

[
1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣
σc

{
(−1)k + (−1)

+(−1)n−k + (−1)n+1
}(

1
4

)(
∆u
2

)n−k−1(∆v
2

)k−1
]

.

(47)

In the above equation, the sum of the power terms of (−1) in the braces vanishes for
all k for odd n and for even k for even n. All terms multiplied by this sum thus vanish
irrespective of ∆u and ∆v. On the other hand, all terms for odd k for even n tend to
zero as (∆u, ∆v) → (0, 0). Together, R̃/(∆u∆v) vanishes as (∆u, ∆v) → (0, 0). Finally,
the differential relation at σc is obtained as follows:

K(σc)
∣∣N(σc)

∣∣+(∂Fb
∂u

∣∣∣∣
σc

− ∂Fa

∂v

∣∣∣∣
σc

)
− ∂2φ

∂u∂v

∣∣∣∣
σc

= 0. (48)
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Since the point σc is arbitrary, the above relation holds for each σ ∈ U. This completes the
proof.

As a preliminary setup for the proof of Corollary 1, the coefficients of the first and
second fundamental forms of r(u, v) are denoted as follows:

E = 〈ru, ru〉, F = 〈ru, rv〉, G = 〈rv, rv〉, (49)

L = 〈ruu, n〉, M = 〈ruv, n〉, N = 〈rvv, n〉. (50)

According to Gauss’ Theorema Egregium, the Gaussian curvature of an orientable
smooth surface embedded in R3 is intrinsic. As is well known, this is proved by showing
that the Gaussian curvature is represented in terms only of E,F,G, and their derivatives.
The proof of Corollary 1 will proceed in a similar fashion.

Proof of Corollary 1. First, the Gaussian curvature K is expressed as a functional from
Equation (11),

K =

(
∂Fa
∂v −

∂Fb
∂u

)
+ ∂2φ

∂u∂v∣∣N∣∣ . (51)

The two entities φ and |N| in this equation are straightforwardly written in terms of E, F,
and G:

φ = arccos
(

F√
EG

)
, (52)

|N| =
√

EG− F2. (53)

To express Fa as a whole in the desired form, each of the terms consisting of Fa in Equation (9)
is first rewritten:

n ∧ ru =
ru ∧ rv

|ru ∧ rv|
∧ ru

=
1√

EG− F2
(〈ru, ru〉rv − 〈rv, ru〉ru)

=
Erv − Fru√

EG− F2

(54)

and
ruu = Γu

uuru + Γv
uurv + Ln, (55)

where Γk
ij are the Christoffel symbols of S. Then

Fa =
〈ruu, n ∧ ru〉
|ru|2

=
〈Γu

uuru + Γv
uurv + Ln, Erv−Fru√

EG−F2 〉
E

=
1

E
√

EG− F2
(Γu

uu〈ru, Erv − Fru〉+ Γv
uu〈rv, Erv − Fru〉)

=
1

E
√

EG− F2

(
Γu

uu(EF− FE) + Γv
uu(EG− F2)

)
=

√
EG− F2

E
Γv

uu.

(56)
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We recall the expression of the Christoffel symbol Γv
uu, as follows:

Γv
uu = −E(Ev − 2Fu) + EuF

2(EG− F2)
. (57)

By introducing this expression into the above equation,

Fa = −
E(Ev − 2Fu) + EuF

2E
√

EG− F2
. (58)

Similarly,

Fb =
G(Gu − 2Fv) + GvF

2G
√

EG− F2
. (59)

In substituting the rewritten expressions of φ, |N|, Fa, and Fb into the explicit expression
of K and then manipulating the derivatives contained therein, it involves only E, F, G,
and their derivatives. This completes the proof.

5. Concluding Remarks and Examples

In summary, for orientable smooth surfaces in R3 we constructed a differential relation
between five metric properties: K, |N|, Fa, Fb, and φ. The differential relation can be applied
to those surfaces given by either orthogonal or non-orthogonal parameterizations since
Theorem 1 has no loss of generality for parametrization. In representing the Gaussian
curvature explicitly from the differential relation of Theorem 1, the resultant equation may
be regarded as a specific form of the Brioschi formula. However, it is emphasized that
the objective of this study is not to establish a new expression for the Gaussian curvature,
but to facilitate a general extension of the application of the Gauss–Bonnet formula via a
differential relation of the metric properties of S.

We present examples of the differential relation of Theorem 1 by means of two surfaces
given by orthogonal and non-orthogonal parameterizations, respectively. For a systematic
investigation, we hereafter denote the three budgets of Equation (11) by IK, Iκg , and Iφ in
order, respectively.

Example 1. Let S1 be a unit sphere, and let r1 be a parametrization of S1 such that r1(u, v) =
(sin u cos v, sin u sin v, cos u), (u, v) ∈ (0, π) × (0, 2π). Taking into account that r1(u, v) is
orthogonal and the geodesic curvature of the great circle v = const. over S1 is equal to zero,
the differential relation of Equation (11) is reduced to a particularly elementary form, as follows:

K
∣∣N∣∣+ ∂Fb

∂u
= 0. (60)

For a computer-aided investigation, we consider a subset of U as a test interval: 0 < u < π at
v = π/6. We computed IK, Iκg , Iφ, and their sum for the considered interval. First, we confirmed
that the root-mean-square (r.m.s.) value of the sum is zero. Figure 3a shows the variations of the
three budgets as a function of u. The values of Iφ are trivially zero since r1 is orthogonal. On the
other hand, the values of IK counteract exactly those of Iκg .
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Figure 3. Budgets of the differential Equation (11) as a function of u for two surfaces: (a) at v = π/6
for a unit sphere and (b) at v = 0 for the monkey saddle.

Example 2. Let S2 be the “monkey saddle” given by r2(u, v) = (u, v, u3 − 3v2u), (u, v) ∈
(−∞, ∞)× (−∞, ∞). It is well known that S2 is an orientable smooth surface. We computed IK,
Iκg , and Iφ for a test interval: −1 ≤ u ≤ 1 at v = 0. For this case, the order of the r.m.s. value
of the sum is identified as 10−14, and we attribute this error to the floating-point precision in our
computation. As observed in Figure 3b, the sum of the three budgets agrees with the differential
relation of Equation (11), but now with the non-trivial values of Iφ.
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