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Abstract: As the field of deep learning experiences a meteoric rise, the urgency to decipher the
complex geometric properties of feature spaces, which underlie the effectiveness of diverse learning
algorithms and optimization techniques, has become paramount. In this scholarly review, a compre-
hensive, holistic outlook on the geometry of feature spaces in deep learning models is provided in
order to thoroughly probe the interconnections between feature spaces and a multitude of influential
factors such as activation functions, normalization methods, and model architectures. The exploration
commences with an all-encompassing examination of deep learning models, followed by a rigor-
ous dissection of feature space geometry, delving into manifold structures, curvature, wide neural
networks and Gaussian processes, critical points and loss landscapes, singular value spectra, and
adversarial robustness, among other notable topics. Moreover, transfer learning and disentangled
representations in feature space are illuminated, accentuating the progress and challenges in these
areas. In conclusion, the challenges and future research directions in the domain of feature space
geometry are outlined, emphasizing the significance of comprehending overparameterized mod-
els, unsupervised and semi-supervised learning, interpretable feature space geometry, topological
analysis, and multimodal and multi-task learning. Embracing a holistic perspective, this review
aspires to serve as an exhaustive guide for researchers and practitioners alike, clarifying the intricacies
of the geometry of feature spaces in deep learning models and mapping the trajectory for future
advancements in this enigmatic and enthralling domain.

Keywords: feature space geometry; deep learning models; manifold structures; disentangled
representations

MSC: 68T27

1. Introduction

The pervasive presence of deep learning models in contemporary artificial intelligence
research and applications has given rise to an urgent need for a thorough understanding of
the underlying structures and properties of these models [1–5]. One of the most prominent
and yet enigmatic aspects of deep learning models is the geometry of feature spaces [6],
which constitutes the foundation upon which various learning algorithms and optimization
techniques are established. In this scholarly work, a holistic perspective on the geometry
of feature space in deep learning models hopes to be offered by meticulously examining
the interconnections between feature spaces and a plethora of factors that impact their
geometrical properties, such as activation functions, normalization methods, and model
architectures [6–13].

The exploration begins with a review of the background in deep learning, encompass-
ing a diverse array of models such as feedforward neural networks (FNNs), convolutional
neural networks (CNNs), and transformer models, as well as an investigation of activation
functions and normalization methods. Subsequently, an in-depth analysis of the geometry
of feature space is undertaken, scrutinizing the relationships between feature space and
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activation functions, and probing the interplay between feature space and normalization
methods. Throughout the investigation, various aspects of isotropy, connectivity, and the
combination of ReLU-inspired activations with normalization methods are investigated.

After a thorough examination of recent studies that have informed the understanding
of feature space geometry, manifold structures, curvature, wide neural networks and Gaus-
sian processes, critical points and loss landscapes, singular value spectra, and adversarial
robustness, among other topics, are discussed. The state of the art in transfer learning and
disentangled representations in feature space is also evaluated, emphasizing the advances
and challenges in these areas.

As a deeper dive into the topic of deep learning is taken, the limitations in current
review papers that concentrate on particular aspects or applications within the field [14–18]
become apparent, while previous studies have made notable progress in shedding light on
various aspects of deep learning models, a gap persists in providing a truly comprehensive
and integrative understanding of the geometry of feature spaces. In particular, the extant
literature often concentrates on discrete aspects, such as manifold structures, curvature, or
adversarial robustness, without adequately situating these elements within the broader
framework of deep learning models. Additionally, the rapidly evolving nature of deep
learning research calls for a current synthesis that encompasses the most recent findings
and methodological advancements.

To address these gaps, several innovative contributions to the field are offered in
the current work. First, a cogent and unified framework that cohesively integrates the
diverse aspects of feature space geometry in deep learning is introduced, promoting a
comprehensive understanding of the subject. Second, by leveraging a collection of state-
of-the-art research, a timely overview of the most recent breakthroughs and trends in the
field is delivered, making it a valuable resource for both experienced professionals and
newcomers alike. Lastly, the exploration of the challenges and future research directions in
feature space geometry serves to stimulate and direct further investigation, thus paving the
way for groundbreaking advancements in this intricate and compelling area.

A set of inclusion and exclusion criteria was established to ensure a focused and
comprehensive mathematical examination of the geometry of feature space in deep learning.
Studies were included if they primarily discussed the mathematical properties of feature
spaces in deep learning models, with an emphasis on their geometrical aspects. In contrast,
studies were excluded if they primarily focused on applications or implementation aspects
without a significant contribution to the understanding of feature space geometry. This
selection process allowed for concentration of efforts on providing a thorough and up-to-
date review of the most relevant research in this domain.

The research questions examined in this paper are centered on providing a compre-
hensive mathematical understanding of the geometry of feature spaces in deep learning
models. The relationships between feature spaces and activation functions, as well as the
synergistic integration of ReLU-inspired activation functions and normalization techniques,
are explored. Furthermore, how these interactions can lead to mutual benefits and potential
improvements in model performance is investigated. The review also covers a wide range
of topics in feature space geometry, including manifold structures, curvature, critical points,
and adversarial robustness, as well as transfer learning and disentangled representations
in feature space.

A series of distinct yet interconnected contributions aimed at providing a comprehen-
sive understanding of the geometry of feature spaces in deep learning models is presented.
Specifically, (1) a novel perspective on the relationships between feature space and ac-
tivation functions in deep learning is offered, providing the intricate interplay between
these key components; (2) the synergistic integration of ReLU-inspired activation functions
and normalization techniques is explored, revealing the mutual benefits and potential
improvements in model performance; (3) an extensive review of recent studies in feature
space geometry in deep learning is provided, covering a wide range of topics such as
manifold structures, curvature, critical points, and adversarial robustness; (4) the current
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state of transfer learning and disentangled representations in feature space is discussed,
highlighting both achievements and challenges in these areas; and (5) the challenges and
future research directions in feature space geometry are identified and outlined, including
overparameterized models, unsupervised and semi-supervised learning, interpretable
geometry, topological analysis, and multimodal and multi-task learning. Collectively, these
contributions serve to advance our understanding of feature space geometry in deep learn-
ing, providing a solid foundation for further exploration and innovation in this rapidly
evolving domain.

The exploration of feature space geometry in deep learning is organized into several
sections to provide a structured and coherent overview. Section 2 offers essential back-
ground information on deep learning architectures, activation functions, and normalization
methods. Section 3 provides perspectives on the relationships between feature spaces and
various factors that impact their geometrical properties. Section 4 delves into the recent
studies that have shaped our understanding of feature space geometry, examining a wide
range of topics and approaches. Section 5 discusses the challenges and future research di-
rections in feature space geometry, outlining the areas where progress is needed to advance
our knowledge. Finally, in Section 6, the conclusions are presented and the implications of
the findings for the broader field of deep learning are reflected upon.

2. Background
2.1. Deep Learning Architectures

Deep learning architectures encompass a diverse array of artificial neural networks
specifically engineered to unravel and interpret hierarchical structures within input data.
These intricate models are composed of a multitude of interconnected layers, each diligently
processing and transforming input data into increasingly abstract representations. In
the following sections, the fundamental types of deep learning architectures and their
mathematical underpinnings are explored, with a focus on feedforward neural networks,
CNNs, and cutting-edge transformer models.

2.1.1. Feedforward Neural Networks (FNNs)

Feedforward neural networks (FNNs) represent the most elementary and foundational
type of deep learning models [19]. They are comprised of input, hidden, and output layers
that work in tandem to receive high-dimensional data, process it, and ultimately generate
the final prediction. The layers are interconnected through synaptic weights, and the
neurons within each layer employ activation functions to incorporate nonlinearity into the
model. Consider a compact subset X ⊂ RD that characterizes the latent space of a sample
space with high dimensionality, where D denotes the hypothetical dimension of the latent
space. The input layer can be expressed as a vector x ∈ R(X ), with R symbolizing the
mapping between the latent space and the sample space. The output of each layer can be
formulated as follows:

h(l) = f (l)(W(l)h(l−1) + b(l)) (1)

where h(l) signifies the output of the l-th layer, W(l) ∈ Rnl×nl−1 denotes the weight matrix
interconnecting layers l − 1 and l, b(l) ∈ Rnl represents the bias vector for layer l, nl
corresponds to the number of neurons in layer l, and f (l) : Rnl → Rnl is the element-wise
activation function. Widely adopted activation functions encompass the rectified linear
unit (ReLU) f (x) = max(0, x), sigmoid σ(x) = 1

1+e−x , and hyperbolic tangent tanh(x).

For the input layer, h(0) = x holds, while the ultimate output layer L furnishes
the prediction, denoted by h(L). The FNN maps the high-dimensional data from the
finite setR(X ) to the output space via a sequence of transformations, encoding the data’s
inherent structure in the hidden layers’ activations. This chain of transformations empowers
the FNN to discern intricate patterns and associations within the high-dimensional data
embedded in the compact set of the latent space.
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The transformations applied to the input data as it advances through the network
can be meticulously examined to comprehend how the hidden layers of FNNs accurately
emulate the latent space. Given X ⊂ RD within the latent space and x ∈ R(X ), the
transformations transpire through the weight matrices W(l) and activation functions f (l),
as explicated in Equation (1).

The transformations executed by the hidden layers can be perceived as a succession of
mappings Φ(l) : Rnl−1 → Rnl , where nl corresponds to the quantity of neurons in layer l.
The mapping function for layer l is articulated by:

Φ(l)(h(l−1)) = f (l)(W(l)h(l−1) + b(l)) (2)

The synthesis of these mappings constitutes the comprehensive transformation em-
ployed by the FNN. For a network encompassing L layers, the ultimate mapping Φ :
R(X )→ RnL is delineated by:

Φ(x) = Φ(L) ◦Φ(L−1) ◦ · · · ◦Φ(1)(x) (3)

The approximation ofX can be interpreted as the FNN’s capacity to acquire a mapping
Φ(l) that renders the data analogous to X , such that the distances between points in the
input space are manifested in the hidden layer activations with the approximation of the
latent space. This concept can be formalized via the notion of a Lipschitz continuous
mapping, where for a specific constant K > 0:

|Φ(x1)−Φ(x2)| ≤ K|x1 − x2|, ∀x1, x2 ∈ X (4)

When an FNN is proficient in learning a Lipschitz continuous mapping Φ that fulfills
the inequality stipulated in Equation (4), it can efficaciously approximate the latent space by
conserving the data structure within the hidden layers’ activations. This endows the FNN
with the ability to discern intricate patterns and associations within the high-dimensional
data, ultimately bolstering its generalization capabilities.

2.1.2. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) represent a distinct class of deep learning
models, predominantly tailored for processing grid-structured data, such as images. CNNs
utilize convolutional layers that perform convolution operations on input data, enabling
the model to discern local patterns and spatial hierarchies [20]. A convolution operation
can be expressed as:

h(l)
i,j = f (l)

(
∑
m,n

W(l)
m,nh(l−1)

i+m,j+n + b(l)

)
(5)

where h(l)
i,j signifies the output of the l-th convolutional layer at position (i, j), W(l)

m,n denotes
the weights of the convolutional kernel at position (m, n), and the sum encompasses the
spatial extent of the kernel. CNNs frequently integrate pooling layers, which minimize
the spatial dimensions of the feature maps, and fully connected layers, analogous to those
present in FNNs.

To obtain an exhaustive understanding of how CNNs’ hidden layers efficaciously
reconstruct the compact subspace of the latent space containing spatial information, a
thorough examination of the unique structure and operations of CNNs is required, concen-
trating particularly on the convolutional and pooling layers. These specialized layers are
explicitly devised to capture local patterns and spatial hierarchies in grid-like data, such as
images, more efficiently than FNNs. By leveraging these intrinsic advantages, CNNs can
adeptly extract and represent the most pertinent and informative features of the input data,
facilitating superior pattern recognition and classification accuracy.
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Suppose that high-dimensional data is possessed, where the data exhibits robust
spatial correlations by the properties of X . The input layer of a CNN can be represented as
a tensor X ∈ R(X ), and the output of each convolutional layer can be expressed as:

H(l)
i,j = f (l)

(
∑
m,n

W(l)
m,nH(l−1)

i+m,j+n + b(l)

)
(6)

where H(l)
i,j represents the output of the l-th convolutional layer at position (i, j), W(l)

m,n

signifies the weights of the convolutional kernel at position (m, n), and the sum spans the
spatial extent of the kernel.

In conjunction with convolutional layers, CNNs frequently integrate pooling layers
that reduce the spatial dimensions of feature maps while retaining the most prominent
spatial information. A pooling layer can be portrayed as:

P(l)
i,j = g(l)

(
H(l)

i:i+M,j:j+N

)
(7)

where P(l)
i,j denotes the output of the l-th pooling layer at position (i, j), M and N represent

the dimensions of the pooling window, and g(l) constitutes the pooling operation, such as
max or average pooling.

The synergistic effect of convolutional and pooling layers in a CNN enables the more
efficient recovery of the compact subspace of the latent space of spatial information by
learning a series of mappings Ψ(l) : Rnl−1 → Rnl , where nl signifies the number of features
in layer l. The comprehensive transformation applied by the CNN can be expressed as:

Ψ(X) = Ψ(L) ◦Ψ(L−1) ◦ · · · ◦Ψ(1)(X) (8)

2.1.3. Transformer Models and Attention Mechanism

Transformer models have revolutionized natural language processing and are now
widely employed for various sequential data tasks. These models rely on self-attention
mechanisms to capture long-range dependencies in input data, rather than using recurrent
or convolutional architectures. The fundamental building block of a transformer model is
the scaled dot-product self-attention mechanism, which can be expressed as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (9)

where Q, K, and V are the query, key, and value matrices, respectively, and dk is the
dimension of the key vectors. These matrices are derived from the input embeddings
through linear transformations using learnable weight matrices WQ, WK, and WV :

Q = XWQ, K = XWK, V = XWV (10)

Transformer models employ multi-head attention to learn different types of depen-
dencies in the input data. The output of each attention head is concatenated and linearly
transformed to produce the final output:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)W
O (11)

where headi = Attention(Qi, Ki, Vi), and WO is a learnable weight matrix. The transformer
architecture consists of multiple layers of multi-head attention, followed by position-wise
feedforward layers and layer normalization.
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2.2. Activation Functions in Deep Learning

The choice of activation function in a deep learning model has a significant impact
on the geometry of the feature space. The relationship between the choice of activation
function and the geometry of the feature space is discussed in this section [21].

The activation function σ is typically chosen to introduce nonlinearity into the model.
Common choices include the rectified linear unit (ReLU), sigmoid, and hyperbolic tangent
(tanh) functions. The choice of activation function affects the shape of the decision boundary
and the geometry of the feature space.

For example, the ReLU activation function is defined as:

σ(x) = max(0, x) (12)

The ReLU function introduces sparsity into the model, as it sets negative values to zero.
This sparsity can lead to a fragmented and disconnected feature space, as some regions of
the input space may be completely separated from others.

Conversely, the sigmoid activation function is defined as:

σ(x) =
1

1 + e−x (13)

The sigmoid function introduces smoothness into the model, as it maps any input to a
value between 0 and 1. This can lead to a more connected feature space, as points that are
nearby in the input space are likely to have similar feature representations.

The choice of activation function can also affect the curvature of the feature space. For
example, the hyperbolic tangent (tanh) function is defined as:

σ(x) =
ex − e−x

ex + e−x (14)

The tanh function maps any input to a value between −1 and 1, which can lead to a
feature space with negative curvature. This negative curvature can be advantageous in
some applications, as it allows the model to learn more complex decision boundaries.

The Gaussian Error Linear Unit (GELU) activation function [22] is a newer activation
function that has shown improved performance over the commonly used ReLU function.
The GELU function is defined as:

σ(x) = x
(

1
2

[
1 + erf

(
x√
2

)])
(15)

where erf is the error function. GELU combines the smoothness of sigmoid and tanh
functions with the sparsity of ReLU, leading to a feature space that can balance the trade-off
between connectivity and fragmentation, thereby improving the model’s ability to learn
complex patterns and generalize to unseen data.

The Exponential Linear Unit (ELU) activation function [23] is an alternative to the
ReLU function. The ELU function is defined as:

σ(x) =

{
x, x ≥ 0
α(ex − 1), x < 0

(16)

where α is a hyperparameter that controls the slope of the negative part of the function.
Like the GELU function, the ELU function aims to be more robust to the vanishing gradient
problem compared to the ReLU function. One interesting property of the ELU function
is that it has a smooth gradient, unlike the ReLU function, which has a discontinuous
gradient at zero. This smoothness can make the ELU function easier to optimize using
gradient-based methods.
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The Scaled Exponential Linear Unit with Squish (SWISH) activation function [24] is a
more recent alternative to the ReLU function, showing promise in achieving state-of-the-art
performance on several benchmarks. The SWISH function is defined as:

σ(x) = xσ(βx) (17)

where σ is the sigmoid function and β is a trainable parameter. The SWISH function has
a similar shape to the ReLU function but with a smooth gradient. The SWISH function
possesses a gating mechanism that dynamically adjusts the slope of the function based on
the input, making it more adaptable to different types of input data.

The activation functions are summarized in Table 1. The choice of activation function
can also affect the curvature of the feature space. For example, the tanh function can lead to
a feature space with negative curvature, which can be advantageous in some applications,
as it allows the model to learn more complex decision boundaries. The GELU and ELU
activation functions address the limitations of the ReLU function, such as the vanishing
gradient problem and the discontinuous gradient at zero. The GELU function presents a
smooth approximation to the ReLU function and can be viewed as a form of soft attention
mechanism. The ELU function, with its smooth gradient, can be easier to optimize using
gradient-based methods compared to the ReLU function.

Table 1. Representative Activation Functions in Deep Learning.

Activation Function Mathematical Formula Descriptions

ReLU σ(x) = max(0, x) Introduces sparsity into the
model

Sigmoid σ(x) = 1
1+e−x

Introduces smoothness into
the model

Hyperbolic tangent (tanh) σ(x) = ex−e−x

ex+e−x
Can lead to a feature space

with negative curvature

Gaussian Error Linear Unit
(GELU) σ(x) = x

(
1
2

[
1 + erf

(
x√
2

)]) Combines smoothness with
sparsity

Exponential Linear Unit (ELU) σ(x) =

{
x, x ≥ 0
α(ex − 1), x < 0

Aims to be more robust to the
vanishing gradient problem

Scaled Exponential Linear
Unit with Squish (SWISH) σ(x) = xσ(βx)

Possesses a gating mechanism
that dynamically adjusts the

slope of the function

2.3. Normalization Methods in Deep Learning

Normalization is a prevalent technique in deep learning to enhance the performance
of models. Normalization methods aim to rescale the activations in the feature space
so that they have zero mean and unit variance. The relationship between the choice of
normalization method and the geometry of the feature space is discussed in this section.

Let f (x) be a deep neural network with m layers and activation function f (l). The
output of the i-th layer is denoted by h(i)(x) ∈ Rdi , where di is the dimensionality of the
feature space at layer i.

Batch normalization (BN) [25] is a widely used normalization method in deep learning.
It aims to rescale the activations in the feature space so that they have zero mean and unit
variance with respect to the mini-batch of input data. BN is defined as:

BN(h(i)(x)) = γi
h(i)(x)− µi√

σ2
i + ε

+ βi (18)
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where µi and σ2
i are the mean and variance of the activations in the mini-batch, ε is a small

constant to prevent division by zero, and γi and βi are learnable parameters controlling the
scaling and shifting of the activations.

Layer normalization (LN) [26] is another common normalization method. It aims to
rescale the activations in the feature space so that they have zero mean and unit variance
with respect to the entire layer of input data. LN is defined as:

LN(h(i)(x)) = γi
h(i)(x)− µ√

σ2 + ε
+ βi (19)

where µ and σ2 are the mean and variance of the activations in the entire layer, and γi and
βi are learnable parameters controlling the scaling and shifting of the activations.

Group normalization (GN) [27] is another normalization technique that has been
shown to improve the performance of deep learning models. GN is similar to BN, but
instead of normalizing the activations with respect to the mini-batch, it normalizes the
activations with respect to groups of channels. In GN, the output of the i-th layer is denoted
by h(i)(x) ∈ Rdi×ci×hi×wi , where di, ci, hi, and wi are the depth, number of channels, height,
and width of the feature map at layer i, respectively. The output of the final layer, h(m)(x),
is the feature representation of the input x.

GN divides the channels into G groups and normalizes the activations within each
group separately. The mean and variance used to normalize the activations are computed
only over the channels within each group. The GN operation is defined as:

GN(h(i)(x)) = γg
h(i)(x)− µg√

σ2
g + ε

+ βg (20)

where µg and σ2
g are the mean and variance of the activations within group g, and ε, γg,

and βg are learnable parameters that control the scaling and shifting of the activations.
The GN is a remarkable technique that has become increasingly popular in deep

learning due to its many advantages. One significant benefit of GN is that it can drastically
reduce the reliance on the mini-batch size during training. Unlike other normalization
techniques, GN normalizes the activations within each group separately, which can make it
more suitable for small batch sizes or when the batch size fluctuates during training.

Additionally, GN can lead to a more isotropic feature space than other normalization
techniques, such as BN. This is because GN normalizes the activations with respect to
groups of channels, which can effectively minimize the impact of the channel dimension
on the normalization process. Consequently, GN is particularly beneficial for models with
deep or wide architectures, where the channel dimension may be large.

Normalization methods play a significant role in deep learning to enhance the perfor-
mance of models by rescaling activations in the feature space. This section covered three
representative normalization methods in deep learning, including BN, LN, and GN, and
provided their mathematical formulas and descriptions. BN rescales activations in the
feature space with respect to mini-batch mean and variance, while LN rescales activations
with respect to layer mean and variance. In contrast, GN rescales activations with respect
to groups of channels, which can make it more suitable for small batch sizes or deep and
wide architectures. Table 2 provides a summary of the key features of these normalization
methods. Choosing the most appropriate normalization method depends on the nature of
the data and the specific deep learning task at hand.
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Table 2. Representative Normalization Methods in Deep Learning.

Normalization Methods Mathematical Formula Descriptions

Batch Normalization (BN) γi
h(i)(x)−µi√

σ2
i +ε

+ βi

Rescales activations in feature
space with respect to

mini-batch mean and variance

Layer Normalization (LN) γi
h(i)(x)−µ√

σ2+ε
+ βi

Rescales activations in feature
space with respect to layer

mean and variance

Group Normalization (GN) γg
h(i)(x)−µg√

σ2
g+ε

+ βg

Rescales activations in feature
space with respect to groups

of channels

3. Feature Space Geometry in Deep Learning
3.1. Relationships between Feature Space and Activation Functions in Deep Learning

The selection of an activation function can have a profound impact on the geometry of
the feature space, dictating vital aspects such as the shape of the decision boundary, the
sparsity or smoothness of the feature space, and the curvature of the feature space. To
elucidate the mathematical underpinnings of these relationships, a detailed analysis shall
be provided on the effects of various activation functions on the feature space geometry. In
particular, the effect of the activation function on the decision boundary can be succinctly
captured by the gradient of the output with respect to the input:

∇xh(l) = ∇x f (l)(W(l)h(l−1) + b(l)). (21)

For the ReLU activation function, the gradient is piecewise constant:

∇xσ(x) =

{
1, x > 0
0, x ≤ 0

. (22)

This piecewise constant gradient leads to a fragmented and disconnected feature space,
as some regions of the input space may be completely separated from others.

For the sigmoid activation function, the gradient is smooth and can be expressed as:

∇xσ(x) = σ(x)(1− σ(x)). (23)

This smooth gradient leads to a more connected feature space, as points that are nearby
in the input space are likely to have similar feature representations.

For the tanh activation function, the gradient is also smooth and can be expressed as:

∇xσ(x) = 1− σ(x)2. (24)

The tanh function can lead to a feature space with negative curvature, as its gradient is
nonmonotonic and can change sign depending on the input value. This negative curvature
allows the model to learn more complex decision boundaries.

The curvature of the feature space can be further analyzed by computing the Hessian
matrix, which is the matrix of second-order partial derivatives of the output with respect to
the input:

H(x) = ∇2
xh(i)(x) = ∇2

x f (i)(W(i)h(i−1) + b(i)). (25)

The eigenvalues of the Hessian matrix determine the local curvature of the feature
space. For example, if all eigenvalues are positive, the feature space has a positive curvature,
while if some eigenvalues are negative, the feature space has a negative curvature.
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For the GELU activation function, the gradient is smooth and can be expressed as:

∇xσ(x) =
1
2

[
1 + erf

(
x√
2

)]
+

x√
2π

exp
(
− x2

2

)
. (26)

The GELU function presents a smooth approximation to the ReLU function, combining
the smoothness of sigmoid and tanh functions with the sparsity of ReLU. This leads to a fea-
ture space that can balance the trade-off between connectivity and fragmentation, thereby
improving the model’s ability to learn complex patterns and generalize to unseen data.

For the ELU activation function, the gradient is smooth and can be expressed as:

∇xσ(x) =

{
1, x ≥ 0
αex, x < 0

. (27)

With its smooth gradient, the ELU function can be easier to optimize using gradient-
based methods compared to the ReLU function. The curvature of the feature space induced
by the ELU function depends on the value of the hyperparameter α and the input value x.

For the SWISH activation function, the gradient is smooth and can be expressed as:

∇xσ(x) = βσ(βx) + (1− βσ(βx))xσ(βx). (28)

The SWISH function possesses a gating mechanism that dynamically adjusts the slope
of the function based on the input, making it more adaptable to different types of input
data. The curvature of the feature space induced by the SWISH function depends on the
trainable parameter β and the input value x. Figure 1 illustrates the activation functions
and their gradients.

Figure 1. Activation Functions and Their Gradients.

Table 3 summarizes the effects of commonly used activation functions on the geometry
of the feature space in deep learning. The ReLU activation function introduces sparsity into
the model, resulting in a fragmented and disconnected feature space. Sigmoid activation
function leads to a smooth and connected feature space, while the tanh activation function
can produce a feature space with negative curvature. GELU activation function combines
smoothness with sparsity, resulting in a smooth and balanced feature space. ELU activation
function aims to be more robust to the vanishing gradient problem, resulting in a smooth
feature space with curvature depending on its parameter α and the input. Finally, the Swish
activation function possesses a gating mechanism that dynamically adjusts the slope of the
function, resulting in an adaptable feature space with curvature depending on its parameter
β and the input. These insights can be useful in selecting the appropriate activation function
for a given deep learning problem.
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Table 3. Effects of Activation Functions on the Feature Space Geometry.

Activation Function Gradient Effects on Feature Space

ReLU ∇xσ(x) =

{
1, x > 0
0, x ≤ 0

Fragmented and disconnected
feature space

Sigmoid ∇xσ(x) = σ(x)(1− σ(x)) Smooth and connected feature
space

Tanh ∇xσ(x) = 1− σ(x)2 Smooth feature space with
negative curvature

GELU
∇xσ(x) = 1

2

[
1 + erf

(
x√
2

)]
+

x√
2π

exp
(
− x2

2

) Smooth and balanced feature
space

ELU ∇xσ(x) =

{
1, x ≥ 0
αex, x < 0

Smooth feature space with
curvature depending on α and

x

Swish ∇xσ(x) =
βσ(βx) + (1− βσ(βx))xσ(βx)

Adaptable feature space with
curvature depending on β and

x

3.2. Relationships between Feature Space and Normalization Methods in Deep Learning

Normalization methods play an instrumental role in shaping the geometry of the
feature space. In this section, a comprehensive discussion will be delved into regarding
the impact of various normalization methods on the rescaling of activations in the feature
space, as well as the examination of their effects on the isotropy and connectivity of the
feature space. The discourse will be reinforced with a plethora of mathematical notations
and equations.

Normalization methods are adept at rescaling activations in the feature space, which
can be succinctly encapsulated by a transformation function T . The effect of normalization
methods on the feature space can be lucidly characterized by the gradient of the transformed
output with respect to the input:

∇xT (h(i)(x)) = ∇xT ( f (i)(W(i)h(i−1) + b(i)). (29)

Given a transformation function T , the transformed output of the i-th layer can be
described as:

h̃(i)
(x) = T (h(i)(x)) = T ( f (i)(W(i)h(i−1) + b(i))). (30)

Now, the Jacobian matrix of the transformed output with respect to the input is con-
sidered:

Jx(h̃
(i)
(x)) = ∇xT (h(i)(x)). (31)

The Jacobian matrix provides insights into how the transformed output varies with
respect to the input. A bounded Jacobian matrix indicates that the transformation function
preserves the local structure of the feature space.

To demonstrate that the Jacobian matrix is likely bounded, the Frobenius norm of the
matrix will be analyzed, which provides a measure of the matrix’s overall magnitude. The

Frobenius norm of the Jacobian matrix Jx(h̃
(i)
(x)) can be defined as:

|Jx(h̃(i)
(x))|F =

√√√√√ ni

∑
j=1

D

∑
k=1

∂h̃(i)j (x)

∂xk

2

, (32)

where ni is the number of units in the i-th layer and D is the dimension of the input space.



Mathematics 2023, 11, 2375 12 of 43

A bounded Jacobian matrix implies that the Frobenius norm of the matrix is bounded
by some constant C > 0:

|Jx(h̃
(i)
(x))|F ≤ C. (33)

Given the transformed output of the i-th layer:

h̃(i)
(x) = T (h(i)(x)) = T ( f (i)(W(i)h(i−1) + b(i))). (34)

The Lipschitz continuity of the transformation function T with respect to the input x
can be analyzed. If T is Lipschitz continuous with Lipschitz constant LT > 0, the following
inequality holds for any x1, x2 ∈ RD:

|T (x1)− T (x2)| ≤ LT |x1 − x2|. (35)

By using the Lipschitz continuity of T , an upper bound for the Frobenius norm of the
Jacobian matrix can be derived. For any x1, x2 ∈ RD with |x1 − x2| = 1:

|Jx(h̃
(i)
(x1))− Jx(h̃

(i)
(x2))|F ≤ LT |x1 − x2| = LT . (36)

Since the Jacobian matrix is continuous with respect to the input x, the extreme value
theorem implies that the Frobenius norm of the Jacobian matrix is likely bounded:

|Jx(h̃
(i)
(x))|F ≤ C, (37)

where C = LT . This bounded Frobenius norm indicates that the transformation function T
preserves the local structure of the feature space, as a bounded Jacobian matrix implies that
the rate of change of the transformed output with respect to the input remains limited.

Furthermore, insights into the isotropy and connectivity of the feature space can be
gained by analyzing the eigenvalues of the Jacobian matrix. Let λi be an eigenvalue of the

Jacobian matrix Jx(h̃
(i)
(x)). If the eigenvalues are distributed uniformly and have similar

magnitudes, the feature space is isotropic, meaning that the optimization landscape is
smooth and well-conditioned.

Suppose the ratio between the maximum and minimum eigenvalues, known as the
condition number, is bounded by a constant K > 0:

max1≤i≤ni |λi|
min1≤i≤ni |λi|

≤ K. (38)

A bounded condition number implies that the transformation function T does not
distort the feature space excessively, leading to better optimization and generalization
properties of the deep learning model. Furthermore, it suggests that the connectivity of the
feature space is preserved, as the gradients do not vanish or explode during training.

Table 4 summarizes the relationships between feature space and normalization meth-
ods in deep learning. The transformation function rescales the activations in the feature
space, while the Jacobian matrix represents how the transformed output varies with respect
to the input. The Frobenius norm measures the overall magnitude of the Jacobian matrix,
and Lipschitz continuity indicates that the transformation function preserves the local
structure of the feature space. The condition number represents the isotropy and connectiv-
ity of the feature space, which have implications for the optimization and generalization
properties of deep learning models.



Mathematics 2023, 11, 2375 13 of 43

Table 4. Summary of Relationships between Feature Space and Normalization Methods in
Deep Learning.

Aspects Mathematical
Representation Feature Space Implications

Transformation Function T (h(i)(x))
Rescales activations in the

feature space

Jacobian Matrix Jx(h̃
(i)
(x))

Represents how the
transformed output varies
with respect to the input

Frobenius Norm |Jx(h̃
(i)
(x))|F

Measures the overall
magnitude of the Jacobian

matrix

Lipschitz Continuity |T (x1)− T (x2)| ≤
LT |x1 − x2|

Indicates that the
transformation function

preserves the local structure of
the feature space

Condition Number max1≤i≤ni |λi |
min1≤i≤ni |λi | ≤ K

Represents the isotropy and
connectivity of the feature

space

Isotropy and Connectivity of Feature Space with Normalization Methods

Normalization methods not only influence the boundedness of the feature space but
also impact its isotropy and connectivity. Isotropy refers to the uniformity of the feature
space, while connectivity refers to the ability of the neural network to establish connections
between different regions of the feature space. In this section, the effects of BN, LN,
and GN on isotropy and connectivity in deep learning models will be discussed using
mathematical descriptions.

Let TN ∈ {TBN, TLN, TGN} be a normalization method, and let µN and σ2
N be the mean

and variance computed by the normalization method. The isotropy condition can be
expressed as:

E[TN(h(i)(x))] = 0, Var[TN(h(i)(x))] = 1. (39)

BN ensures isotropy by normalizing the feature space across the mini-batch. The mean
µBN and variance σ2

BN are computed as follows:

µBN =
1
N

N

∑
n=1

h(i)n (x), σ2
BN =

1
N

N

∑
n=1

(h(i)n (x)− µBN)
2. (40)

This rescaling of the mean and variance results in a uniform feature space. BN can
also improve the connectivity of the feature space by reducing the internal covariate shift,
which refers to the change in the distribution of the inputs to a given layer during training.
This reduction in internal covariate shift smooths the loss landscape, making it easier for
the neural network to establish connections between different regions of the feature space.
Other normalization methods such as GN and LN constitute feature space in a similar
manner to BN.

Normalization methods have been found to be particularly effective in improving the
isotropy and connectivity of the feature space in residual networks. Residual networks
contain skip connections, which facilitate gradient flow and enable the network to learn
identity mappings. Let F(i) be the residual block at layer i, and let h(i−1) and h(i) be the
input and output of this block, respectively. The residual block can be expressed as:

h(i) = h(i−1) + F(i)(h(i−1)). (41)
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Here, F(i) is a composite function, including a normalization method, activation
function, and linear transformation. Specifically, let TN be a normalization method used
in the residual block, and let f be an activation function. Then, an example of F(i) can be
represented as:

F(i)(h(i−1)) = f (TN(W(i)h(i−1) + b(i))). (42)

Considering the residual block expressed in Equation (41), the isotropy condition for
the output h(i) can be analyzed as follows:

E[h(i)] = E[h(i−1) + F(i)(h(i−1))]. (43)

Since h(i−1) and F(i)(h(i−1)) are hypothetically independent after the blocks of layers
in F(i), their expected values can be separated:

E[h(i)] = E[h(i−1)] +E[F(i)(h(i−1))]. (44)

Under the assumption that the activation function f is zero-centered, meaningE[ f (z)] =
0, where z is a pre-activation vector, the isotropy condition for the output h(i) can be further
analyzed as follows:

First, consider the expected value of F(i)(h(i−1)):

E[F(i)(h(i−1))] = E[ f (TN(W(i)h(i−1) + b(i)))]. (45)

Since the normalization method TN enforces isotropy, it is known that E[TN(h(i)(x))] = 0.
Thus, the pre-activation vector z has zero mean. Under the assumption that f is zero-centered:

E[F(i)(h(i−1))] = 0. (46)

This result can be substituted into the equation for the expected value of h(i):

E[h(i)] = E[h(i−1)] +E[F(i)(h(i−1))] = E[h(i−1)]. (47)

This result indicates that the expected value of the output h(i) is equal to the expected
value of the input h(i−1). If the input is isotropic, meaning E[h(i−1)] = 0, then the output
will also be isotropic, satisfying E[h(i)] = 0. This demonstrates how normalization methods,
combined with a zero-centered activation function, can preserve isotropy in deep learning
models, particularly in residual networks.

Table 5 summarizes the isotropy and connectivity of feature space with normalization
methods. The isotropy condition ensures the uniformity of the feature space, and BN
rescales the mean and variance accordingly. The residual block represents the residual
connection in deep learning models, with a composite function that incorporates normal-
ization, activation, and linear transformation. Isotropy preservation demonstrates that the
expected value of the output is equal to the input, preserving the isotropy of the feature
space in residual networks.

Table 5. Summary of Isotropy and Connectivity of Feature Space with Normalization Methods.

Aspects Mathematical
Representation Feature Space Implications

Isotropy Condition E[T N(h(i)(x))] = 0,
Var[T N(h(i)(x))] = 1

Uniformity of the feature
space

BN Mean and Variance µBN = 1
N ∑N

n=1 h(i)n (x),
σ2

BN = 1
N ∑N

n=1(h
(i)
n (x)− µBN)2

Rescaling of the mean and
variance for BN
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Table 5. Cont.

Aspects Mathematical
Representation Feature Space Implications

Residual Block h(i) = h(i−1) + F(i)(h(i−1))

Representation of the residual
connection in deep learning

models

Composite Function
F(i)(h(i−1)) =

f (TN(W(i)h(i−1) + b(i))

Incorporation of
normalization, activation, and

linear transformation

Isotropy Preservation E[h(i)] = E[h(i−1)]

Expected value of the output
equal to the input, preserving

isotropy

3.3. Synergistic Integration of ReLU-Inspired Activation Functions and Normalization Techniques

In this section, a comprehensive analysis is presented on the collective influence of
ReLU-inspired activation functions and normalization techniques on the boundedness
of the feature space. Activation functions such as ReLU, GELU, and ELU, which exhibit
unbounded characteristics, can attain a bounded output when seamlessly integrated with
normalization methodologies. This complementary interplay has propelled the widespread
adoption of ReLU-inspired activation functions in contemporary deep learning research.

Initially, let us consider the ReLU, GELU, and ELU activation functions, which can be
articulated using Equations (12), (15) and (16). Subsequently, the transformation functions
for BN, LN, and GN are represented as TBN, TLN, and TGN, respectively. When fused with
ReLU-inspired activations, the transformations within the feature space can be expressed as:

ReLU-BN(x) = ReLU(TBN(h(i)(x))), (48)

Corresponding transformations can be delineated for GELU and ELU activations, as
well as LN and GN. Building on this foundation, the investigation proceeds to analyze the
boundedness of these intricate combinations.

As ReLU-inspired activations manifest as nonlinear functions, the Lipschitz constants
of the merged transformations cannot be directly ascertained by multiplying the Lipschitz
constants of each individual function. Nevertheless, a thorough analysis of the boundedness
of these hybrid transformations can be offered by scrutinizing the output range of the
combined transformational processes.

For ReLU-BN, ReLU-LN, and ReLU-GN, the ReLU activation function clips negative
values to zero, resulting in a lower bound of 0 for the output. Furthermore, since the
normalization methods rescale the feature space such that the mean is 0 and the variance is
1, the upper bound of the output is constrained by a constant factor, ensuring the boundness
of the combined transformations.

Similarly, for GELU and ELU activations combined with normalization methods, the
lower bound of the output is determined by the minimum of the activation functions
(with a lower bound of ≈−0.164 for GELU and α(emin (x) − 1) for ELU, where α is a
positive constant and min (x) denotes the minimum value in the rescaled feature space).
The upper bound of the output for these combinations is also determined by a constant
factor, as the normalization methods rescale the feature space to have zero mean and unit
variance. Consequently, the output of the GELU and ELU activation functions combined
with normalization methods is also bounded.

To provide a more formal proof of the boundness, the definition of Lipschitz continuity
can be used. Recall that a function f is Lipschitz continuous if there exists a constant L > 0.
In the case of the combined transformations, let g(x) = ReLU(TN(x)). To prove the
boundness of g(x), it is necessary to show the existence of a constant Lg > 0 that satisfies
the Lipschitz condition for all x, y in the domain of g(x).
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Given that the ReLU activation clips negative values to zero, and the normalization
methods rescale the feature space such that the mean is 0 and the variance is 1, the maximum
value of |g(x)− g(y)| is upper-bounded by a constant factor. This implies that there exists
a constant Lg > 0 that satisfies the Lipschitz condition, thus proving the boundness of the
combined transformations.

Analogous arguments can be made for the GELU and ELU activation functions com-
bined with normalization methods, and the proof follows similar steps. Since the lower
and upper bounds of the output for these combinations are determined by constant factors,
the existence of Lipschitz constants Lg > 0 for these cases can be established, which in turn
demonstrates the boundness of these combined transformations.

4. Recent Studies of Feature Space Geometry in Deep Learning

Recent studies have increasingly focused on exploring the manifold structure of
feature space geometry in deep learning models. This is due to the significant impact that
feature space geometry has on the model’s performance and generalization capabilities.
Non-Euclidean spaces, such as hyperbolic space, have been recently explored for modeling
complex data distributions. These spaces can better capture the intrinsic geometric structure
of the data, thereby enhancing the model’s ability to learn meaningful representations and
generalize to new data. Transfer learning is another area of interest where recent studies
have examined the impact of feature space geometry. Specifically, these studies investigate
the adaptation of a model trained on one task to a new task by analyzing the feature
space geometry. Through a systematic analysis of these recent studies, a comprehensive
understanding of the current state of research on feature space geometry in deep learning
can be provided, and promising directions for future research can be identified.

4.1. Manifold Structure of Deep Learning

The manifold hypothesis [28–30] posits that high-dimensional data often lies on or
near a lower-dimensional manifold. Understanding the manifold structure of the feature
space can provide insights into the model’s ability to learn meaningful representations and
generalize to new data.

Let M ⊂ Rm be the manifold in the feature space. The manifold can be locally
approximated using tangent spaces Tp M, where p ∈ M. In deep learning, the model can
be designed to learn the manifold structure by minimizing the reconstruction error on the
tangent spaces:

min
θ

N

∑
i=1
‖xi − g( f (xi; θ); θ)‖2, (49)

where θ denotes the model parameters, and f (·; θ) and g(·; θ) are the encoding and decod-
ing functions, respectively.

To quantify the manifold structure, one can use the manifold’s reach, which measures
the largest distance from a point in the ambient space to the manifold:

reach(M) = sup
p∈Rm

inf
q∈M
‖p− q‖2. (50)

The manifold structure in deep learning has been recognized as a significant factor
contributing to the success of various applications [31–33]. Manifold learning allows deep
learning models to capture the underlying structure and relationships within data, leading
to improved performance in tasks such as scene recognition, face-pose estimation, dynamic
MRI, and hyperspectral imagery feature extraction.

Brahma et al. [28] offered measurable validation to support the theory that deep learn-
ing works by flattening manifold-shaped data in higher neural network layers. The authors
created a range of measures to quantify manifold entanglement under certain assumptions,
with their experiments on both synthetic and real-world data confirming the flattening
hypothesis. To tackle scene recognition, Yuan et al. [31] proposed a manifold-regularized
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deep architecture, which leverages the structural information of data to establish mappings
between visible and hidden layers. The deep architecture learns high-level features for
scene recognition in an unsupervised manner, surpassing existing state-of-the-art scene
recognition methods. Hong et al. [32] introduced a multitask manifold deep learning
(M2DL) framework for face-pose estimation by using multimodal data. They employed
improved CNNs for feature extraction and applied multitask learning with incoherent
sparse and low-rank learning to integrate different face representation modalities. The
M2DL framework exhibited better performance on three challenging benchmark datasets.

Ke et al. [34] proposed a deep manifold learning approach for dynamic MRI reconstruc-
tion, called Manifold-Net, which is an unrolled neural network on a fixed low-rank tensor
(Riemannian) manifold to capture the strong temporal correlations of dynamic signals.
The experimental results demonstrated superior reconstruction compared to conventional
and state-of-the-art deep learning-based methods. For feature extraction of hyperspectral
imagery, Li et al. [35] developed a graph-based deep learning model known as deep locality
preserving neural network (DLPNet). DLPNet initializes each network layer by exploring
the manifold structure in hyperspectral data and employs a deep-manifold learning joint
loss function during network optimization. The experiments on real-world HSI datasets
indicated that DLPNet outperforms state-of-the-art methods in feature extraction.

Table 6 summarizes various deep learning approaches incorporating manifold learn-
ing for different applications. These approaches include measures to quantify manifold
entanglement, manifold-regularized deep architectures, multitask manifold deep learn-
ing, Manifold-Net, and deep locality preserving neural networks. The applications of
these methods span from validating the flattening hypothesis in deep learning to scene
recognition, face-pose estimation, dynamic MRI reconstruction, and hyperspectral imagery
feature extraction.

Table 6. Summary of Deep Learning Approaches with Manifold Learning.

Reference Approach Application

Brahma et al. [28] Measures to quantify
manifold entanglement

Validating flattening
hypothesis in deep learning

Yuan et al. [31] Manifold-regularized deep
architecture Scene recognition

Hong et al. [32] Multitask manifold deep
learning (M2DL) Face-pose estimation

Ke et al. [34] Manifold-Net Dynamic MRI reconstruction

Li et al. [35] Deep locality preserving
neural network (DLPNet)

Hyperspectral imagery
feature extraction

The manifold hypothesis, which suggests that high-dimensional data often lies on or
near a lower-dimensional manifold, has been explored to understand the model’s ability to
learn meaningful representations and generalize to new data. Tangent spaces can be used
to locally approximate the manifold, and manifold learning allows deep learning models
to capture the underlying structure and relationships within data. Recent studies have
explored the use of hyperbolic space to better capture the intrinsic geometric structure of
data and transfer learning to analyze the adaptation of a model trained on one task to a new
task. Quantitative evidence from experiments on synthetic and real-world data confirms
that deep learning works due to the flattening of manifold-shaped data in higher layers of
neural networks. Different deep learning models have been proposed to extract features
for various applications, including scene recognition, face-pose estimation, dynamic MRI,
and hyperspectral imagery feature extraction. The manifold structure in deep learning has
been recognized as a significant factor contributing to the success of these applications.
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4.2. Curvature of Feature Space Geometry

The curvature of the feature space geometry is essential for understanding the model’s
ability to adapt to the data’s local structure. In the context of deep learning, the curvature
can be influenced by the choice of activation functions and the architecture of the model.
A popular measure of curvature in the feature space is the sectional curvature, which is
defined for two-dimensional tangent planes.

Let M ⊂ Rm be the manifold in the feature space, and Tp M be the tangent space at
point p ∈ M. For any two linearly independent tangent vectors X, Y ∈ Tp M, the sectional
curvature K(X, Y) is defined as:

K(X, Y) =
〈R(X, Y)Y, X〉

‖X‖2‖Y‖2 − 〈X, Y〉2 , (51)

where R(X, Y) is the Riemann curvature tensor and 〈·, ·〉 is the inner product in the tan-
gent space.

In deep learning, activation functions such as ReLU, sigmoid, and tanh can induce
specific geometric properties in the feature space, including curvature. For instance, the
ReLU activation function can lead to piecewise linear manifolds, while sigmoid and tanh
activation functions can result in smooth curved manifolds.

To assess the curvature properties of a deep learning model, one can compute the
eigenvalues of the Hessian matrix, which represents the second-order partial derivatives of
the model’s loss function with respect to the model parameters. High eigenvalues suggest
regions of high curvature, while low eigenvalues indicate regions of low curvature.

Hij(θ) =
∂2L

∂θi∂θj
, (52)

where L is the loss function, and θi and θj are elements of the model parameters vector θ.
The analysis of the curvature in feature space geometry of deep learning models has

become an area of great interest due to the insights it offers into the intrinsic properties of
these models, as well as their potential to improve performance in various applications.
Researchers have proposed several innovative models in this field. For example, He
et al. [36] developed CurvaNet, a geometric deep learning model for 3D shape analysis that
uses directional curvature filters to learn direction-sensitive 3D shape features. Bachmann
et al. [37] introduced Constant Curvature Graph Convolutional Networks (CC-GCNs) that
can be applied to node classification and distortion minimization tasks in non-Euclidean
geometries. Additionally, Ma et al. [38] proposed a curvature regularization approach to
address the issue of model bias caused by curvature imbalance in deep neural networks.
Other researchers, such as Lin et al. [39] and Arvanitidis et al. [40], examined the curvature
of deep generative models and developed new architectures and approaches to improve
their performance.

Table 7 presents a summary of different curvature-based approaches in deep learning,
including CurvaNet, CC-GCNs, curvature regularization, CAD-PU, and latent space cur-
vature analysis. These approaches are applied to various applications such as 3D shape
analysis, node classification, distortion minimization, addressing model bias, point cloud
upsampling, and generative models. The study of curvature in deep learning models pro-
vides valuable insights into their intrinsic properties and helps improve their performance
across different applications.

The curvature of feature space geometry is critical in understanding how well a
deep learning model can adapt to the local structure of data. The choice of activation
functions and the model’s architecture influence the curvature of the feature space. The
sectional curvature, which is defined for two-dimensional tangent planes, is a popular
measure of curvature in the feature space. The study of curvature in the feature space
geometry of deep learning models has gained significant attention, as it offers insights into
the intrinsic properties of these models and helps improve their performance in various
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applications. Many recent studies have explored the relationship between curvature and
deep learning models, including CurvaNet, CC-GCNs, curvature regularization, CAD-PU,
and examining the curvature of deep generative models. These studies aim to understand
and leverage the curvature properties of deep learning models for better performance and
generalization capabilities.

Table 7. Summary of Curvature-based Approaches in Deep Learning.

Reference Approach Application

He et al. [36] CurvaNet 3D shape analysis

Bachmann et al. [37]
Constant Curvature Graph
Convolutional Networks

(CC-GCNs)

Node classification and
distortion minimization

Ma et al. [38] Curvature regularization Addressing model bias

Lin et al. [39] CAD-PU Point cloud upsampling

Arvanitidis et al. [40] Latent space curvature
analysis Generative models

4.3. Wide Neural Networks and Gaussian Process

A notable line of research has focused on the relationship between wide neural
networks and Gaussian processes. In the limit of infinitely wide hidden layers, deep
neural networks with independent random initializations converge to Gaussian pro-
cesses, as shown by Lee et al. [41]. This convergence can be described by the following
kernel function:

k∞(x, x′) = lim
n→∞

1
n

n

∑
i=1

φ(x)>φ(x′), (53)

where n is the width of the hidden layers, and φ(x) and φ(x′) are the feature vectors of
inputs x and x′, respectively. This result implies that wide neural networks exhibit a simpler
geometry in their feature space, which can be characterized by a Gaussian process.

Expanding upon the relationship between wide neural networks and Gaussian pro-
cesses, it is essential to understand the intricacies of this convergence and its implications
for deep learning models. The convergence of wide neural networks to Gaussian pro-
cesses can be further explored in terms of the Neural Tangent Kernel (NTK) [42], which
characterizes the training dynamics of these networks in the infinite-width limit.

The NTK is defined as follows:

Θ(x, x′) =
∂ f (x; θ)

∂θ

∂ f (x′; θ)

∂θ

>
, (54)

where f (x; θ) is the output of the neural network for input x with parameters θ. For wide
neural networks, the NTK converges to a constant matrix during training, implying that
the training dynamics can be described as a linear model with respect to the NTK [42]:

f (x; θ(t)) ≈ f (x; θ(0)) + Θ(x, x′)∆θ(t), (55)

where ∆θ(t) = θ(t)− θ(0), and t denotes the training iteration.
The convergence of wide neural networks to Gaussian processes can be further illus-

trated by analyzing the feature space geometry. For a wide neural network with a single
hidden layer, the feature vector φ(x) can be expressed as:

φ(x) = σ(Wx + b), (56)
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where W is the weight matrix, b is the bias vector, and σ is the activation function. As the
width of the hidden layer (n) tends to infinity, the feature vectors become isotropic in the
feature space, and their inner product converges to the kernel function:

E[φ(x)>φ(x′)] = k∞(x, x′). (57)

This convergence is governed by the Central Limit Theorem (CLT), as the sum of a
large number of independent random variables converges to a Gaussian distribution. Con-
sequently, the geometry of the feature space in wide neural networks can be characterized
by a Gaussian process with the kernel function k∞(x, x′).

Recent research has uncovered significant links between wide neural networks and
Gaussian processes, leading to new insights into the behavior and theoretical properties of
deep learning models. The work of Matthews et al. [43] showed that random fully con-
nected feedforward networks with multiple hidden layers, when wide enough, converge
to Gaussian processes with a recursive kernel definition. Yang [44,45] introduced straight-
line tensor programs, which established the convergence of random neural networks to
Gaussian processes for a wide range of architectures, including recurrent, convolutional,
residual networks, attention mechanisms, and their combinations. Pleiss and Cunning-
ham [46] investigated the limitations of large width in neural networks, demonstrating
that large width can be detrimental to hierarchical models, and found that there is a sweet
spot that maximizes test performance before the limiting GP behavior prevents adapt-
ability. Meanwhile, other researchers have explored various aspects of the convergence
of wide neural networks to Gaussian processes, such as the behavior of Bayesian neural
networks [47], the evolution of wide neural networks of any depth under gradient de-
scent [41], the convergence rates of wide neural networks to Gaussian processes based
on activation functions [48], the effects of increasing depth on the emergence of Gaussian
processes [49], and the equivalence between neural networks and deep sparse Gaussian
process models [50].

Table 8 summarizes various research contributions in the area of wide neural networks
and Gaussian processes. The table highlights the approaches and contributions of these
studies, such as the convergence of wide neural networks to Gaussian processes, character-
izing training dynamics using the Neural Tangent Kernel, the recursive kernel definition
for random fully connected networks, and the convergence of various architectures using
straightline tensor programs. Additionally, researchers have investigated the limitations
of large width, the behavior of Bayesian neural networks, convergence rates based on
activation functions, the effects of increasing depth on the emergence of Gaussian processes,
and the equivalence between neural networks and deep sparse Gaussian process models.

Research has explored the relationship between wide neural networks and Gaussian
processes, showing that as the hidden layers’ width tends to infinity, deep neural networks
converge to Gaussian processes. This convergence is described by the kernel function,
which characterizes the simpler geometry of wide neural networks’ feature space. The
study of this convergence has been extended to the NTK, which characterizes the training
dynamics of these networks in the infinite-width limit. The feature space geometry can
be analyzed to illustrate this convergence and its implications for deep learning models.
The relationship between wide neural networks and Gaussian processes has also been
explored in various architectures, including Bayesian neural networks, fully connected
feedforward networks, recurrent, convolutional, residual networks, attention mechanisms,
and their combinations, providing insights into the theoretical properties and behavior of
deep learning models.
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Table 8. Summary of Research on Wide Neural Networks and Gaussian Processes.

Reference Approach Contribution

Lee et al. [41] Infinite-width limit
Convergence of wide neural

networks to Gaussian
processes

Jacot et al. [42] Neural Tangent Kernel (NTK)
Characterizing training

dynamics in infinite-width
limit

Matthews et al. [43] Recursive kernel definition
Convergence of random fully

connected networks with
multiple hidden layers

Yang [44,45] Straightline tensor programs
Convergence of various

architectures, including RNNs,
CNNs, and ResNets

Pleiss and Cunningham [46] Limitations of large width
Investigating the trade-off

between width and
adaptability

Agrawal et al. [47] Bayesian neural networks
Behavior of Bayesian neural

networks in the infinite-width
limit

Eldan et al. [48] Convergence rates Effects of activation functions
on convergence

Zhang et al. [49] Depth and Gaussian processes
Effects of increasing depth on

the emergence of Gaussian
processes

Dutordoir et al. [50] Deep sparse Gaussian
processes

Equivalence between neural
networks and deep sparse
Gaussian process models

4.4. Critical Points and Loss Landscape

The loss landscape of neural networks, particularly its critical points and curvature,
has been an area of significant research interest. Understanding the properties of criti-
cal points can offer insights into the optimization process and the performance of deep
learning models.

A critical point in the loss landscape is a point where the gradient of the loss function
with respect to the network parameters is zero:

∇θL(θ) = 0, (58)

where θ denotes the network parameters, and L is the loss function. The Hessian matrix at
a critical point provides information about the curvature of the loss landscape:

H(θ) = ∇2
θL(θ). (59)

The eigenvalues of the Hessian matrix, λi, can be used to classify critical points. If all
the eigenvalues are positive, the critical point corresponds to a local minimum; if all the
eigenvalues are negative, it corresponds to a local maximum. If the Hessian matrix has
both positive and negative eigenvalues, the critical point is a saddle point.

The second-order Taylor expansion of the loss function around a critical point θ∗ is
given by:

L(θ) ≈ L(θ∗) + 1
2
(θ− θ∗)>H(θ∗)(θ− θ∗). (60)

This approximation indicates that the behavior of the loss function in the vicinity of a
critical point is determined by the eigenvalues and eigenvectors of the Hessian matrix.
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Researchers have been exploring the landscape of the loss function in deep learning
models to better understand their optimization properties and performance. Chaudhari
et al. [51] introduced Entropy-SGD, an optimization algorithm that utilizes local entropy to
discover wide minima that are associated with better generalization performance. Nguyen
and Hein [52] investigated the impact of depth and width on the optimization landscape
and expressivity of deep CNNs, demonstrating that sufficiently wide CNNs produce lin-
early independent features and provided necessary and sufficient conditions for global
minima with zero training error. Geiger et al. [53] proposed the concept of phase tran-
sition to analyze the loss landscape of fully connected deep neural networks, observing
the independence of fitting random data and depth, and delimiting the over- and under-
parametrized regimes. Kunin et al. [54] studied the loss landscapes of regularized linear
autoencoders, while Simsek et al. [55] explored the impact of permutation symmetries
on overparameterized neural networks. Zhou and Liang [56] provided a full characteri-
zation of the analytical forms for the critical points of various neural networks, revealing
landscape properties of their loss functions. Zhang et al. [57] established an embedding
principle for the loss landscape of deep neural networks, showing that wider DNNs contain
all the critical points of narrower DNNs, with potential implications for regularization
during training.

Table 9 provides a summary of research contributions related to critical points and
the loss landscape of deep learning models. The table presents the approaches and con-
tributions of these studies, including the Entropy-SGD algorithm for discovering wide
minima, the investigation of depth and width effects on the optimization landscape and
expressivity of deep CNNs, the concept of phase transition for analyzing loss landscapes in
fully connected DNNs, and the study of loss landscapes in regularized linear autoencoders.
Other research has explored the impact of permutation symmetries on overparameterized
neural networks, the analytical forms of critical points for revealing landscape properties
of loss functions, and the embedding principle to analyze critical points in wider and
narrower DNNs.

Table 9. Summary of Research on Critical Points and Loss Landscape.

Reference Approach Contribution

Chaudhari et al. [51] Entropy-SGD Discovering wide minima for
better generalization

Nguyen and Hein [52] Depth and width effects
Impact on optimization

landscape and expressivity of
deep CNNs

Geiger et al. [53] Phase transition Analysis of loss landscape in
fully connected DNNs

Kunin et al. [54] Regularized linear
autoencoders Study of loss landscapes

Simsek et al. [55] Permutation symmetries Impact on overparameterized
neural networks

Zhou and Liang [56] Analytical forms of critical
points

Revealing landscape
properties of loss functions

Zhang et al. [57] Embedding principle Critical points in wider and
narrower DNNs

The critical points and loss landscape of neural networks have been studied to under-
stand their optimization properties and performance. A critical point is where the gradient
of the loss function is zero, and the Hessian matrix provides curvature information. Var-
ious techniques, such as Entropy-SGD and phase transition, have been used to analyze
the loss landscape in deep learning models. Researchers have also studied regularized
linear autoencoders and the impact of permutation symmetries on overparameterized
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neural networks. The analytical forms for the critical points of various neural networks
have been characterized, and the embedding principle has implications for regularization
during training.

4.5. Singular Value Spectrum of the Feature Space

Another property that offers insights into the geometry and expressivity of neural net-
works is the singular value spectrum of the feature space. The singular value decomposition
(SVD) of a feature space matrix X is given by:

X = UΣV>, (61)

where U and V are orthogonal matrices, and Σ is a diagonal matrix containing the singular
values σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

The singular values provide valuable information about the geometry of the feature
space, such as the dimensionality and the distribution of the feature vectors. Moreover,
they can be used to characterize the capacity of a neural network to learn low-dimensional
manifolds.

One approach to analyze the singular value spectrum is to examine the behavior of
the singular values as a function of the depth of the network. Let fl(x) denote the feature
map at layer l for input x, and Fl = [ fl(x1), . . . , fl(xn)] be the matrix of feature maps at
layer l for n input samples. The singular value spectrum of the feature space at layer l can
be computed as:

Fl = UlΣlV
>
l , (62)

where Ul and Vl are orthogonal matrices, and Σl is a diagonal matrix containing the
singular values σl,1 ≥ σl,2 ≥ · · · ≥ σl,rl

> 0.
The ratio of successive singular values, also known as the singular value gap, can be

used to estimate the effective dimensionality of the feature space:

gl(i) =
σl,i

σl,i+1
. (63)

A large gap indicates a significant drop in the singular values and suggests a low-
dimensional structure in the feature space. The effective dimensionality of the feature space
can be estimated by finding the index i∗ at which the gap is maximized:

i∗ = arg max
i

gl(i). (64)

Recent studies have investigated the singular value spectrum of deep neural networks,
as it provides insights into their geometry and expressivity. Oymak and Soltanolkotabi [58]
demonstrated that deep ReLU networks can implicitly learn low-dimensional manifolds,
while Jia et al. [59] proposed Singular Value Bounding (SVB) and Bounded BN (BBN)
techniques to constrain the weight matrices in the orthogonal feasible set during network
training. Bermeitinger et al. [60] established a connection between SVD and multi-layer
neural networks, showing that the singular value spectrum can be beneficial for initializing
and training deep neural networks. Schwab et al. [61] developed a data-driven regular-
ization method for photoacoustic image reconstruction using truncated SVD coefficients
recovered by a deep neural network. Sedghi et al. [62] characterized the singular values
of 2D multi-channel convolutional layers and proposed an algorithm for projecting them
onto an operator-norm ball, effectively improving the test error of a deep residual network
using BN on CIFAR-10.

Table 10 summarizes research contributions related to the singular value spectrum
of the feature space in deep learning models. The table presents the approaches and
contributions of these studies, including the investigation of deep ReLU networks’ ability to
implicitly learn low-dimensional manifolds, the use of SVB and BBN techniques to constrain
weight matrices in the orthogonal feasible set, the connection between SVD and multi-layer
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networks, and the development of data-driven regularization methods. Other research has
characterized the singular values of 2D multi-channel convolutional layers and proposed an
algorithm for projecting them onto an operator-norm ball, effectively improving test error.
These studies contribute to a better understanding of the singular value spectrum in deep
neural networks and its implications for the geometry and expressivity of these models.

Table 10. Summary of Research on Singular Value Spectrum of the Feature Space.

Reference Approach Contribution

Oymak and
Soltanolkotabi [58] Deep ReLU networks Implicit learning of

low-dimensional manifolds

Jia et al. [59] SVB and BBN techniques Constraining weight matrices
in orthogonal feasible set

Bermeitinger et al. [60] Connection between SVD and
multi-layer networks

Benefits of singular value
spectrum for initializing and

training DNNs

Schwab et al. [61] Data-driven regularization
Photoacoustic image
reconstruction using

truncated SVD coefficients

Sedghi et al. [62]
Singular values of 2D

multi-channel convolutional
layers

Projection onto operator-norm
ball and test error

improvement

As shown in these studies, the singular values can estimate the effective dimensional-
ity of the feature space and help understand a network’s capacity to learn low-dimensional
manifolds. Recent studies have investigated the singular value spectrum, including meth-
ods for constraining weight matrices, establishing connections with multi-layer networks,
and proposing data-driven regularization methods.

4.6. Exploring the Geometry of Feature Spaces in Convolutional Neural Networks

CNNs have demonstrated remarkable results in a wide range of computer vision
applications. To gain a deeper understanding of their generalization abilities, recent
research has delved into the geometry of CNN feature spaces. A key discovery is the
presence of translation-equivariant representations within these feature spaces [63]. This
characteristic can be formulated as:

F (Tgx) = T′gF (x), (65)

where F represents the feature space transformation, Tg is a translation operator acting
upon input x, and T′g is the corresponding translation operator within the feature space.
This translation-equivariant attribute allows CNNs to learn spatially invariant features,
which is vital for their success in a variety of vision tasks.

Aside from translation-equivariant representations, researchers have also examined
the feature space of CNNs for rotation-equivariant properties [64]. Mathematically, this can
be expressed as:

F (Rθ x) = R′θF (x), (66)

where Rθ is a rotation operator acting on input x with angle θ, and R′θ is the corresponding
rotation operator in the feature space. By incorporating rotation-equivariant properties,
CNNs can effectively learn to identify objects at various orientations.

In recent studies, researchers have explored the concept of equivariance in CNNs
and its potential applications. Singh et al. [65] proposed a positional encoding method
that uses orthogonal polar harmonic transforms to achieve equivariance to rotation, reflec-
tion, and translation in CNN architectures. On the other hand, McGreivy and Hakim [66]
clarified that CNNs are equivariant to discrete shifts, but not continuous translations.
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Aronsson et al. [67] developed lattice gauge equivariant CNNs that maintain gauge sym-
metry under global lattice symmetries. Zhdanov et al. [68] proposed using implicit neural
representation via multi-layer perceptrons to parameterize G-steerable kernels in steerable
CNNs, leading to significant performance improvements. Toft et al. [69] characterized the
equivariant linear operators on the space of square-integrable functions on the sphere with
respect to azimuthal rotations and demonstrated their potential applications in improving
the performance of state-of-the-art pipelines.

Another area of investigation has concentrated on the link between the Lipschitz
constant and the generalization of CNNs [70]. Let f : X → Y denote a function representing
a CNN, with X and Y signifying input and output spaces, respectively. The Lipschitz
constant L for the function f is defined as:

L = sup
x 6=y

| f (x)− f (y)|
|x− y| , (67)

where | · | denotes the norm. A lower Lipschitz constant indicates that the function is
less susceptible to minor disturbances in the input, which can improve the generalization
performance of the CNN. This observation has led to the development of regularization
techniques based on the Lipschitz constant, such as spectral normalization [71].

Recently, estimating the Lipschitz constant has emerged as a critical factor in under-
standing the robustness and generalization ability of CNNs. Pauli et al. [72] developed
a dissipativity-based method for estimating the Lipschitz constant of 1D CNNs, which
focused on analyzing dissipativity properties in convolutional, pooling, and fully connected
layers. By using incremental quadratic constraints and a semidefinite program derived
from dissipativity theory, they demonstrated the advantages of their method in terms
of accuracy and scalability. In a separate work, Pauli et al. [73] established a layer-wise
parameterization for 1D CNNs with built-in end-to-end robustness guarantees using the
Lipschitz constant as a measure of robustness.

In addition, a deeper understanding of the geometry of feature spaces in CNNs can be
achieved by examining the invariance and equivariance properties of features concerning
specific transformation groups [63]. Let G represent a group of transformations acting on
the input space X . A feature space transformation F is considered to be G-invariant if:

F (g · x) = F (x) ∀g ∈ G, x ∈ X , (68)

and G-equivariant if:

F (g · x) = ρ(g) · F (x) ∀g ∈ G, x ∈ X (69)

where ρ(g) is a representation of the group element g in the feature space. Gaining insights
into these invariance and equivariance properties can offer valuable information about the
structure of the feature space, ultimately aiding in the development of architectures with
enhanced generalization capabilities.

Furthermore, recent research has explored the role of scale-equivariant representations
in the feature space of CNNs [74]. This property can be described mathematically as:

F (Sλx) = S′λF (x), (70)

where Sλ is a scale operator acting on the input x with scaling factor λ, and S′λ is the corre-
sponding scale operator in the feature space. By incorporating scale-equivariant properties,
CNNs can learn to recognize objects at various scales, enhancing their performance in
diverse vision tasks.

Table 11 provides a summary of research contributions related to the geometry of
feature spaces in convolutional neural networks. These studies explore various aspects of
the geometry, including translation-equivariant, rotation-equivariant, and scale-equivariant
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properties, as well as the Lipschitz constant and its implications for robustness and general-
ization. They contribute to a deeper understanding of the characteristics of CNN feature
spaces and provide insights that can be utilized to develop more effective and generalizable
network architectures.

Table 11. Summary of Research on the Geometry of Feature Spaces in Convolutional Neural
Networks.

Reference Focus Contribution

Cohen and Welling [63] Translation-equivariant
representations

Formulation of spatial
invariance in CNNs

Esteves et al. [64] Rotation-equivariant
properties

Incorporation of orientation
invariance in CNNs

Singh et al. [65] Equivariance to rotation,
reflection, and translation

Orthogonal polar harmonic
transforms in CNNs

McGreivy and Hakim [66] Equivariance in CNNs
Discrete shift-equivariance
and continuous translation

non-equivariance

Aronsson et al. [67] Lattice gauge equivariant
CNNs

Gauge symmetry under
global lattice symmetries

Zhdanov et al. [68] Implicit neural representation G-steerable kernels in
steerable CNNs

Toft et al. [69] Equivariant linear operators Application in state-of-the-art
pipelines

Miyato et al. [71] Lipschitz constant Spectral normalization for
improved generalization

Pauli et al. [72] Estimating Lipschitz constant Dissipativity-based method
for 1D CNNs

Pauli et al. [73] Layer-wise parameterization End-to-end robustness
guarantees

Worrall et al. [74] Scale-equivariant
representations

Enhancing performance in
diverse vision tasks

Recent research on CNNs has delved into the geometry of their feature spaces, particu-
larly the translation- and rotation-equivariant properties that allow CNNs to learn spatially
invariant and orientation-invariant features, respectively. Researchers have explored the
concept of equivariance in CNNs, leading to proposed methods for achieving equivariance
to rotation, reflection, and translation, as well as developing lattice gauge equivariant
CNNs that maintain gauge symmetry under global lattice symmetries. Estimating the
Lipschitz constant has also emerged as a critical factor in understanding the robustness and
generalization ability of CNNs, leading to the development of regularization techniques
based on the Lipschitz constant, such as spectral normalization. Gaining insights into the in-
variance and equivariance properties of features concerning specific transformation groups
can offer valuable information about the structure of the feature space, ultimately aiding in
the development of architectures with enhanced generalization capabilities. Finally, recent
research has also explored the role of scale-equivariant representations in the feature space
of CNNs.

4.7. Adversarial Robustness and Feature Space Geometry

Adversarial robustness has emerged as an essential aspect of deep learning models.
Recent studies have investigated the relationship between the feature space geometry and
adversarial robustness. One such study by Fawzi et al. [75] revealed that adversarial
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examples lie near the decision boundaries of the classifier in the feature space, and their
existence is related to the curvature of the decision boundary.

The robustness of a classifier can be characterized by the margin around the deci-
sion boundary:

ρ(θ) = min
(x,y)∈D

y · fθ(x), (71)

where D denotes the data distribution, fθ(x) is the classifier output, and y is the true label.
A larger margin ρ(θ) corresponds to increased robustness against adversarial examples.

Another recent study by Tsipras et al. [76] examined the trade-off between standard
accuracy and adversarial robustness. They analyzed the linear approximation of the classi-
fier loss function, L(θ), around a data point (x, y), and derived the adversarial perturbation,
δ, as follows:

δ = −ε · sign(∇xL(θ, x, y)), (72)

where ε is a small constant determining the maximum allowed perturbation. This adversar-
ial perturbation causes a decrease in the margin around the decision boundary, implying a
trade-off between standard accuracy and adversarial robustness.

In a different study, Hein et al. [77] introduced a geometric perspective on adversarial
robustness by defining the concept of robustness certificates. They proposed a measure
called the cross-Lipschitz regularization (CLR) that quantifies the robustness of a classifier,
fθ(x), as follows:

CLR( fθ) = sup
x,x′∈X

| fθ(x)− fθ(x′)|2
|x− x′|2

, (73)

where X is the input space. A smaller CLR value indicates a more robust classifier. This
measure captures the sensitivity of the classifier output to input perturbations and is related
to the Lipschitz constant of the classifier.

Recent studies have focused on enhancing the adversarial robustness of deep learning
models by investigating the geometry of the feature space. Various methods have been
proposed, including the defense layer by Goel et al. [78] that aims to prevent the gener-
ation of adversarial noise and Dual Manifold Adversarial Training (DMAT) introduced
by Lin et al. [79], which exploits the underlying manifold information of data to achieve
comparable robustness to standard adversarial training against Lp attacks. Additionally,
Chen and Liu [80] provided a comprehensive overview of adversarial robustness research
methods for deep learning models, while Gavrikov and Keuper [81] investigated the prop-
erties of convolution filters in adversarially trained models. Moreover, Ghaffari Laleh
et al. [82] studied the susceptibility of CNNs and vision transformers (ViTs) to white- and
black-box adversarial attacks in clinically relevant weakly-supervised classification tasks,
demonstrating ViTs’ higher robustness to such attacks attributed to their more robust latent
representation of clinically relevant categories compared to CNNs.

Table 12 provides a summary of research contributions related to adversarial robust-
ness and feature space geometry. These studies investigate various aspects of adversarial
robustness, including the relationship between adversarial examples and decision boundary
curvature, the trade-off between standard accuracy and robustness, and the development
of robustness certificates. They contribute to a better understanding of the geometry of the
feature space in the context of adversarial robustness and provide insights for developing
more robust and reliable deep learning models.

Adversarial attacks are a major concern for the reliability and safety of deep learning
models. Recent research has explored the relationship between adversarial robustness
and the geometry of the feature space. Adversarial examples tend to lie near the decision
boundaries of the classifier, and their existence is related to the curvature of the decision
boundary. The margin around the decision boundary is a measure of the robustness of a
classifier, with a larger margin indicating increased robustness. There is a trade-off between
standard accuracy and adversarial robustness, and the sensitivity of the classifier output to
input perturbations can be quantified using the cross-Lipschitz robustness measure.
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Table 12. Summary of Research on Adversarial Robustness and Feature Space Geometry.

Reference Focus Contribution

Fawzi et al. [75] Adversarial examples Relationship with decision
boundary curvature

Tsipras et al. [76] Trade-off between accuracy
and robustness

Linear approximation of
classifier loss function

Hein et al. [77] Robustness certificates Cross-Lipschitz regularization
(CLR)

Goel et al. [78] Defense layer for CNNs Preventing generation of
adversarial noise

Lin et al. [79] Dual Manifold Adversarial
Training (DMAT)

Exploiting underlying
manifold information

Chen and Liu [80] Overview of adversarial
robustness methods

Comprehensive review of
research

Gavrikov and Keuper [81] Convolution filters in
adversarially-trained models

Investigation of filter
properties

Ghaffari Laleh et al. [82] CNNs and ViTs under
adversarial attacks

Comparison of robustness in
weakly-supervised
classification tasks

4.8. Feature Space Geometry and Transfer Learning

Transfer learning is a widely-used technique in deep learning, in which pre-trained
models are fine-tuned on a new task. The feature space geometry plays a crucial role in the
success of transfer learning. A study by Yosinski et al. [83] found that the feature spaces
of lower layers in neural networks tend to be more general and transferable than those of
higher layers.

The transferability of a feature space can be quantified by measuring the similarity
between the feature spaces of the source and target tasks:

τ(Fs,Ft) =
〈Fs,Ft〉
|Fs||Ft|

, (74)

where Fs and Ft denote the feature spaces of the source and target tasks, respectively, and
τ(·, ·) measures the cosine similarity between the feature spaces. A high similarity score
indicates that the feature space is more transferable between the tasks.

Several recent studies have focused on exploring the transferability of features between
different domains of time series data, real-time crash risk models, and image classification
tasks. Otović et al. [84] investigated the transferability of features in time series data
and found that transfer learning is likely to improve or not negatively affect the model’s
predictive performance or its training convergence rate. Man et al. [85] proposed a
method combining Wasserstein Generative Adversarial Network and transfer learning
to address the spatio-temporal transferability issue of real-time crash risk models. Their
findings show that transfer learning can improve model transferability under extremely
imbalanced settings, resulting in models that are transferable temporally, spatially, and
spatio-temporally. Pándy et al. [86] proposed a novel method, Gaussian Bhattacharyya
Coefficient, for quantifying transferability between a source model and a target dataset.
Their results showed that GBC outperforms state-of-the-art transferability metrics on
most evaluation criteria in semantic segmentation settings and performs well on dataset
transferability and architecture selection problems for image classification.

The feature space geometry has continued to be a significant area of research in transfer
learning, with several studies exploring different aspects of this relationship. Xu et al. [87]
investigated the connection between the similarity of feature spaces and the performance of



Mathematics 2023, 11, 2375 29 of 43

transfer learning. They proposed a task similarity measure based on the normalized mutual
information (NMI) between the feature space distributions of the source and target tasks:

NMI(Fs,Ft) =
2 · I(Fs;Ft)

H(Fs) + H(Ft)
, (75)

where I(·; ·) denotes the mutual information and H(·) denotes the entropy. This measure
quantifies the degree of dependence between the source and target feature spaces, and
higher values of NMI indicate a stronger relationship, leading to better transfer learning
performance.

Xie et al. [88] studied the importance of feature alignment in transfer learning. They
introduced a feature alignment loss, which aims to minimize the distance between the
source and target feature space distributions:

Lalign(Fs,Ft) =
1
n ∑ i = 1n‖Fs(xi)−Ft(xi)‖2

2, (76)

where n is the number of samples and xi is the i-th sample. By optimizing this loss, the
feature spaces become more aligned, resulting in improved transfer learning performance.

Raghu et al. [89] proposed a method called Transfusion to enhance transfer learning
by selectively transferring features. They introduced a transfer matrix T , which maps the
source feature space to the target feature space:

Ft(x) = T (Fs(x)), (77)

where the transfer matrix T is learned during the fine-tuning process. This approach allows
for selective transfer of features, which can improve the transferability and adaptability of
pre-trained models.

Zamir et al. [90] explored the task structure in transfer learning and introduced the
concept of taskonomy, which models the relationships between tasks using a directed graph.
They proposed an optimization problem to find the optimal transfer learning strategy:

min
G ∑

t∈T
Cost(Ft) subject to Constraints(G), (78)

where G is the task graph, T is the set of tasks, and the cost function represents the
performance of transfer learning. By solving this optimization problem, they found the
optimal task relationships that yield the best transfer learning performance.

Table 13 provides a summary of research contributions related to feature space geom-
etry and transfer learning. These studies investigate various aspects of transfer learning,
such as the transferability of lower layers in neural networks, the transferability of features
between different domains, and the development of novel methods to quantify transfer-
ability. Additionally, they explore techniques to improve transfer learning performance,
such as feature alignment, selective transfer, and optimizing task relationships.

Transfer learning is a widely-used technique in deep learning that involves fine-tuning
pre-trained models on a new task. The feature space geometry plays a crucial role in the
success of transfer learning. Several recent studies have explored the transferability of
features between different domains of time series data, real-time crash risk models, and
image classification tasks. The findings indicate that transfer learning can improve model
transferability and result in models that are transferable temporally, spatially, and spatio-
temporally. Additionally, recent research has focused on different aspects of the feature
space geometry and transfer learning, including the connection between the similarity
of feature spaces and the performance of transfer learning, the importance of feature
alignment in transfer learning, and selective transfer of features to improve adaptability.
Moreover, task structure has been explored to model the relationships between tasks
using a directed graph and find the optimal task relationships that yield the best transfer
learning performance.



Mathematics 2023, 11, 2375 30 of 43

Table 13. Summary of Research on Feature Space Geometry and Transfer Learning.

Reference Focus Contribution

Yosinski et al. [83] Transferability of lower layers Lower layers more general
and transferable

Otović et al. [84] Time series data
transferability

Improved predictive
performance and convergence

rate

Man et al. [85]
Spatio-temporal

transferability in crash risk
models

Improved model
transferability under
imbalanced settings

Pándy et al. [86] Gaussian Bhattacharyya
Coefficient

Quantifying transferability in
semantic segmentation

Xu et al. [87] Normalized mutual
information (NMI)

Quantifying task similarity for
better transfer learning

Xie et al. [88] Feature alignment loss
Improved transfer learning

performance through
alignment

Raghu et al. [89] Transfusion for selective
transfer

Enhanced transferability and
adaptability of models

Zamir et al. [90] Taskonomy
Optimal task relationships for

best transfer learning
performance

4.9. Disentangled Representations in Feature Space

Disentangled representations are a desirable property in deep learning models, as they
facilitate the separation of underlying explanatory factors in the data. The geometry of the
feature space can provide insights into the degree of disentanglement achieved by a model.
Mathematically, a disentangled representation can be characterized by the independence
between the latent factors:

p(z) =
n

∏
i=1

p(zi), (79)

where z is a latent representation vector and zi represents individual latent factors. The
geometry of the feature space in disentangled representation learning has been investigated
in various studies, such as the β-VAE [91] and InfoGAN [92].

The pursuit of disentangled representations has led to numerous recent studies propos-
ing various mathematical frameworks and models to achieve a higher degree of disentan-
glement.

Locatello et al. [93] introduced a fairness-aware framework for disentangled repre-
sentations. They proposed a regularization term to encourage fairness by minimizing the
mutual information between the sensitive attribute s and the disentangled latent factors z:

Lfair(z, s) = −∑ i = 1n I(zi; s), (80)

where I(·; ·) denotes the mutual information. By minimizing this loss, the learned repre-
sentations become more disentangled with respect to the sensitive attribute, leading to
fairer representations.

Achille et al. [94] studied the relationship between the information bottleneck principle
and disentangled representations. They derived an upper bound on the mutual information
between the input data x and the disentangled latent factors z:

I(x; z) ≤
n

∑
i=1

H(zi)− βLIB(z), (81)
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where H(·) is the entropy, β is a trade-off parameter, andLIB(·) is the information bottleneck
loss. This result suggests that optimizing the information bottleneck objective can lead to
the emergence of disentangled representations.

Kim and Mnih [95] introduced a method called Disentangling by Factorizing (DF) to
learn disentangled representations in a purely unsupervised manner. They proposed a
factorized variational autoencoder (FVAE) that models the joint distribution of data x and
latent factors z as:

p(x, z) = p(x|z)
n

∏
i=1

p(zi), (82)

where p(x|z) is the likelihood and p(zi) are the prior distributions over latent factors. They
also introduced a structured inference network q(z|x) to approximate the true posterior
p(z|x). The model is trained by optimizing the evidence lower bound (ELBO):

LELBO(x, z) = Eq(z|x)[log p(x|z)]−
n

∑
i=1

KL(q(zi|x)|p(zi)), (83)

where KL(·|·) denotes the Kullback–Leibler divergence. By optimizing this objective, the
model learns disentangled representations that separate the underlying factors of variation
in the data.

Table 14 provides a summary of research contributions related to disentangled rep-
resentations in feature space. These studies investigate various aspects of disentangled
representations, such as balancing reconstruction and disentanglement, using mutual infor-
mation for unsupervised disentanglement, and incorporating fairness-aware frameworks.
They contribute to a better understanding of the geometry of the feature space in the
context of disentangled representations and provide insights for developing models that
can separate the underlying explanatory factors in the data.

Table 14. Summary of Research on Disentangled Representations in Feature Space.

Reference Focus Contribution

Higgins et al. [91] β-VAE Balancing reconstruction and
disentanglement

Chen et al. [92] InfoGAN
Mutual information for

unsupervised
disentanglement

Locatello et al. [93] Fairness-aware framework Regularization for fair
disentangled representations

Achille et al. [94] Information bottleneck
principle

Connection to disentangled
representations

Kim and Mnih [95] Disentangling by Factorizing
(DF)

Unsupervised
disentanglement via

factorized VAE

The pursuit of disentangled representations in deep learning has led to various studies
exploring the geometry of the feature space and proposing models to achieve a higher
degree of disentanglement. Disentangled representations facilitate the separation of under-
lying explanatory factors in the data and are characterized by the independence between
the latent factors. Recent studies have proposed various mathematical frameworks and
models to achieve a higher degree of disentanglement.

5. Challenges and Future Directions

In this section, the challenges and future directions in the field of feature space geome-
try in deep learning will be discussed. The study of feature space geometry is a rapidly
growing area of research, and numerous open questions remain, offering exciting oppor-



Mathematics 2023, 11, 2375 32 of 43

tunities for the development of novel mathematical techniques and insights. Several key
challenges and possible future research directions are outlined below.

5.1. Understanding the Geometry of Overparameterized Models

Overparameterized models [96–98] have shown remarkable success in deep learning,
often achieving better generalization despite the increased capacity. A better understanding
of the geometry of feature spaces in overparameterized models could shed light on the
mechanisms behind their improved generalization. Mathematically, the characterization of
the feature space geometry in such models can be challenging, as the dimensionality of the
space grows significantly:

dim(F ) = O(N), (84)

where dim(F ) denotes the dimensionality of the feature space and N represents the num-
ber of parameters in the model. Future research could focus on the development of efficient
mathematical techniques to analyze high-dimensional feature spaces in overparameter-
ized models.

Understanding the geometry of overparameterized models poses a challenge due
to implicit regularization, wherein optimization tends to favor simpler solutions that
generalize well, despite the model having a large capacity. This implicit regularization can
be viewed as a constraint on the parameter space:

R(θ) ≤ C, (85)

where R(θ) is a regularizer, θ denotes the model parameters, and C is a constant. The
nature of this implicit regularizer is not yet fully understood, and further research is needed
to reveal its mathematical properties.

Additionally, the nonconvexity of the optimization landscape, with local minima and
saddle points, creates another challenge for understanding geometry in overparameterized
models. Mathematical techniques analyzing the Hessian matrix of the loss function can
aid in gaining insights into the convergence properties and generalization capabilities of
such models:

H(θ) = ∇2L(θ), (86)

where H(θ) is the Hessian matrix and L(θ) denotes the loss function. Analyzing the
eigenvalues and eigenvectors of the Hessian can help understand the local curvature of the
optimization landscape and reveal the properties of the feature space geometry.

Future research can focus on investigating the geometry of feature spaces in the context
of NTKs [42], which provide a linearized approximation of the model’s dynamics during
training, making them a powerful tool for analyzing overparameterized models:

K(x, x′) = ∇θF (x)T∇θF (x′), (87)

where K(x, x′) is the NTK, x and x′ are input data points, and F (x) denotes the feature
space representation.

Table 15 provides a summary of research challenges related to understanding the geom-
etry of overparameterized models. These challenges include analyzing high-dimensional
feature spaces, investigating the nature and properties of implicit regularization, under-
standing the nonconvex optimization landscape, and utilizing Neural Tangent Kernels
(NTKs) to study the geometry of feature spaces. Addressing these challenges could lead to
a better understanding of the mechanisms behind the improved generalization capabilities
of overparameterized models.
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Table 15. Summary of Research Challenges in Understanding the Geometry of Overparameter-
ized Models.

Challenge Description

High-dimensional feature spaces Developing efficient mathematical techniques
for high-dimensional analysis

Implicit regularization Investigating the nature and properties of the
implicit regularizer

Non-convex optimization landscape Analyzing the Hessian matrix to understand
local curvature and feature space properties

Neural Tangent Kernels (NTKs)
Investigating the geometry of feature spaces
using linearized approximations of model

dynamics

5.2. Feature Space Geometry in Unsupervised and Semi-Supervised Learning

While the majority of research on feature space geometry has focused on supervised
learning, the study of feature space geometry in unsupervised and semi-supervised learn-
ing [99,100] settings remains relatively unexplored. Understanding the geometry of feature
spaces in these settings could be crucial for developing more effective representation learn-
ing techniques. Future work could involve the development of mathematical tools and
theories that capture the geometry of feature spaces in unsupervised and semi-supervised
settings, such as:

G(Funsup) = T (Fsup), (88)

where G denotes a geometric transformation, and Funsup and Fsup represent the feature
spaces in unsupervised and supervised settings, respectively.

Measuring the similarity between learned feature spaces and the underlying data struc-
ture is a difficult task in unsupervised and semi-supervised learning. Mutual information
can be employed to quantify this similarity:

I(X; Z) = ∑
x∈X

∑
z∈Z

p(x, z) log
p(x, z)

p(x)p(z)
, (89)

where X and Z represent the input data and the learned representations, respectively,
and p(·) denotes the corresponding probability distributions. A high mutual information
between X and Z indicates that the learned representations capture the underlying structure
of the data. Future research could develop methods for optimizing mutual information in
unsupervised and semi-supervised settings.

Inductive biases [101,102] play a significant role in shaping the geometry of feature
spaces in unsupervised and semi-supervised learning. By restricting the hypothesis space,
inductive biases can have a profound impact on the geometry of feature spaces:

Hbiased = Hunbiased ∩ B, (90)

whereHbiased andHunbiased denote the biased and unbiased hypothesis spaces, respectively,
and B represents the set of constraints introduced by the inductive bias. Future work could
investigate the impact of different inductive biases on the geometry of feature spaces in
unsupervised and semi-supervised learning and develop techniques for designing models
with appropriate biases.

A promising research direction in this field is to develop unified mathematical frame-
works for the study of feature space geometry in supervised, unsupervised, and semi-
supervised learning. An area of focus in this regard could be to investigate the interplay
between the loss functions used in these different settings:

Lsemi(θ) = αLsup(θ) + (1− α)Lunsup(θ), (91)
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where Lsemi(θ), Lsup(θ), and Lunsup(θ) denote the loss functions for semi-supervised,
supervised, and unsupervised learning, respectively, and α ∈ [0, 1] is a weighting factor.
Understanding the interplay between these loss functions and their impact on the geometry
of feature spaces could lead to novel algorithms for representation learning.

An important area of research to consider is the impact of objective functions on the
geometry of feature spaces and how this affects optimization dynamics. An approach
to investigating this could be analyzing the gradients of loss functions with respect to
the feature space, which can provide insights into how the choice of objective function
influences the geometry of the feature space:

∇zL(θ, z) =
∂L(θ, z)

∂z
, (92)

where ∇z denotes the gradient with respect to the learned representation z, and L(θ, z)
represents the loss function associated with the model parameters θ. Analyzing the proper-
ties of these gradients and their interplay with the geometry of feature spaces may provide
insights into the optimization challenges faced by unsupervised and semi-supervised
learning algorithms.

Developing theoretical frameworks for understanding the robustness of feature spaces
in unsupervised and semi-supervised learning is another important direction for future
research. The geometry of the feature space plays a significant role in the model’s ability to
handle noisy data or resist adversarial attacks. A measure of robustness could be defined
by analyzing the sensitivity of the feature space to small perturbations in the input data:

R(z) = max
z′

‖z− z′‖
‖x− x′‖ , (93)

where x and x′ represent the original and perturbed input data, respectively, and z and z′

are their corresponding learned representations. A low sensitivity of the feature space to
perturbations in the input data implies a more robust model. Investigating the relationship
between the geometry of feature spaces and robustness can help develop more resilient
unsupervised and semi-supervised learning techniques.

Exploring the interplay between feature space geometry and architectural components
is another promising direction for future research. Components such as activation functions,
pooling layers, and normalization techniques can significantly affect the geometry of the
feature space. A mathematical characterization of this relationship can be achieved by
modeling the effect of these components on the feature space:

Fmod =M(Forig, φ), (94)

where Fmod and Forig denote the modified and original feature spaces, respectively,M
represents a transformation function capturing the effect of the architectural component,
and φ denotes the parameters associated with the component. Understanding the impact
of architectural choices on the geometry of feature spaces could lead to more effective
model designs for unsupervised and semi-supervised learning tasks.

Table 16 summarizes the research challenges in feature space geometry for unsu-
pervised and semi-supervised learning. These challenges include developing geometric
transformations for mathematical tools, optimizing mutual information for representation
quality, investigating the impact of inductive biases, creating unified mathematical frame-
works, analyzing the influence of objective functions, studying the robustness of feature
spaces, and exploring the impact of architectural components. Addressing these challenges
could lead to a better understanding of unsupervised and semi-supervised learning and
help develop more effective representation learning techniques.
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Table 16. Summary of Research Challenges in Feature Space Geometry for Unsupervised and
Semi-Supervised Learning.

Challenge Description

Geometric transformations
Developing mathematical tools to capture

geometry in unsupervised and
semi-supervised settings

Mutual information
Optimizing mutual information to measure

similarity between learned representations and
data structure

Inductive biases Investigating the impact of inductive biases on
feature space geometry

Unified mathematical frameworks
Exploring the interplay between loss functions

and feature space geometry across learning
settings

Objective function impact
Analyzing gradients of loss functions to

understand their influence on feature space
geometry

Robustness Developing theoretical frameworks to study
robustness of feature spaces

Architectural components Exploring the impact of architectural choices
on feature space geometry

5.3. Interpretable Feature Space Geometry

Interpretability is an important aspect of deep learning models [103,104], especially in
safety-critical applications. A better understanding of the feature space geometry could
facilitate the development of more interpretable models. Future research could focus on
the identification of mathematical properties and structures within feature spaces that
correspond to human-understandable representations:

I(F ) = H(R), (95)

where I denotes an interpretability function, F is the feature space,H is a transformation
into human-understandable representations, andR represents the human-understandable
representation space.

A major challenge in developing interpretable feature spaces lies in quantifying the
degree of interpretability. One possible approach is to define a measure of interpretability
based on the similarity between the learned feature spaceF and the human-understandable
representation spaceR:

S(F ,R) = 〈F ,R〉
‖F‖‖R‖ , (96)

where S(·, ·) denotes the cosine similarity between the two spaces. A high similarity score
indicates that the learned feature space closely aligns with human-understandable repre-
sentations.

In order to enhance the interpretability of deep learning models, further investigation
is needed to examine how different architectural choices and training strategies impact the
geometry of feature spaces. The selection of activation functions, regularization techniques,
and inductive biases can all contribute to the interpretability of learned feature spaces and
should be explored:

Finterp = A(Forig, ψ), (97)

where Finterp and Forig denote the interpretable and original feature spaces, respectively,
A represents a transformation function capturing the effect of architectural choices and
training strategies, and ψ denotes the associated parameters.
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Another avenue for future research is the development of mathematical frameworks
that combine disentangled representations with interpretable feature spaces. By analyzing
the relationship between disentangled latent factors and human-understandable representa-
tions, models can be designed to both disentangle explanatory factors and be interpretable:

D(Finterp) = E(R), (98)

where D denotes a disentanglement function, and E is a transformation into a disentangled
representation space. Understanding the interplay between interpretability and disentan-
glement could pave the way for more interpretable and effective deep learning models.

A promising direction for research is exploring the role of feature space geometry
in Explainable AI (XAI) techniques [105,106]. By developing methods that can project
high-dimensional feature spaces onto lower-dimensional, human-understandable spaces,
deep learning models can provide more intuitive explanations for their predictions:

P(F ) = Q(R), (99)

where P denotes a projection function, andQ is a transformation into a lower-dimensional,
human-understandable space. Developing such projection techniques could greatly en-
hance the explainability and trustworthiness of deep learning models, especially in safety-
critical applications.

Table 17 summarizes the research challenges in interpretable feature space geome-
try. The challenges include quantifying interpretability in feature spaces, investigating
the impact of architectural choices and training strategies, understanding the interplay
between interpretability and disentanglement, and exploring the role of feature space
geometry in Explainable AI techniques. Addressing these challenges could contribute to
the development of more interpretable and trustworthy deep learning models.

Table 17. Summary of Research Challenges in Interpretable Feature Space Geometry.

Challenge Description

Quantifying interpretability Developing measures to quantify the degree of
interpretability in feature spaces

Impact of architectural choices
Investigating the effect of architectural choices

and training strategies on feature space
interpretability

Interplay between interpretability and
disentanglement

Understanding the relationship between
interpretable and disentangled feature spaces

Feature space geometry in XAI Exploring the role of feature space geometry in
Explainable AI techniques

5.4. Topological Analysis of Feature Space Geometry

Topological Data Analysis (TDA) techniques [107–109], such as persistent homol-
ogy [110], have emerged as powerful tools for analyzing complex and high-dimensional
data structures. Applying these techniques to the study of feature space geometry in deep
learning models could provide valuable insights into the topological properties of these
spaces and their relation to the performance of the models.

Persistent homology is a TDA technique that characterizes the topology of a space
through its persistent homology groups:

PHk(F ) = Hk(Fα)→ Hk(Fβ) | α ≤ β, (100)

where PHk(F ) denotes the k-th persistent homology group of the feature space F , Hk(·)
represents the k-th homology group, and Fα and Fβ are subspaces of F parameterized by
the filtration values α and β, respectively.
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A significant challenge in using persistent homology to analyze feature space geometry
is the complexity and high dimensionality of deep learning models. To overcome this,
researchers could explore the development of efficient algorithms and data structures,
including dimensionality reduction techniques, that enable the computation of persistent
homology in high-dimensional feature spaces:

Freduced = R(F ), (101)

where Freduced denotes the reduced-dimension feature space and R is a dimensionality
reduction function that preserves the topological structure of the original space. Researchers
could define a topological complexity measure that quantifies the impact of these properties
on the model’s performance:

C(F ) =
n

∑
k=0

ωkBk(PHk(F )), (102)

where C(F ) denotes the topological complexity of the feature space F , ωk represents the
weight assigned to the k-th persistent homology group, and Bk is a function that computes
the topological complexity contribution from the k-th persistent homology group.

Developing novel methods for visualizing and understanding the high-dimensional
topological structures of feature spaces is another challenge. A potential approach could
involve creating visualizations based on the persistence diagram, which is a summary of
the topological information contained in the persistent homology groups:

P(PHk(F )) = (bi, di) | bi ≤ di, i = 1, . . . , m, (103)

where P(PHk(F )) denotes the persistence diagram of the k-th persistent homology group
of the feature space F , bi and di represent the birth and death times of the i-th topological
feature, and m is the number of topological features in the k-th persistent homology group.

Another promising direction for research is to examine the correlation between the
topological characteristics of feature spaces and deep learning model performance. This
could help uncover relationships that can be exploited to design better models:

ρ(PHk(F ),P(M)) = corr( f (PHk(F )), g(P(M))), (104)

where ρ(·, ·) measures the correlation between the topological properties of the feature
space F and the performance P(M) of the deep learning modelM, and f (·) and g(·) are
suitable transformation functions.

Developing novel methods for visualizing and understanding the high-dimensional
topological structures of feature spaces is crucial for gaining insights into their geometry.
Potential approaches could involve the use of Mapper algorithms [111] and visualization
techniques such as t-distributed Stochastic Neighbor Embedding (t-SNE) [112] to generate
informative visualizations of the topological structure:

V(F ) = t-SNE(M(F )), (105)

where V(F ) represents the visualization of the feature space F , andM(F ) denotes the
Mapper output. By combining these visualization techniques with the analysis of topologi-
cal properties, researchers could gain a deeper understanding of the underlying structure
and complexity of feature spaces in deep learning models.

To enhance the interpretability and generalization of deep learning models, future
research could investigate the integration of topological constraints in their design. This
could involve developing regularization techniques based on topological properties to
improve model performance:

Ltopo(θ) = Lorig(θ) + λT (PHk(F )), (106)
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where Ltopo(θ) denotes the topologically regularized loss function, Lorig(θ) represents the
original loss function, λ is a regularization parameter, and T (PHk(F )) is a function that
measures the topological complexity of the feature space.

Table 18 summarizes the research challenges in topological analysis of feature space
geometry. The challenges include developing efficient algorithms for high-dimensional
spaces, creating methods for visualizing topological structures, examining the correlation
between topological characteristics and model performance, and integrating topological
constraints in deep learning model design. Addressing these challenges could lead to a
better understanding of feature space geometry and contribute to the development of more
interpretable and generalizable deep learning models.

Table 18. Summary of Research Challenges in Topological Analysis of Feature Space Geometry.

Challenge Description

Efficient algorithms for high-dimensional
spaces

Developing efficient algorithms and data
structures for computing persistent homology

in high-dimensional feature spaces

Visualization of topological structures
Creating novel methods to visualize and
understand high-dimensional topological

structures in feature spaces

Correlation with model performance
Examining the relationship between

topological characteristics of feature spaces and
deep learning model performance

Topological constraints in model design
Investigating the integration of topological

constraints in deep learning model design and
regularization techniques

5.5. Feature Space Geometry in Multimodal and Multi-Task Learning

Multimodal and multi-task learning are essential approaches in deep learning that
aim to leverage multiple input modalities (e.g., text, images, audio) and learn shared
representations across different tasks [113–115]. Studying the feature space geometry of
models in these settings can provide insights into the interplay between task-specific and
shared representations and the role of feature space geometry in transfer learning across
different modalities and tasks.

A significant challenge in multimodal learning is to study the feature space geometry
of models trained on multiple input modalities. To address this challenge, researchers
could define a joint feature space Fjoint that incorporates information from all modalities:

Fjoint =
M⊕

i=1

Fi, (107)

where
⊕

denotes the direct sum operation, M is the number of input modalities, and F i
represents the feature space of the i-th input modality. Studying the properties of Fjoint
could provide insights into the interactions between different modalities and their influence
on the model’s performance.

In multi-task learning settings, the impact of task-specific and shared representations
on the geometry of feature spaces is of particular interest. To analyze this, researchers could
define a partition of the feature space into task-specific and shared components:

F = Fshared ⊕
T⊕

j=1

Ftask,j, (108)

where T is the number of tasks, Fshared denotes the shared feature space across all tasks,
and Ftask,j represents the task-specific feature space for the j-th task. By examining the
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geometric properties of these components and their interactions, researchers could gain a
better understanding of the interplay between shared and task-specific representations.

Exploring the role of feature space geometry in transfer learning across different
modalities and tasks is another challenge. To study this, researchers could define a transfer
function T that maps the feature space of the source domain Fsrc to the target domain Ftgt:

Ftgt = T (Fsrc), (109)

Investigating the properties of T and its impact on the geometry of Ftgt could re-
veal the factors that contribute to successful transfer learning across different modalities
and tasks.

6. Conclusions

The multifaceted nature of the geometry of feature space in deep learning models has
been elucidated in this comprehensive review. By delving into the intricate relationships
between feature spaces and various aspects of deep learning models, such as activation
functions, normalization methods, and model architectures, a panoramic view of the
current state of the field has been provided in this review. Furthermore, recent studies have
been examined, which have contributed significantly to the understanding of manifold
structures, curvature, critical points, adversarial robustness, and transfer learning, among
other topics.

Throughout this paper, the importance of comprehending the geometric properties of
feature spaces has been underscored, as such understanding can lead to the development of
novel and efficient deep learning architectures, optimization techniques, and regularization
methods. The discussion of challenges and future directions in this paper has shed light on
several pertinent research areas, including overparameterized models, unsupervised and
semi-supervised learning, interpretable feature space geometry, topological analysis, and
multimodal and multi-task learning.

In conclusion, the study of the geometry of feature space in deep learning models is
a vast and multidimensional domain that interweaves diverse theoretical and practical
perspectives. A profound comprehension of the geometric underpinnings of deep learning
models has the potential to pave the way for groundbreaking advancements in artificial
intelligence and machine learning. By integrating topological, set-theoretic, and real
number analysis methods, researchers can delve deeper into the complexities of feature
space geometry and unlock hitherto unexplored facets of deep learning. As the exploration
of the frontiers of deep learning continues, it is believed that a holistic understanding of
the geometry of feature space will serve as a cornerstone for shaping the future of this
dynamic field.
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