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Abstract: The main goal of machine learning is the creation of self-learning algorithms in many
areas of human activity. It allows a replacement of a person with artificial intelligence in seeking to
expand production. The theory of artificial neural networks, which have already replaced humans
in many problems, remains the most well-utilized branch of machine learning. Thus, one must
select appropriate neural network architectures, data processing, and advanced applied mathematics
tools. A common challenge for these networks is achieving the highest accuracy in a short time.
This problem is solved by modifying networks and improving data pre-processing, where accuracy
increases along with training time. Bt using optimization methods, one can improve the accuracy
without increasing the time. In this review, we consider all existing optimization algorithms that
meet in neural networks. We present modifications of optimization algorithms of the first, second,
and information-geometric order, which are related to information geometry for Fisher–Rao and
Bregman metrics. These optimizers have significantly influenced the development of neural networks
through geometric and probabilistic tools. We present applications of all the given optimization
algorithms, considering the types of neural networks. After that, we show ways to develop opti-
mization algorithms in further research using modern neural networks. Fractional order, bilevel,
and gradient-free optimizers can replace classical gradient-based optimizers. Such approaches are
induced in graph, spiking, complex-valued, quantum, and wavelet neural networks. Besides pat-
tern recognition, time series prediction, and object detection, there are many other applications in
machine learning: quantum computations, partial differential, and integrodifferential equations, and
stochastic processes.

Keywords: optimization methods; physics-informed neural networks; spiking neural networks;
quantum neural networks; graph neural networks; information geometry; quasi-Newton methods;
approximation; quantum computations; gradient-free optimization; fractional order optimization;
bilevel optimization

MSC: 62B11; 68T07; 68T20

1. Introduction

The question of increasing the accuracy of neural networks remains relevant. There
exist many approaches to solve this problem, including the data augmentation [1], improv-
ing the mathematical model of neurons [2], adding the complement neural network [3],
and so on. Indeed, all these approaches solve the problem of increasing the accuracy in
neural networks, but these approaches are not generalized for all models. Thus, there exist
universal methods that improve neural network training. One such is the optimization of
the loss function. The main problem in neural networks is a descent to the global minimum.
The first attempts to achieve the minimal value were realized using stochastic gradient de-
scent (SGD) [4]. Such a first-order optimizer is still widely used in modern neural networks.
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Later, SGD was equipped with momentum and Nesterov condition (SGDM Nesterov) [5].
This modification increased the convergence rate with high accuracy in fewer iterations.

According to the structure of SGD, there has been proposals of AdaGrad in [6], RM-
SProp [7], Adadelta [8], and Adam [9], which allow attaining the minimum of functions
that contain local extremes. In the case of the Rastrigin, Rosenbrouck, and Ackley functions
from [10], these approaches do not reach the global minimum. This happens by achieving
the minimum, considering only gradient directions. Exponential moving averages do not
suffice for the minimization of such test functions. The same technique is used in modifica-
tions of Adam and SGD. Updating the exponential moving averages, Adam-type algorithms
are built to improve the minimization for multi-extreme functions. The advantage of these
approaches is that the initialization of biases can be counteracted, resulting in bias-corrected es-
timates. However, they can minimize the loss function but not always at the global minimum.
Therefore, second-order optimization should be applied for higher accuracy attaining.

The main goal of second-order optimization algorithms [11] is to achieve the global
minimum in a short time, because they are slower that first-order optimization algorithms.
Second-order algorithms consider the convexity (curvature) of objective functions by the
Hessian matrix. This approach is called the Newton optimization method [12]. Com-
putations of an inverted Hessian matrix make second-order optimization more complex.
In machine learning, Newton optimization is an ineffective tool due to the number of
neurons, which can exceed one hundred. However, the approximation of inverted Hessian
matrix allows the loss function to be minimized within the required time consumption.
Such a technique is called the quasi-Newton optimization method [13]. Quasi-Newton
optimization algorithms analyze the loss function from a functional point of view, which
allows the local extremes to be avoided and rapid convergence in the global minimum. For
the improvement of minimization, we observe the objective function from geometric and
probabilistic points of view.

The first attempt to geometrically minimize smooth functions was applied in [14],
where authors engaged the properties of Riemannian geometry. Such an optimization
used the gradient flow for receiving the global minimum. Later, there was an idea to
engage information geometry in [15], which is an intersection of Riemannian geometry
and probability theory. Such an approach is divided into two branches, which utilize
Fisher–Rao [16] or Bregman [17] metrics. The optimization with Fisher–Rao metrics (Fisher
information matrix) is called a natural gradient descent. In the case of utilizing Bregman
metrics, one receives the mirror descent. These optimization algorithms have demonstrated
abilities in pattern recognition [18] and time series prediction [19]. They mainly find
application in physics-informed neural networks [20], which are devoted to solving partial
differential and integrodifferential equations.

The main goal of this article is to classify optimization algorithms, identify their
properties, and provide minimization techniques for further research. After gradient-
based optimization methods, we demonstrate alternative approaches to loss function
minimization: gradient-free and bilevel optimization.

All provided optimization algorithms are presented in Figure 1, which indicates the
contents covered in this paper.

Figure 1. The historical tree of developing optimization algorithms from 1950 to 2022.
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In Table 1, reviews have provided an incomplete classification of all existing optimiza-
tion methods, such as first-order (SGD and Adam type), second-order (Newtonian and
quasi-Newtonian), information-geometric, fractional, and gradient-free methods. In [21],
authors present only SGD, NAG, AdaGrad, AdaDelta, RMSProp, Adam, NAdam, and
AMSGrad. These optimizers are well known and do not provide new ideas for further re-
search. In many other articles, fractional optimizers use the well-known Riemann–Liouville,
Caputo, and Grunwald–Letnikov derivatives. In the review [22], the author classifies all
existing fractional derivatives with the corresponding generalizations: Tarasov, Hadamard,
Marchaux, Liouville–Weil, and others. In [23], the researchers introduced first-order,
info-geometric, fractional, and gradient-free optimizers. The fractional approach is well
described for activation functions in recurrent, convolutional, and complex-valued neural
networks. Particle swarm optimization and information-geometric Levenberg–Marquardt
algorithm are briefly presented. In this review, we have shown all existing types of opti-
mizers. We have described the most promising approaches in machine learning, namely
the natural gradient and mirror descent algorithms, which are well described in [24].

Table 1. Summary of review papers on optimization algorithms in the theory of neural networks.

Reference Summary of Work Limitations

[21] A survey demonstrating first-order optimization algo-
rithms in convolutional neural networks.

This survey presents only gradient-based optimization
algorithms. They are well known and do not give any
novel ideas for neural networks of different architecture.

[25]

A study reviewing the Grasshopper optimization algo-
rithm, which is used for various problems in machine
learning, image processing, wireless networking, engineer-
ing design, and control systems.

Regardless of the good presentation of the local, evolu-
tionary, and swarm optimization algorithms, the author
does not present global optimizers, which can improve the
work of gradient-free neural networks, or other models in
machine learning.

[26] A survey studying various models, datasets, and gradient-
based optimization techniques in deep meta-learning.

There are only stochastic gradient and adaptive moment
estimation approaches, customized under conditions of
meta-learning systems.

[27]

This survey describes the information-geometric optimiza-
tion approach from probabilistic and geometrical points
of view. There are new type manifolds with described
Riemannian metrics and connections.

This review does not give exact application domains and
lacks the mirror descent, which is a duality of the natural
gradient descent.

[23]
This survey describes fractional optimization. There are
are implied mathematical formulations of fractional error
backpropagation.

This review mentions only Riemann–Liouville, Caputo,
and Grunwald–Letnikov derivatives.

[28]

This review studies fractional, gradient-free, and
information-geometric optimization algorithms. The au-
thor shows new types of manifolds with implied Rieman-
nian metrics and connections.

Such a review does not mention other types of fractional
derivatives. It considers only particle swarm optimiza-
tion algorithms from gradient-free approaches and briefly
describes the natural gradient descent with Fisher matrix
approximation.

The main contribution of this review is the classification of optimization algorithms
in the modern theory of neural networks. Figure 1 shows the evolution of first-order,
second-order, and information-geometric optimization algorithms. AdaPNM and Adan
algorithms use the extended versions of exponential moving averages, which give better
convergence than Adam-type approaches. In addition to the basic Newton optimizer, we
considered the conjugate gradient with all known update parameters. In addition to the
BFGS and SR-1 algorithms, there are modern quasi-Newtonian Apollo and AdaHessian
algorithms. In this review, we describe promising information-geometric optimizers. The
new natural gradient descent is geometrically defined using the Fisher information matrices
of Gaussian, polynomial, and Dirichlet distributions. The mirror descent optimizer is a
duality of the natural gradient descent with an equivalent convergence rate. These methods
consider not only gradient directions but also the curvature and duality of the loss function.
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For further research, we mentioned gradient-free optimization algorithms: local, global,
population, sequential model, evolutionary, and genetic algorithms. Afterward, we present
fractional optimizers provided with fractional derivatives containing kernel differences,
logarithms, and exponentials.

Conclusions about provided optimizers are valid, considering the corresponding math-
ematical properties, experiments, exploitation, and comparative analysis in various neural
network types. All parameters in optimizers are controllable at the request of a network.
These parameters are learning rate, weight decay, dampening, Hessian approximation,
Fisher information matrix, and other variables. These variables are applied according to
existing problems of global minimum reaching, avoiding local extremes, and rectifying
the updated value in case of exploding and vanishing gradient. This research is built on
implying the convergence rate (regret bound), testing on Rosenbrock, Rastrigin, Ackley,
Lévi, and other multimodal functions, and their exploitation on networks with any acces-
sible datasets. Conclusions about provided optimizers can be generalized by extending
exponential into positive–negative moving averages in Adam-type algorithms, and Fisher
matrix modification replaces beta-distribution with Dirichlet distribution. The main feature
of provided optimizers is their universality. They can be used in any gradient-based neural
network with arbitrary available datasets on any CPU and GPU platform.

The rest of the paper is structured as follows. Section 2 is devoted to first-order
optimization algorithms, which are described in Sections 2.1–2.3: SGD-type, Adam-type,
and PNM-type optimization algorithms. Section 3 presents second-order optimization
techniques, such as Newton and Quasi-newton algorithms. Section 4 consists of the
representation of information-geometric methods, which are divided into Fisher–Rao and
Bregman metrics. Part of this paper contains the most progressive approaches in the
modern theory of optimization methods. Section 5 contains applications of all optimization
algorithms introduced in Sections 2–4. In Section 6, we present conclusions on the provided
optimization algorithms and proposals for their modification and further implementation
in neural networks.

2. First-Order Optimization Algorithms
2.1. SGD-Type Algorithms

As we can see from Figure 1, the earliest first-order optimization algorithm is SGD [4],
which can be described by the iterative formula

θt+1 = θt − αt∇ f (θt), (1)

where θt is a weight, f (θt) is a loss function with its gradient ∇ f (θt), and αt is a learning
rate. Later, SGD was modified to SGDM with Nestreov condition [5] presented by

θt+1 = θt − αt(∇ f (θt) + µbt+1), (2)

where θ0 is an initial point, b(k+1) = µb(k) + (1 − τ)(∇ f (θ(k)) + λθ(k)), where τ is a damp-
ing parameter and µ is a momentum. The algorithm of SGDM with Nesterov condition is
constructed in [29]. This optimization method is used in approximation theory and ma-
chine learning. Various backpropagation methods ([30–33]) are based on calculating local
partial derivatives, which rectify the value of weights of neural networks using (2). Such an
approach can be modified to other more-effective versions, which more rapidly converge
to a minimum. Therefore, because of the relatively low convergence rate of SGDM with the
Nesterov condition and its step-size updating, the authors in [6] introduced AdaGrad.

The AdaGrad differs from SGDM with the Nesterov condition according to the adap-
tive step size. This advantage allows for an increase in learning rate and reduces time
consumption. AdaGrad is described using the following formula

θt+1 = θt −
αt√

Gt+1 + ϵ
∇ f (θt),
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where the sum of gradients is

Gt+1 = Gt +∇ f (θt−1).

As was noted above, AdaGrad updates the step size αt on the given information of all pre-
vious gradients observed along the way. However, its disadvantage is similar, like in SGD,
where minimization is based on gradient directions and step-size regulation, which does
not guarantee convergence in the global minimum neighborhood. Afterward, Adagrad
was equipped with the gradient norm information, which improves the convergence rate.
Such modification is called AdaGrad-Norm [6], presented as follows:

θt+1 = θt −
α

1 + (t − 1)η
gt√

Gt + ϵ
. (3)

For the assessment of the optimizer, researchers use the regret bound R(T), which
measures the effectiveness of reinforcement learning systems. In other words, it verifies the
validity of the optimizer convergence. The regret bound formula is described as follows:

R(T) =
T

∑
t=1

[ ft(θt)− ft(θ
∗)],

where θ∗ = argminθ ∑T
t=1 ft(θ) and ft(θt) is a loss function. First-order optimizers satisfy

O(
√

T) regret bound. Such a measure is comparable to convex online learning methods.
We consider the following notations: g1:t,i = (g1,i, . . . ., gT,i) ∈ RT is the gradient vector in
the i-th dimension on 1, . . . , T iterations. The regret bound of AdaGrad is

R(T) ≤
(

D2

2α
+ α

) d

∑
i=1

∥g1:T,i∥2,

where gradient gt,θ satisfies the following conditions for any positive numbers D, D∞, G, G∞:

∥gt,θ∥2 =

(∫
R

g2
t,θdθt

) 1
2
≤ G, ∥gt,θ∥∞ = sup

θt∈R
gt,θ ≤ G∞,

∥θn − θm∥2 ≤ D, ∥θn − θm∥∞ ≤ D∞, (4)

for all m, n ∈ {1, . . . , T} and θ ∈ Rd. Algorithm estimation by the regret bound is used in
the three cases where information about the sequence is not known in advance. The first
case describes a flat domain, where the optimizer expects a large update but the gt gradient
is very small. The second case depicts a large gradient domain, where the optimizer expects
a large update supported by a large gt. The third case represents a steep and narrow valley
domain that mimics the minimum function. In such a domain, the optimizer expects a small
update supported by a small gt, which leads to descent into a local minimum. AdaGrad can
solve only the third case because the previous gradient accumulations increase the update.

AdaGrad and AdaGrad-Norm adapt the step size more accurately than SGD and
SGDM with Nesterov condition. It increases the learning rate to raise the probability of
reaching the global minimum. The accumulation of previous gradients does not allow con-
vergence in the neighborhood of the global minimum. This approach, like SGD, descends
toward negative directions of gradients. Such a disadvantage caused researchers to come
up with the idea of adapting the step size using mean moments, which implies the root
mean square propagation (RMSProp) optimization algorithm.

The RMSprop optimizer [7] partially uses the same technique as SGDM and limits the
oscillations in the upright direction, which increases the learning rate. It takes substantial
step sizes in the horizontal direction, with convergence of vt. Such an approach is

vt = γvt−1 + (1 − γ)g2
t ,
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θt+1 = θt − α
gt√

vt + ϵ
, (5)

where γ ∈ (0, 1) is a moment. The regret bound is

R(T) ≤
(

D2

2α
+

α(2 − γ)

γ

)√
T

d

∑
i=1

(√
vT,i + ϵ

)
.

The parameter vt lets us solve the second possible case in the optimization process. The
RMSProp is still an actual algorithm in many neural networks, such as SGDM with Nesterov
condition, because it contains prerequisites of exponential moving averages. According to
techniques in AdaGrad and RMSProp, AdaDelta was introduced in [8].

AdaDelta, based on techniques in RMSProp and AdaGrad, which separate dynamic
learning rate per dimension, requires no manual setting of a learning rate and takes minimal
computation over gradient descent. Additionally, it is insensitive to hyperparameters
and robust to blow-up gradients, noise, and network choices. Unlike AdaGrad, such a
method reduces aggressive, monotonically decreasing learning rates. AdaDelta limits the
accumulated window of past gradients to a fixed size without accumulating all squares of
past gradients. The running average E[g2]t depends on the previous average and current
gradient. Initial accumulation variables E[g2]0, E[∆θ2]0 are equal to 0. The AdaDelta
algorithm is described as follows. Accumulate gradient:

E[g2]t = ρE[g2]t−1 + (1 − ρ)g2
t ,

where ρ is a decay rate parameter. Compute update:

∆θt = −RMS[∆θ]t−1

RMS[g]t
gt,

where
RMS[g]t =

√
E[g2]t + ϵ.

Accumulate updates:
E[∆θ2]t = ρE[∆θ2]t−1 + (1 − ρ)∆θ2

t ,

θt+1 = θt + ∆θt. (6)

The SGD was modified in other variations, which, like AdaGrad, AdaDelta, and
RMSProp, increase the test accuracy and accelerate the algorithm implementation. Such
modifications improve recognition, prediction, generation, and decision-making processes,
which develops the theory of neural networks. Modification (2)–(5) does not achieve higher
accuracy compared with SGDM with Nesterov condition in deep convolutional neural
networks, in [34]. Therefore, one needs algorithms that consider gradient directions and
weight values. The valuable modification of SGDM is Nesterov accelerated gradient (NAG),
presented in [35].

NAG is widely applied in deep networks and other supervised learning models.
It often provides improvements over SGDM Nesterov. Strictly speaking, fast gradient
methods only have provable corrections over regular gradient descent for the deterministic
case with exact gradients. In the stochastic case, fast gradients partially mimic their exact
gradient counterparts, resulting in some practical gain. Such an approach is described as

vt = µvt−1 + α f (θ − µvt−1),

θt = θt−1 + vt. (7)

As said before, there is an efficient technique of utilizing the Lebesgue norm of the weights
for improving the resulting test accuracy. Such an approach is called L2 regularization,
which is described in [36].
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The L2 regularization proposed in [37] acts similarly to the usual weight decay that
is used in SGD. Indeed, both approaches evaluate weights closer to zero at the same rate.
The L2 regularized SGD (SGDW) is a modification of the usual SGD, which differs by
recovering original weight decay using decoupling weight decay from the optimization
steps for the loss function. For adaptive gradient algorithms, the main difference is the
presence of adapted sums of gradients of the loss function. With L2 regularization, both
types of gradients are normalized by their summed magnitudes, and weights with large
gradient magnitudes are regularized by a smaller relative amount than other weights. The
introduced SGDW is described as follows:

gt = ∇ f (θt) + λθt−1,

where λ is a weight decay parameter (L2 regularization factor),

mt = β1mt−1 + ηtαgt,

θt = θt−1 − mt − ηtλθt−1, (8)

where ηt is a schedule multiplier. Unfortunately, the SGDW does not significantly im-
prove the usual SGD, especially in deep learning. The convolutional neural networks
confuse the L2 regularization and make minimization too difficult for SGDW. However, the
two techniques can improve minimization of the loss function using projection [38] and
hyperparameter methods [39].

Before introducing the projection technique for SGD, it is necessary to recall batch
normalization [40]. In practice, normalization techniques play a main role in modern
deep learning. They allow weights to converge more rapidly with better generalization
performances. The normalization-induced scale invariance among the weights gives
advantages to SGD, such as the effective and automatic regularization of step size and
stabilization of the training procedure. In practice, one can notice that including momentum
in SGD-type optimizers reduces the step sizes for weight scaling. Such a phenomenon has
not yet been studied and causes side effects in the minimization process. This is a critical
issue because modern deep learning widely uses SGD- and Adam-type optimizers, which
contain momentum and scale-invariant parameters. Therefore, SGD with projection (SGDP)
was proposed, which removes the radial component, or the norm-increasing direction, at
every iteration. Due to scale invariance, such a modification only alters the effective step
without changing the update directions, thus satisfying the original convergence properties
of the gradient descent optimizer.

The SGDP can be presented as the following iterative formulas:

pt = µpt−1 +∇ f (θt−1),

θt = θt−1 − αpt. (9)

This approach, compared with SGDW, increases the convergence rate, but it is not sufficient
for significantly advancing global loss function minimization. It can be seen applied
minimizing the Rastrigin function in [41]. The hyperparameter method is called the quasi-
hyperbolic momentum algorithm (QHM).

Momentum-based acceleration of SGD is used in deep learning. In [42], the author
introduces QHM as a modification of SGDM Nesterom. This approach has an immediate
ν discount factor that encapsulates SGD (ν = 0) and SGDM (ν = 1). A self-explanatory
interpretation of QHM is the ν-weighted average of the momentum update step and the
simple SGD update step. The expressive power of QHM comes intuitively from separating
the pulse buffer discount factor β from the contribution of the current gradient to the 1− νβ
update rule. On the contrary, momentum is closely related to the discount factor β and the
contribution of the current gradient 1 − β.
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Let us present QHM as the following iterative process:

gt = βgt−1 + (1 − β)ĝt,

θt = θt−1 − α[(1 − ν) · ĝt + νgt]. (10)

Such a method can surmount the local minimums and has advantages over the abovedemon-
strated algorithms. Like other optimizers, QHM does not suffice for achieving the highest
accuracy in deep neural networks because it still takes into account the gradient directions,
parameter amendments, and gradient normalization.

SGD-type algorithms are used in convolutional, recurrent, autoencoder, and graph
neural networks. Their significant disadvantage is insufficient information about the
properties of the loss function to reach the global minimum. The SGD is led by the
gradient’s direction, which is not enough for the test accuracy to increase. In modern
neural networks, more preferred approaches are Adam and its modifications (Adam-
type algorithms). They contain exponential moving averages of gradient and squared
gradient, which significantly improves the neural network training. These methods enforce
the optimization by moment estimation, which gives more information about the global
minimum. Moreover, such an improvement enhances pattern recognition, time series
prediction, and object classification accuracy.

2.2. Adam-Type Algorithms

The adaptive moment estimate (Adam) [43] is a modified version of the gradient
descent, which uses exponential moving averages of gradient and its square. Taking into
account gradient directions and means of moments, loss function minimization with higher
frequency converges in the global minimum. The iterative formula is presented as

mt = β1mt−1 + (1 − β1)gt,

vt = β2vt−1 + (1 − β2)g2
t ,

m̂t = mt/(1 − βt
1), v̂t = vt/(1 − βt

2),

θt = θt−1 − αm̂t/(
√

v̂t + ϵ). (11)

Note that β1, β2 are called moments, and mt and vt are exponential moving averages of gt
and g2

t , respectively. The regret bound of Adam is

R(T) ≤ D2
√

T
2α(1 − β1)

d

∑
i=1

√
v̂T,i +

α(1 + β1)G3
∞G−2

(1 − β1)
√

1 − β2(1 − γ)2

T

∑
i=1

∥g1:T,i∥2 +
D2

∞G∞
√

1 − β2

2α(1 − β1)(1 − λ)2 ,

γ =
β2

1√
β2

and λ ∈ (0, 1). The exponential moving averages let Adam solve the second and

third possible cases in the optimization process, which happens in Rosenbrock function
global minimization.

According to the adaptive moment estimate algorithm (11), there exist modifications,
distinct by step size adaptation and manipulation with exponential moving averages. Like
the SGDW, there is a modification in [44], called the Adam with L2 regularization. In the
case of the usual Adam, weights are not regularized as much as they would with decoupled
weight decay since the gradient of the regularizer is scaled. The AdamW with the same
exponential moving averages is described as the following iterative formula:

θt = θt−1 − η + t
[
α · m̂t/(

√
v̂t + ϵ) + λθt

]
, (12)

where ηt is a schedule multipliers and λ is a L2 regularization factor. This split weight
reduction modification gives significantly better generalization performance than Adam
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optimizer with L2 regularization in [45]. Another modification of Adam is projection Adam,
which is called AdamP [46].

AdamP, such as SGDP in (8), is based on a sum projection of gradient and momentum
vectors onto the tangent space of weights. Such an approach allows accelerating the effective
step sizes for scale-invariant weights. This technique, together with its applications, is
described in [47] and has the following representation:

gt = ∇ f (θt−1) + λθt−1,

mt = β1mt−1 + (1 − β1)gt,

vt = β2vt−1 + (1 − β2)g2
t ,

pt =
mt√

vt + ϵ
.

Then, according to the cosine condition, we obtain

i f cos(gi) < δ/
√

dim(θ) : qi = pi − (
θ

∥θ∥2
· pi)

θ

∥θ∥2

else : qi = pi

Afterward, one obtains

θt = θt−1 − ηt

(
αmt√
vt + ϵ

+ λθt−1

)
. (13)

According to the notes in [48], this implies that momentum-based optimizers induce the
excessive growth of scale-invariant weight norms, which causes premature decay of the
effective optimization steps, leading to sub-optimal performances. The resulting AdamP,
like SGDP in Section 2.1, successfully suppresses the weight norm growth and trains
a model at an unobstructed speed. Another approach to raise the convergence rate is
applying the quasi-hyperbolic momentum, similarly as for QHM in (9).

As for the QHM, there is the proposed QHAdam [49], in which Adam’s moment
estimations are replaced with quasi-hyperbolic terms. This approach is described as

gt+1 = β1gt + (1 − β1)∇ f (θt), g′t+1 = (1 − βt+1
1 )−1gt+1,

st+1 = β2st + (1 − β2)(∇ f (θt))
2, s′t+1 = (1 − βt+1

2 )−1st+1,

θt+1 = θt − α

 (1 − ν1)∇ f (θt) + ν1g′t+1√
(1 − ν2(∇ f (θt))2) + ν2s′t+1 + ϵ

. (14)

As was noted in the previous subsection, there is NAG, which accelerates the usual
SGD in [50]. The same modification propagates to the Adam and transforms it to the
NAdam [51]. This technique converges to the neighborhood of global minimum with
higher frequency and a lower number of iterations, compared with Adam and its previous
modifications, and it is constructed more simply than AdamW, AdamP, and QHAdam. For
cases of Rastrigin and Rosenbrock functions, however, (11)–(13) do not converge in the
global minimum. L2 regularization, projection, and quasi-hyperbolic parameter techniques
influence the step size, taking into account gradient directions. Such modifications can ac-
celerate the convergence process but unnecessarily at the global minimum. However, there
exist two techniques that make the minimization process “smoother”. Such approaches are
called Nesterov-accelerated (NAdam) and rectified (RAdam) adaptive moment estimation.
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Let us present the iterative formula of NAdam:

θt+1 = θt −
η√

v̂t + ϵ

(
β1m̂t +

(1 − β1)gt

1 − βt
1

)
(15)

This method is the continuation of NAG due to the addition of exponential moving averages.
Compared with Adam and its previous modifications, the NAdam increases the accuracy
of converging in deep convolutional neural networks and makes the minimization process
faster by “smoothing” the descent. Such a technique is ineffective in physics-informed
neural networks because of the smoothing descent trajectory, which gives more deviations
for partial differential equation solutions. This disadvantage is resolved by rectifying
Adam (RAdam).

Proposed in [52], RAdam differs from other optimization methods by introducing
a term to rectify the variance of the adaptive language modeling and learning rate. This
modification proved its ability to receive higher test accuracy. Such optimization method
has the following iterative formula:

ρt = ρ∞ − 2tβt
2/(1 − βt

2)

ρ∞ =
2

1 − β2
− 1

If the variance is tractable (ρt > 4) then the adaptive learning rate is computed as

lt =
√
(1 − βt

2)/vt,

the variance rectification term is calculated as

rt =

√
(ρt − 4)(ρt − 2)ρ∞

(ρ∞ − 4)(ρ∞ − 2)ρt

and we update parameters with adaptive momentum:

θt = θt−1 − αtrtm̂tlt. (16)

If the variance is not tractable we update instead with

θt = θt−1 − αtm̂t. (17)

Such a method overtakes the NAdam and other algorithms, especially in deep neural
networks [53], such as AlexNet [54], ResNet [55], InceptionNet [56], GoogLeNet [57], and
Res-Next [58]. However, RAdam adapts an overly complex learning rate and, like previous
analogs, can not converge in the global minimum of the Rastrigin function. Moreover, there
exist approaches that make the minimization process faster and more accurate. One such is
the difference gradient approach, which is called DiffGrad [59].

The difference gradient approach is based on the moment estimate technique and
calculates only a DiffGrad friction coefficient (DFC). The main distinction of DiffGrad is that
such an approach is based on the change in short-term gradients and adjusts the learning
rate according to the need for dynamic learning rate adjustment. Thus, DiffGrad makes
the smaller parameter update in regions of low gradient change. The DiffGrad friction
coefficient (DFC) controls the learning rate using information about the short-term gradient
behavior. The DFC is represented by ξt and defined as

ξt =
1

1 + exp−|∆gt|
, (18)
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where ∆gt is the change between previous and current gradients, given as

∆gt = gt−1 − gt.

In DiffGrad, the calculation of the first-order moment mt with offset correction and
the second-order moment vt with offset correction is conducted in the same way as in
Adam [60]. This optimization algorithm updates θt+1, using the following update rule:

θt+1 = θt −
αtξtm̂t√

v̂t + ϵ
. (19)

The regret bound is

R(T) ≤ D2
√

T
2α(1 − β1)

d

∑
i=1

√
v̂T,i

ξT,i
+

α(1 + β1)G3
∞G−2

(1 − β1)
√

1 − β2(1 − γ)2

T

∑
i=1

∥g1:T,i∥2 +
D2

∞G∞
√

1 − β2

2α(1 − β1)(1 − λ)2 .

This optimizer can solve the second and third possible cases in the optimization process.
For solving the first case, there is induced DFC, which lets us avoid the local minimums.
Therefore, (19) can solve all three possible scenarios in loss function optimization, which
Rastrigin and Rosebrock’s functions contain. The DiffGrad generates a high learning rate if
the optimization is far from the optimum solution and a low learning rate if the optimization
is near the optimum solution. Moreover, such a technique allows avoiding some local
minimums, which occur in the minimization of Rastrigin and Rosenbrock functions [61].
This approach is suitable for deep convolutional neural networks due to moment estimation
and analyzing previous and current gradients. Moreover, DiffGrad adjusts the learning
rate very accurately, avoiding overshooting the global minimum and reducing oscillation
around it. Such algorithms are tested on ResNet50 in [62], solving the pattern recognition
problem on images from CIFAR10 and CIFAR100. According to the results of pattern
recognition, it became clear that DiffGrad functions better than SGDM (2), AdaDelta (5),
and Adam (11). However, this approach does not guarantee high accuracy in other neural
networks, especially in quantum, spiking, complex-valued, and physics-informed neural
networks. This disadvantage is explained by the lack of analysis of the curvature of the
loss function during minimization. For that reason, the optimization algorithm in [63] was
introduced, which is called Yogi.

The Yogi algorithm, like Adam, relies on gradient scaling by the square root of expo-
nential moving averages of past squared gradients and controls the update in the effective
learning rate, leading to even better performance with similar theoretical guarantees on
convergence in [64]. This lets us solve the problem of convergence failure in simple convex
optimization settings, which Adam-type algorithms, such as AdamW, AdamP, QHAdam,
NAdam, and RAdam, cannot handle. The difference between vt and vt−1 and its magnitude
depend on vt−1 and g2

t . When vt−1 is much larger than g2
t , Yogi, like Adam, increases the

effective learning rate, but such a procedure is more controllable. This approach has the
following description:

mt = β1mt−1 + (1 − β1)gt,

vt = vt−1 − (1 − β2)sign(vt−1 − g2
t )g2

t ,

m̂t = mt/(1 − βt
1), v̂t = vt/(1 − βt

2),

θt = θt−1 − γm̂t/(
√

v̂t + ϵ). (20)

Compared with DiffGrad and other previous Adam-type algorithms, this method shows
better results in deep convolutional neural networks. The regret bound of Yogi is the
same as that of Adam. The performed v̂t solves three possible cases in loss function
optimization. The authors of [65,66] defined new optimization methods for deep learning,
such as AdaBelief and AdaBound.
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The main feature of AdaBelief is adapting the learning rate according to the “belief”
in the current gradient direction. There is a difference between AdaBelief and Adam
in parameters vt and st, which are defined as exponential moving averages of g2

t and
(gt − mt)2, respectively. According to st as the prediction of the gradient at the next time
step, if the observed gradient greatly deviates from the prediction, then one distrusts the
current observation and takes a small step; therefore, if the observed gradient is close to the
prediction, one trusts it and take a large step. This allows us to achieve high test accuracy
in convolutional neural networks in [66] on ImageNet and CIFAR10.

mt = β1mt−1 + (1 − β1)gt,

st = β2st−1 + (1 − β2)(gt − mt)
2 + ϵ,

m̂t =
mt

1 − βt
1

, ŝt =
st

1 − βt
2

,

θt = θt−1 − γm̂i/(
√

ŝi + ϵ). (21)

The regret bound is

R(T) ≤ D2
√

T
2α(1 − β1)

d

∑
i=1

√
ŝT,i +

α(1 + β1)(1 + log T)
2
√

c(1 − β1)3

T

∑
i=1

∥g1:T,i∥2 +
D2

∞G∞β1

2α(1 − β1)(1 − λ)2 ,

where st,i ≥ c > 0, for all t ∈ [1, T]. Such an approach solves all three possible cases in
loss function optimization. AdaBelief has a modified version with the fast gradient sign
method (FGSM) presented in [67,68].

The AdaBound method allows restriction of the learning rate between the upper
and lower continuous functions, called clips. Such a technique reduces the probability of
vanishing and blow-up gradient. This approach is defined as

mt = β1mt−1 + (1 − β1)gt,

vt = β2vt−1 + (1 − β2)g2
t and Vt = diag(vt),

η̂t = Clip(α/
√

Vt, ηl(t), ηu(t)) and ηt = η̂t/
√

t,

θt+1 = θt − ηtm̂t/(
√

v̂i + ϵ). (22)

The regret bound is

R(T) ≤ D2
√

T
2α(1 − β1)

d

∑
i=1

1
η̂T,i

+
β1D

2
∞

2(1 − β1)(1 − λ)2L∞
+ (2

√
T − 1)

G2R∞

(1 − β1)
,

where L∞ = ηl(1) and R∞ = ηu(1). Such an approach solves all three possible cases in
loss function optimization. This approach is more complex compared with DiffGrad, Yogi,
and AdaBelief but can converge faster in the global minimum. There were experiments
on minimization of Rastrigin and Rosenbrock functions [41], where AdaBound descent is
the global minimum. However, such an approach is too complex for optimization, and
there exists a more simple method, which is called AdamInject [69], which reduces time
consumption while preserving the convergence rate.

AdamInject is one of the most recent approaches in first-order optimization algorithms,
which, unlike the AdaBelief algorithm, modifies mt, which is the exponential moving
average of gt, into st. Such a parameter is equipped with the difference between the
previous parameters θt−1 and θt−2. AdamInject has the following description.

If t = 1:
st = β1st−1 + (1 − β1)gt.

Else:
∆θ = θt−2 − θt−1
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st = β1st−1 + (1 − β1)(gt + ∆g2
t )/k.

Afterward, one makes the usual calculations

vt = β2vt−1 + (1 − β2)g2
t ,

ŝt =
st

1 − βt
1

, v̂t =
vt

1 − βt
2

,

θt = θt−1 − γŝt/(
√

v̂t + ϵ).

The regret bound is

R(T) ≤ D2
√

T
2α(1 − β1)

d

∑
i=1

√
v̂T,i

ξT,i
+

α(1 + β1)G3
∞G−2

(1 − β1)
√

1 − β2(1 − γ)2

T

∑
i=1

∥g1:T,i∥2

+
D2

∞G∞
√

1 − β2

2α(1 − β1)(1 − λ)2 + 4
d

∑
i=1

G2
∞D∞∥g1:T,i∥2

2.

Such an approach solves all three possible cases in loss function optimization. This algo-
rithm is tested on the Rastrigin and Rosenbrock functions. Afterward, there AdamInject is
trained on CIFAR10 VGG 16, ResNet, ResNext, SENet, and DenseNet and presented the
best results compared with known analogs.

The introduced Adam-type optimization algorithms are used in deep convolutional
neural networks, such as Res-Net, Res-Next, InceptionNet, GoogLeNet, and others. They
also find application in recurrent and spiking neural networks due to their described
advantages, which SGD-type algorithms do not have. In quantum, complex-valued, and
quaternion-valued neural networks, however, such approaches suffer a loss in accuracy
due to the usual SGDM with Nesterov condition. This problem caused researchers in [70]
to devise extending the number of moments from 2 to 3. This approach is called positive–
negative momentum (PNM) and Nesterov’s adaptation.

2.3. Positive–Negative Momentum

The development of SGD- and Adam-type optimization algorithms cannot be infinite.
There have to be other approaches and techniques for extending the class of first-order
methods. This issue has made researchers consider approaches that allow more than two
exponential moving averages mt and vt, because step-size regularization, according to
moment estimation and modified Sections 2.1 and 2.2, has its limits, which can be seen in
convolutional neural networks, such as ResNet18, GoogLeNet, and DenseNet. In these
cases, there has to be an additional exponential moving average that allows descending to
the global minimum neighborhood.

In their paper [71], the authors introduce the conventional momentum method, also
called heavy ball (HB) in [72]. Later, positive–negative momentum (PNM) optimization al-
gorithms were proposed. In this approach, the main feature is positive–negative averaging,
an exponential moving average analog. This averaging is

mt =
t

∑
k=0

β3βt−k
1 gk.

Inspired by this simple idea, there was a proposal to combine positive–negative averaging
with the conventional momentum method in [71]. The positive–negative average is

mt = (1 + β0)m
(odd)
t + β0meven

t = (1 + β0) ∑
k=1,3,...,t

β3βt−k
0 gk + β0 ∑

k=0,2,...,t
β3βt−k

0 gk.
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The stochastic gradient descent equipped with the conventional momentum estimates,
which adjust the learning rate and value of the gradient, is written in the following formula

mt = β2
1mt−2 + (1 − β2

1)gt,

θt+1 = θt −
η√

(1 + β0)2 + β2
0

[(1 + β0)mt − β0mt−1]. (23)

This approach is an analog of the SGD-type algorithm, which differs by the presence of
positive–negative average mt and step-size adaptation. The Adam-type analog of the PNM
algorithm is also proposed, which is called AdaPNM, described as

mt = β2
1mt−2 + (1 − β2

1)gt,

m̂t =
(1 + β0)mt − β0mt−1

1 − βt
1

,

vt = β2vt−1 + (1 − β2)g2
t ,

vmax = max (vt, vmax), v̂t =
vmax

1 − βt
2

,

θt+1 = θt −
η√

(1 + β0)2 + β2
0

m̂t. (24)

The advantage of PNM and AdaPNM can be seen in [73], where these approaches are deep
neural networks, such as ResNet, VGG, DenseNet, and GoogLeNet tested on image bases
CIFAR10 and CIFAR100. Such techniques give higher test accuracy than advanced Adam-
type optimization algorithms, such as Yogi and AdaBound. If one equips AdaPNM and
PNM with techniques contained in known analogs, then it can improve the optimization
process. Moreover, there exists the adaptive Nesterov momentum algorithm (Adan).

In [74], the authors propose the adaptive Nesterov momentum algorithm devoted to
effectively accelerating neural network training. Adan revises vanilla Nesterov acceleration
to develop a new method for estimating Nesterov momentum, reducing the amount
of computation and memory cost of computing the gradient at the extrapolation point.
Adan uses first- and second-order moments in adaptive gradient algorithms to speed up
convergence. This approach has the following form:

mt = (1 − β0)mt−1 + β0gt,

vt = (1 − β1)vt−1 + β1(gt − gt−1),

nt = (1 − β2)nt−1 + β2[gt + (1 − β1)(gt − gt−1)]
2,

ηt = η/(
√

nt + ϵ),

θt+1 = (1 + λη)−1[θt − ηt(mt + (1 − β1))vt]. (25)

This method is the generalization of SGD and Adam as the AdaPNM. There are demon-
strated advantages of this approach over AdaBelief, which show the third highest test
accuracy after the usual SGD. Regardless of the modifications of Adam-type algorithms,
the usual SGD can give even better results, which claims to search other methods that
approve their modifications.

First-order optimization methods are suitable for pattern recognition, time series
prediction, and object classification. They do not consume much execution time and
power, which makes them a realistic option in modern neural networks. However, first-
order optimization algorithms, except PNM, AdaPNM, and Adan, cannot significantly
increase the accuracy of neural networks with complex architecture, such as graph, complex-
valued, and quantum neural networks. For solving differential equations, they cannot
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overtake the results of Adam because physics-informed neural networks contain automatic
differentiation, which works after multilayer perceptron. Therefore, one needs second-order
optimization algorithms, which can significantly improve loss function minimization.

3. Second-Order Optimization Algorithms

First-order optimization algorithms are ineffective for receiving the global minimum
of objective smooth function. Such minimization approaches generally take into account
the gradient directions in every iteration. The customization and performance of first-order
optimization algorithms can only increase the accuracy and avoid some local minimums.
Thus, there are provided second-order optimization algorithms. They reach the minimum
taking into account not only the directions of gradients but the convexity (curvature) of
the objective function, which is measured with the Hessian. Such an approach is called the
Newton method.

3.1. Newton Algorithms

The main idea of the Newton optimization method [75] is based on gradient descent,
containing the calculation of inverse Hessian of the smooth objective function. Such an
approach increases the minimization accuracy of functions with multiple numbers of local
minimums. Newton’s optimization algorithm is described as

θt+1 = θt − Hess(θt)
−1∇ f (θt), (26)

where t = 0, . . . , M > 0 and
Hess(θt) = ∇2 f (θt). (27)

This iterative formula is received from second-order Taylor expansion.
In [76], the authors introduce the Newton minimum residual (Newton-MR) optimiza-

tion method, which calculates the Hessian matrix by Moore–Penrose inverse [77] operator
[·]† such as in

θt+1 = θt + pt = θt +
[
∇2 f (θt)

]†
∇ f (θt). (28)

According to Newton and Newton-MR methods, OverSketch Newton Fast convex opti-
mization was suggested. Such an approach is described in [78] with appropriate algorithms,
which compute the update direction considering the case of strong convexity. However,
there are other modifications of Newton’s optimization methods that differ in their simplic-
ity in realization and implementation in neural networks.

There are Krylov methods, such as conjugate gradients (CG) [79], the minimal residual
method (MINRES) [80], and the generalized minimal residual method (GMRES) [81]. GM-
RES applies to indefinite matrices, and MINRES applies to symmetric indefinite matrices.
Besides GD, MINRES, and GMRES, there exists a generic stochastic inexact Newton-
Krylov method, described in [82]. Such an approach can be implemented and applied in
physics-informed neural networks because of suitable approximations for time-dependent
equations with divergence operator (∇·). For the majority of neural networks, CG is the
most preferred.

The most preferred Newton’s optimization method is the conjugate gradient. This
approach includes an unrestricted class of optimizers with low memory requirements
and high convergence rates. Such optimization algorithms are described as the following
iterative formula:

θt+1 = θt + ηtdt,

dt+1 = −gt+1 + βtdt, d0 = −g0.

The main part of this formula is CG update parameter βt, which is presented in Table 2.
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Table 2. List of conjugate gradient update parameters.

CG Update Parameter Authors Year

βHS
t =

gT
t+1yt

dT
t yt

Hestenes and Stiefel [83] 1952

βFR
t =

∥gt+1∥2
2

∥gt∥2
2

Fletcher and Reeves [84] 1964

βD
t =

gT
t+1∇2 f (θt)dt

dT
t ∇2 f (θt)dt

Daniel [85] 1967

βPRP
t =

gT
t+1yt

∥gt∥2
2

Polak and Ribière [86] and
Polyak [87] 1969

βCD
t =

∥gt+1∥2
2

−dT
t gt

Fletcher [88], CD stands for
“Conjugate Descent” 1987

βLS
t =

gT
t+1yt

−dT
t gt

Liu and Storey [89] 1991

βDY
t =

∥gt+1∥2
2

dT
t gt

Dai and Yuan [90] 1999

βN
t =

(
yt2dt

∥yt+∥2
2

dT
t gt

)T gt+1

dT
t yt

Hager and Zhang [91] 2005

Despite the increasing minimization accuracy, Newton’s method is slower than the
first-order optimizers. This disadvantage significantly impacts time consumption, which
slows the training of deep neural networks. For accelerating the minimization process,
many approximations of the Hessian matrix have been developed. Second-order opti-
mization algorithms, which contain the approximation of the Hessian matrix, are called
quasi-Newton.

3.2. Quasi-Newton Algorithms

The class of quasi-Newton optimization algorithms shows approximately the same
accuracy as Newton optimization algorithms, but the ability to converge faster makes them
useful in machine learning. The first quasi-Newton optimization algorithms are BFGS [92]
and L-BFGS [93].

The BFGS method and its limited memory version, at the t-th iteration, are presented
as the following iterative formula:

θt+1 = θt − αtHt∇ f (θt), (29)

where αt is the step length, ∇ f (θt) is the gradient, and Ht is the inverse BFGS Hessian
approximation, which is updated at every iteration using the formula

Ht+1 = VT
k HtVt + ρtstsT

t , (30)

ρt =
1

yT
t st

, Vt = I − ρtytsT
t , (31)

where the curvature pairs (st, yt) are defined as

st = θt − θt−1, yt = ∇ f (θt)−∇ f (θt−1). (32)

The curvature pairs (st, yt) are constructed sequentially at every iteration, and inverse
Hessian approximation at the t-th iteration Ht depends on iterate and gradient information
from past iterations.

The inverse BFGS Hessian approximations have to satisfy secant and curvature conditions:

Ht+1yt = st, sT
t yt > 0. (33)
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As a result, as long as the initial inverse Hessian approximation is positive definite, then all
subsequent inverse BFGS Hessian approximations are also positive definite. Note the inverse
Hessian approximation Hk+1 distinct from the approximation Hk by a rank-2 matrix.

In the limited memory version, the matrix Hk is defined at each iteration as the result of
applying m BFGS updates to a multiple of the identity matrix using the set of m most recent
curvature pairs {st, yt} kept in storage. Thus, one does not need to store the approximations
of the four dense inverse Hessian matrices; rather, one can store two m × d matrices and
compute the matrix-vector product via two-loop recursion [94]. After the step has been
computed, the oldest pair (st, yt) is discarded, and the new curvature pair is stored.

Analogically, the symmetric rank-one (SR-1) [95] formula and its limited memory
version were proposed in [96]. At the t-th iteration, the SR1 method computes a new iterate
by the formula

θk+1 = θk + pk, (34)

where pk is the minimizer of the following equation

min
p

mk(p) = f (θk) +∇ f (θk)
T p +

1
2

pT Bk p, (35)

∥p∥2 ≤ ∆k,

where ∆k is the trust region and Bk is the SR1 Hessian approximation computed as

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)

T

(yk − Bksk)Tsk
. (36)

Similar to L-BFGS, the limited memory version of SR1 defines the matrix Bk as the result of
applying m SR1 updates to the identity matrix using a set of m correction pairs {si, yi} kept
in storage.

The provided BFGS and SR-1 with low-memory versions preserve the convergence rate
and reduce the computational complexity. However, these methods remain ineffective in deep
neural networks, which make calculations of matrices of high dimensions. Therefore, one
needs to come up with simplified versions of quasi-Newton algorithms. One of the most used
quasi-Newton optimization methods in neural networks is Apollo [97]. Apollo is a non-convex
stochastic optimization algorithm. It includes the loss function curvature by approximating the
Hessian with a diagonal matrix. This algorithm updates and stores the diagonal approximation
of the Hessian as efficiently as Adam-type optimizers with linear complexity in both time
and memory. Dealing with non-convexity, the Hessian is replaced by its positive definite
rectified absolute value. Experiments with deep neural networks, which recognize images
from CIFAR10 and ImageNet, show that Apollo achieves a global minimum with time and
memory consumption similar to first-order optimizers. Such an approach is described as

gt+1 = ∇ f (θt),

mt+1 =
β(1 − βt)

1 − βt+1 mt +
1 − β

1 − βt+1 gt+1,

α =
dT

t (mt+1 − mt) + dT
t Btdt

(∥dt∥4 + ϵ)4 ,

Bt+1 = Bt − α · diag(d2
t ),

Dt+1 = recti f y(Bt+1, 1),

dt+1 = D−1
t+1mt+1,

θt+1 = θt − ηt+1dt+1, (37)
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The regret bound is

R(T) ≤ D2β2

2η(1 − β)(1 − λ2)2 +
3ηG2

2(1 − β)
(2
√

T − 1).

Such an approach solves all three possible cases in loss function optimization. Apollo is a
method devoted to accelerating the minimization process. There is, however, a problem
of accuracy loss in achieving lower time consumption. Because of this disadvantage, the
authors in [98] proposed another quasi-Newton optimization method in neural networks,
which is called AdaHessian.

AdaHessian is a second-order stochastic optimization algorithm that incorporates the
loss function curvature with adaptive estimates of the Hessian. Second-order optimizers
are the most advanced approaches with convergence properties superior to those of the
above-presented first-order methods. The main disadvantage of traditional second-order
methods is their heavier computation for each iteration and low accuracy. However,
AdaHessian includes a fast Hutchinson method for curvature matrix approximation with
low computational cost, root mean square exponential moving average for smoothing
variations of the Hessian diagonal across different iterations, and block diagonal averaging
for reducing the variance of Hessian diagonal elements. This approximation of the Hessian
matrix makes the learning process faster while preserving the convergence rate.

Before presenting the AdaHessian algorithm, the gradient gt = ∇ f (θt) and Hessian
Ht = ∇2 f (θt) need to be noted. Let us present the following matrix diagonalization of the
Hessian matrix as

Dt = diag(H) = E[θt ⊙ (Htθt)],

where ⊙ is a componentwise multiplication of vector. Perform a simple spatial averaging
on the Hessian diagonal as follows:

D(s)[ib + j] =
1
b

b

∑
k=1

D[ib + k],

for 1 ≤ j ≤ b, 0 ≤ i ≤ d
b − 1. The Hessian diagonal with momentum is

Dt =

√√√√ (1 − β2)∑t
i=1 βt−i

2 D(s)
i D(s)

i
1 − βt

2
,

mt =
(1 − β1)∑t

i=1 βt−i
1 gi

1 − βt
1

,

vt = (Dt)
k,

θt = θt−1 − ηmt/vt. (38)

Second-order optimization algorithms have a higher convergence rate. Unfortunately,
they are not suitable in deep convolutional, recurrent, and spiking neural networks because
of their high complexity. Therefore, one needs methods that satisfy the requirements for
high convergence rate and low time consumption. In 2012, there was a proposition to
develop second-order optimization algorithms using the smooth manifolds in [99]. In [100],
the authors came up with the idea of using probability distribution manifolds instead of
smooth. Such a technique appears at the intersection of geometry, probability, statistics,
and optimization.

4. Information-Geometric Optimization Methods

Second-order optimization methods converge faster to the neighborhood of the global
minimum compared with first-order methods. Unfortunately, their time consumption is
not sufficiently fast for deep neural networks. Therefore, it is necessary to make quasi-
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Newton optimization algorithms faster. The most recent way involves applying information
geometry. In this section, we present a concise and modern view of the basic structures
of information geometry and report some applications in machine learning (statistical
mixture clustering).

Initially, the idea of using geometric means in optimization problems appeared in
2010 in [101]. The Hessian matrix, presented in second-order optimization algorithms,
does not contain full information about the surface of the loss function. Moreover, it
makes the descent too complex from a computational point of view. Taking into account
the geometric structure of the surface and corresponding spaces (Euclidean, hyperbolic,
parabolic), however, allows us to define the shortest way for descent and can reduce
unnecessary computations. In [102], for defining the shortest way, the authors applied
gradient flow, which improved the quality of searching global minimum. This method
applied smooth manifolds and a generalized definition of a gradient. Later, however,
researchers came up with the idea to use probability distribution manifolds, in which
their advantage over smooth manifolds was demonstrated in the optimization problem.
The intersection of probability theory and statistics with Riemannian geometry produces
information geometry.

Analogically to information theory, considering the communication of messages over
noisy transmission channels, one defines information sciences as the fields of studying the
connection between data and families of models, i.e., information sciences create methods
to transform information from data to models. Such transformation is made by probabilistic,
statistical, and geometric means, which allows us to include it in machine learning.

There is another definition of information geometry, given by F. Nilsson in [103], as
decision-making geometry. It involves model fitting (inference), which can be interpreted
as a decision problem, namely the decision of which model parameter to choose from a
family of parametric models. In [104,105], Abraham Wald proposed this scope, considering
all statistical problems as statistical decision problems. Dissimilarities (also commonly
referred to as distances among others) play a crucial role not only in measuring the degree
of fit of model data (probability in statistics, classifier loss functions in machine learning,
objective functions in mathematical programming or operations research, etc.) but also
when measuring the discrepancy (or deviation) between models.

In this section, we show two distinct optimization algorithms based on information-
geometric approaches—natural gradient descent [106] and mirror descent [107]. These
methods differ from other optimization algorithms by the ability to measure distances in
non-Euclidean domains using Kullback–Leibler and Bregman divergences, respectively.

4.1. Natural Gradient Descent

Initially, gradient descent with gradient flow was proposed in [108]. This approach
is a generalization of the second-order optimization method on Riemannian manifolds,
which can be Euclidean or non-Euclidean. Let (Mn, g) be a Riemannian manifold, where
Mn is a topological space, which can be expressed in the local coordinate system of an
atlas A = {(Ui, xi)}i of charts (Ui, xi), and for tangent bundle TMn Riemannian metric
g : TMn ⊗ TMn → R.

The dynamics of the Riemannian gradient flow θ(t) for the optimization problem
minθ∈Mn f (θ) is obtained by searching for an infinitesimal change in θ(t), which would
lead to better improvement in the objective value while controlling the length of the change
in terms of the geometry of the manifold, i.e.,

θ(t + dt) = argminθ f (θ)dt +
1
2

dθT g(θ, θ + dθ)dθ. (39)

For dt, utilizing dθ(t) = θ(t+ dt)− θ(t), one can substitute f (θ(t))+ ⟨dθ,∇ f (θ(t))⟩ instead
of f (θ) and receive

dθ(t) = argmindθ⟨dθ,∇ f (θ(t))⟩dt +
1
2

dθT g(θ, θ + dθ)dθ.
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Solving for dθ, one obtains

dθ(t)
dt

= −g(θ, θ + dθ)−1∇ f (θ(t)). (40)

For better understanding, the examples provided of the Riemannian metric is the
standard Euclidean manifold that has the corresponding metric g = I, which reduces
the gradient flow to the usual gradient descent. There is, however, another important
example—probability distribution manifold with K-L divergence metric [109,110], which is
the beginning of quantum neural networks.

There is a noted advantage of using probability distribution manifolds in [111], which
can be equipped not necessarily with KL-divergence but with Bergman, Jensen, and others.
Extensions of Rimannian manifolds with Levi-Civita connection (Mn, g,∇LC) to conjugate
connection manifolds (Mn, g,∇,∇∗) have been presented, where ∇LC = ∇+∇∗

2 . Con-
jugate connection manifolds are the particular case of divergence manifolds, denoted as
(Mn, Dg,∇D),∇∗D. In such manifolds, D can be Kullback–Leibler or Bregman divergences.
There are two ways to imply natural gradient descent using direct K-L divergence, such as
in [100], and a more fundamental way, presented in [103]. Let f ∈ C∞(Mn) be a smooth
loss function and expθ : TθMn → Mn be the Riemannian exponential map for updating
the sequence of points θt on the manifold as follows:

θt+1 = expθt
(−αt∇M f (θt)), (41)

where

∇M f (θ) = ∇v( f (expθ(v)))
∣∣
v=0 = lim

h→0

f (θ + hv)− f (θ)
h

. (42)

Returning to the formula of gradient flow, we obtain

θt+1 = Rθt(−αt∇θ f (θt)).

Utilizing the retraction Rθ(v) = θ + v, which is the first-order Taylor approximation of the
exponential map, follows the natural gradient descent:

θt+1 = θt − αtg−1(θ, θ + dθ)∇θ f (θt). (43)

Here g(θ, θ + dθ) = F(θt) is called Fisher information matrix, and the natural gradient
is defined as follows:

∇NG f (θ) = F−1(θ)∇θ f (θ). (44)

Afterward, we come to the natural gradient descent:

θt+1 = θt − αt∇NG
θ f (θt). (45)

The corresponding regret bound is

R(T) ≤ D2

2α
Tr(F) +

α

2

T

∑
t=1

∥gt∥2
F,

where Tr(F) = F1,1 + · · ·+ Fn,n and ∥gt∥F =
√

∑n
i=1 ∑n

j=1 |gt,ij| for the Riemannian metric

gt. Such an approach solves all three possible cases in loss function optimization. Natural
gradient descent differs from the first- and second-order optimization algorithms presented
in Sections 2 and 3, respectively, by the ability to converge in global minimum for time
consumption, suitable for deep learning. As was said, such an approach creates a new
branch in the theory of artificial intelligence—quantum machine learning. The application
of neural networks for training quantum circuits necessitates a new structure for the math-
ematical model of neurons appropriate for quantum computations. Afterward, vanilla
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natural gradient descent was replaced with quantum in [112]. Such networks are part
of developing quantum information theory and quantum computers, which makes the
training significantly faster. In actual research, however, vanilla natural gradient descent
with Dirichlet distributions has already been tested on Rastrigin and Rosebrock functions
in [113] and exploited in convolutional, recurrent neural networks in [114]. The impor-
tant thing in this method is selecting the appropriate probability distribution, which can
increase the convergence rate and even accelerate the learning process. The probability
distributions are presented in Table 3, which can improve the quality of minimization of
the loss functions.

Table 3. List of Fisher information matrices for different probability distributions.

Probability Density Function Fisher Information Matrix Probability Distribution

p(x; µ, σ) = 2π− n
2√

σ2
1 ...σ2

n
e−

(x−µ)T diag(σ2
1 ,...,σ2

n )
−1(x−µ)

2 FG =



1
σ2

1
0 . . . 0 0

0 2
σ2

1
. . . 0 0

. . . . . . . . . . . . . . .
0 0 . . . 1

σ2
n

0

0 0 . . . 0 2
σ2

n

 Gauss [115]

p(x; t) = n!
x1 !...xn ! tx1

1 . . . txn
n FM =


t1+tn
t1tn

1
tn

. . . 1
tn

1
tn

t2+tn
t2tn

. . . 1
tn

. . . . . . . . .
1
tn

1
tn

. . . t1+tn
tn−1tn

 Multinomial [116]

Fii
D = ψ′(αi)− ψ′(∑i αi),

p(x; α) = 1
B(α) ∏n

i=1 xαi−1
i , B(α) = ∏i Γ(αi)

Γ(∑i αi)
Fij

D = −ψ′(∑i αi) Dirichlet [113,117]

i ̸= j, i = 1, .., n

p(x; α, β) = ∏n
i=1

xαi−1
i

B(αi ,βi)

(
1 − ∑i

j=1 xj

)γi FGD = diag(FD(α1, β1), . . . , FD(α1, β1))

γi = βi − αi+1 − βi+1 for i = 1, . . . , n − 1 Generalized Dirichlet [113]
and γn = βn−1 O-zero matrix

As can be seen, this is a second-order optimization algorithm. However, by selecting
appropriate probability distribution, such as Gauss and Dirichlet, we can reduce the vari-
able θ in the Fisher information matrix, which makes it possible to avoid its calculation in
every iteration. Such approach is realized in [113–116]. The natural gradient descent can
replace second-order optimization algorithms due to convergence rate and time consumption.
However, there is another approach that uses Bregman metrics, called mirror descent.

4.2. Mirror Descent

The Bregman metric is an alternative to Fisher–Rao metrics based on dual Hessian
manifolds. This approach considers not only the gradient directions and curvature of the
loss function but also the duality. The dual spaces are defined as the set of maps from
the topological spaces to their underlying field, which is usually presented as R. This
feature has impacted the name of the method. This technique is a reason for continuation
of second-order optimization algorithms toward the information geometry. Moreover, it
can be used in physics-informed neural networks, where dual averaging procedures can
increase the accuracy of final solutions.

Recall that the gradient descent can be extended by proximity function Φ(·, ·) as follows:

θt+1 = argminθ

{
⟨θ,∇ f (θt)⟩+

1
αt

Φ(θ, θt)

}
. (46)
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If Φ(θ, θt) =
1
2∥θ − θt∥2

2, then we obtain the usual gradient descent. For Bregman diver-
gence, the proximity function is Φ(θ, θt) = Dψ(θ, θt), and we get mirror descent

θt+1 = argminθ

{
⟨θ,∇ f (θt)⟩+

1
αt

Dψ(θ, θt)

}
, (47)

where
Dψ(θ, θt) = ψ(θ)− ψ(θt)− ⟨θ − θt,∇ψ(θt)⟩. (48)

According to the above divergence manifolds, it is possible to imply equivalence
between natural gradient descent and mirror descent. In addition, this fact was presented
in [103], but without geometric tools. Mirror descent is formulated as a duality of natural
gradient descent. Natural gradient descent on the dual Hessian manifold (M, g∗ = ∇2F(η))
is equivalent to Bregman mirror descent on the Hessian manifold (M, g = ∇2F(θ)), where
F is the Bregman generator, η = ∇F(θ), and θ = ∇F∗(η).

The mirror descent gives the following natural gradient update rule:

NG∗ : ξt+1 = ξt − η(g∗ξ )
−1(ξt)∇ξ fθ(θ(ξt)), (49)

NG∗ : ξt+1 = ξt − η(g∗ξ )
−1(ξt)∇ξ fξ(ξt)

where g∗ξ (ξ) = ∇2F∗(ξ) = (∇2
θ F(θ))−1 and θ(ξ) = ∇F∗.

The method is called mirror descent because of performing the gradient step in the
dual space, which plays the role of “mirror”. This means that mirror descent seeks the
global minimum according to the duality of the probability distribution manifold, which is
equivalent to the Fisher information matrix for natural gradient descent.

Besides the usual mirror descent, there is the stochastic mirror descent (SMD) proposed
by Nemirovski and Yudin in [118]. This method presented high accuracy on ResNet18 in
recognizing images from Cifar10. For a strictly convex differentiable function ψ(·), called
the potential (proximity) function, stochastic mirror descent is presented by the following
iterative formula

∇ψ(θt+1) = ∇ψ(θt)− η∇ f (θt), (50)

which is equivalent to the following expression

θt+1 = arg min
θ

{
ηθT

t ∇ f (θt) + Dψ(θ, θt)
}

, (51)

where Bregman divergence can be presented as

Dψ(θ, θt) = ψ(θ)− ψ(θt)−∇ψ(θt)
T(θ − θt), (52)

which is the Bregman divergence to the potential function ψ. Note that Dψ is nonnegative,
convex in its first argument, and that due to strict convexity, Dψ(θ, θ′) = 0 if and only if
θ = θ′. The regret bound is

R(T) ≤ D2

2η
+

η

2

T

∑
t=1

∥gt∥2
∗,

where ∥gt∥2,∗ is a dual norm of ∥gt∥2 for the gradient gt. Such an approach solves all three
possible cases in loss function optimization.

Different choices of the potential function ψ yield different optimization algorithms,
which will potentially have different implicit biases. A few examples follow in Table 4.
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Table 4. Potential function with corresponding Bregman divergences.

Potential Function ψ(θ) Bregman Divergence Dψ(θ, θ′) Algorithm

1
2 ∥θ∥2

2
1
2 ∥θ − θ′∥2

2 Gradient Descent

∑j θj log θj ∑j θj log
θj
θ′j
− ∑j θj + ∑j θ′j Exponentiated Gradient Descent

Potentially, this method can improve the loss function minimization in the convo-
lutional, graph, and recurrent neural networks of huge architectures. Moreover, mirror
descent can be equipped with adaptive moment estimation and other modifications proper
for first-order optimization methods.

5. Application of Optimization Methods in Modern Neural Networks

The introduced optimization methods find application in various artificial neural
networks. All presented optimization algorithms show good results in some determined
problems, which can be solved using machine learning.

First-order optimization methods are reliable in problems of pattern recognition, time se-
ries prediction, voice detection, and text analysis. In such cases, one needs deep convolutional
and recurrent neural networks, equipped with meta-data [119]. The provided architectures
take too long in training neural networks, and then one needs first-order optimizers, which
are classified in SGD- and Adam-type algorithms. Such approaches do not consume much
time and power, simplifying the training. For convolutional neural networks, such as AlexNet,
GoogLeNet, ResNet, SqueezeNet [120], and VGG [121], it suffices to use SGD-type algorithms
for achieving high test accuracy. In the case of DenseNet [122], Xception [123], ShuffleNet [124],
and GhostNet [125], it is necessary to use advanced Adam-type algorithms, such as DiffGrad,
Yogi, AdaBelief, AdaBound, AdamInject, and AdaPNM. The more complex the deep neural
network that is applied in recognition problems, the more advanced first-order optimization
methods it requires. The same proposition holds for recurrent neural networks, where for
SVR [126], XGBoost [127], LSTM [128], and GRU [129], it is enough to apply SGD-type and
Adam-type algorithms, such as Adam, RAdam, NAdam, and QHAdam. Recurrent neural net-
works, containing CNN-LSTM [130], CNN-GRU [131], and TCN-LSTM [132] layers, require
advanced Adam-type algorithms.

Second-order optimization methods have a higher rate of convergence in the neigh-
borhood of global minimum, but their time consumption is higher. Even quasi-Newton
methods, which are dedicated to reducing time consumption and preserving the conver-
gence rate, still consume more time resources compared with first-order optimization
algorithms. They can be used in some convolutional neural networks, such as AlexNet,
Res-Net, VGG, and SqueezeNet. For these architectures, time and power consumption
is not critical, and the most appropriate algorithms are Apollo and AdaHessian. In re-
current neural networks, second-order optimization algorithms show better results than
first-order, but they increase the training time. The second-order methods are, however,
good in physics-informed neural networks (PINN). For finding the solution of some partial
differential equations with initial and boundary conditions, one needs to analyze the loss
function. In this case, L-BFGS, SR1, Apollo, and AdaHessian can reach a higher accuracy
than first-order optimization methods. Simple PINN, DeepONet [133], and MFNN [134]
are not large like CNN, which allows using of second-order optimization methods, which
gives solutions with high accuracy. For Riemannian neural networks, which raise the
accuracy by determining the geodesic, one prefers to apply Apollo and AdaHessian, be-
cause with gradient directions, they analyze the curvature of the loss function. For cases of
Riemannian convolutional neural networks [135], however, they cannot reduce time and
power consumption, and one loses the test accuracy by applying a first-order optimizer.
Therefore, it is necessary to engage algorithms based on information geometry.

Optimization methods based on information geometry have advantages in speed and
accuracy. They can be used in convolutional, recurrent, physics-informed, and Riemannian
neural networks. According to their principle of work, there are provided quantum
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neural networks, which correlate with complex-valued neural networks. Natural gradient
descent and mirror descent can achieve the same accuracy and consume low time resources
as second- and first-order optimization methods, respectively. Such possibilities allow
the inclusion of such algorithms in convolutional, recurrent, graph, and auto-encoder
neural networks. Natural gradient and mirror descent extend the application of neural
networks in quantum computations, where vanilla natural gradient descent is modified
into its quantum analog. For physics-informed neural networks opportunity to converge in
the neighborhood of global minimum, consuming time and power similar to first-order
methods, can improve the process of solving partial differential and integral equations.
This allows it to compete with traditional finite difference, element, and volume methods.

A summary of the above areas of applications is in Table 5.

Table 5. Applications of optimization algorithm, divided into four types.

Type of Optimiza-
tion Algorithm Optimizer Application Advantages Disadvantages

SGD-type

SGD PINN [136], SNN [137],
CVNN [138], AE [139]

These optimizers are fast and can easily
be customized. They still meet in many
modern neural networks. The
convergence rate is from
O(

√
T) to O(log T).

These optimizers cannot reach the
global minimum of the loss function.
As the consequence, the training
accuracy is decreasing. The majority
do not have regret bound estimation.

AdaGrad CNN [140]

AdaDelta CNN [141], RNN [141],
SNN [142]

RMSProp CNN [143], RNN [144],
SNN [145]

SGDW CNN [37]

SGDP CNN [38]

QHM CNN [39]

NAG CNN [146], RNN [147]

Adam-type

Adam
CNN [148], RNN [149],
SNN [150], PINN [151],
GNN [152] CVNN [153]

Due to exponential moving averages
and their modification, the
optimization process is more accurate
and rapid. The convergence rate can
be improved from O(

√
T) to O(log T).

The number of parame ters is extended,
which makes the optimization more
controllable.

Only DiffGrad, Yogi, AdaBelief,
AdaBound, and AdamInject can
reach the global minimum of the
loss function. They are appropriate
for CNN and RNN.

AdamW CNN [44]

AdamP CNN [46]

QHAdam CNN [49]

Nadam CNN [51]

Radam CNN [52]

DiffGrad CNN [154], RNN [60],
GNN [155]

Yogi CNN [156], RNN [157]

AdaBelief CNN [158], RNN [158],
GNN [159]

AdaBound CNN [160], RNN [161]

AdamInject CNN [69]

PNM-type

PNM CNN [73] These optimizers are improved by
positive–negative moment
estimations, which help to reach the
global extreme.

They are appropriate only for CNN.AdaPNM CNN [73]

Adan CNN [74]

Newton
Newton ap-
proach CNN [162]

These optimizers can reach the global
minimum using less iterations. They
can be extended on non-Euclidean
domains.

They are appropriate only for deep
CNN, GNN, and PINN. The
optimization process is too long.CG CNN [163], GNN [164]
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Table 5. Cont.

Type of Optimiza-
tion Algorithm Optimizer Application Advantages Disadvantages

Quasi-Newton

(L-)BFGS PINN [165]
These optimzers are faster than
Newton approaches. Their main ability
is to achieve the global minimum in
a short time.

These algorithms are not fast as
first-order approaches. They are not
useful for deep CNN. Only Apollo
has a regret bound.

SR1 CNN [166]

Apollo CNN [97]

AdaHessian CNN [98]

Information
geometry

NGD
CNN [167], RNN [114],
GNN [168], PINN [169],
QNN [169]

These optimizers are novel and can be
useful in neural networks of any type.
The set of hyperparameters is
controllable and wider than that in
first-order approaches.

The mathematical model of these
optimization methods is too
complex for customization. Not many
probability distributions and potential
functions have been investigated for
NGD and MD, respectively.MD CNN, RNN [170]

Note that CNN, RNN, GNN, PINN, SNN, CVNN, and QNN are convolutional, recur-
rent, graph, physics-informed, spiking, complex-valued, and quantum neural networks,
respectively. These neural networks have a proven ability to solve various problems re-
lated to recognition, prediction, generation, processing, detection, and so on. All of them
belong to the set of neural networks with gradient-based architectures. Recall that machine
learning is the theory that studies self-learning algorithms, which also can be classified.
Gradient-based neural networks present one of the classes in machine learning. Meanwhile,
there are many advanced gradient and gradient-free learning methods.

6. Challenges and Potential Research
6.1. Promising Approaches in Optimization

Despite the advancements in optimization methods, there exist problems, which
concern the fundamental theory of machine learning. All algorithms presented above are
utilizable for neural networks with gradient backpropagation, which is not a unique way
to rectify weights. Potential methods are presented in [171], which allow reducing gradient
calculation, i.e., making the gradient-free error backpropagation process. Therefore, for loss
function minimization, one needs to engage alternative optimization methods. For example,
the alternating direction method of multipliers in [172] or ensemble neural network in [173],
where the gradient is reduced. For such models, one needs to use the following gradient-
free optimization methods in Table 6.

Table 6. Types of gradient-free optimization algorithm.

Type of Optimization Algorithm Optimizer

Local optimization

Hill Climbing [174],
Stochastic Hill Climbing [175],

Simulated Annealing [176],
Downhill Simplex Optimization [177]

Global optimization

Random Search [178],
Grid Search [179],

Random Restart Hill Climbing [180],
Random Annealing [181],

Pattern Search [182],
Powell’s Method [183]

Population-based optimization

Parallel Tempering [184],
Particle Swarm Optimization [185],

Spiral Optimization [186],
Evolution Strategy [187]

Sequential model-based optimization
Bayesian Optimization [188],
Lipschitz Optimization [189],

Tree of Parzen Estimators [190]
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Hybrid optimization algorithms in recent research attract the attention of data sci-
entists. Such approaches are available not only for single neural networks but also for
extended ensemble models. Ensemble learning can include neural networks, decision
trees, evolutionary algorithms, and other machine learning models. Hybrid optimizers are
combinations of different types of algorithms. Hybrid algorithm traversing particle swarm
and gradient descent excited by [191]. A combination of gradient descent and genetic
optimization is found in [192]. Bio-inspired techniques, traversing population-based and
gradient-based optimizers, are presented in [193]. The proposed methods have an appli-
cation in modern neural networks and show a higher convergence rate than non-hybrid
optimizers. The provided gradient-based and gradient-free optimizers can be used in the
parallel optimization problems. This question remains in the multi-disciplinary optimiza-
tion of a typical transport aircraft wing as an example. In the distributed optimization
of multi-agent systems, agents cooperate for the global function minimization, which is
the sum of local objective functions. Depending on the applications, including energy
systems, smart buildings, smart manufacturing, and sensor networks, many distributed
optimization algorithms have been developed. In these algorithms, gradient-based and
gradient-free optimization algorithms can play an important role.

Gradient-free optimization methods have attracted the interest of many researchers
because of their computational simplicity, absence of unwanted differentiation operators,
and convergence rate, which is not lower than that of the usual gradient descent. Such
an approach has allowed mathematicians to develop alternative mathematical models
of neural networks, which show their effectiveness over gradient-based neural networks
in [194]. However, this does not mean that one needs to refuse gradient-based optimization
algorithms. They have worthy continuation, which is an engaging fractional derivative for
computing the gradient.

Fractional calculus, a reasonable continuation of classical calculus, influences theories
of partial differential and integral equations, approximations, signal processing, and opti-
mizations. Attempts to generalize differential operators have implicated various properties
and helpful propositions concerning machine learning. This can be seen in extending
gradient-based optimization methods by fractional derivatives. Table 7 summarizes all
known fractional derivatives [195], which can improve the minimization of loss functions
in neural networks.

The efficiency of fractional optimization methods has been demonstrated in [196], but
there is the following question: does the chain rule for fractional derivatives make the error
propagation modeling more complex? No, because there are implied generalized chain
and Leibniz rules in [197], which do not differ much from the usual versions. Therefore,
it is possible to generalize first-order optimization methods from SGD- to Adam-type
algorithms.

Simultaneously, there is the problem of developing neural networks containing bilevel
optimization [198]. For neural networks equipped with meta-learning, utilization of the
provided optimization methods does not suffice. There have to be used bilevel optimization
algorithms, such as BSA [199], TTSA [200], HOAG [201], AID-FP [202], AID-CG [203], and
stocBiO [204]. Such approaches provide the theoretical guarantee in hyperparameter opti-
mization, meta, and ensemble learning. Potentially, these methods can be improved using
information geometry or techniques from advanced first-order optimization algorithms.

Besides meta and ensemble learning, there exist soft computing and federated analogs.
Soft computing is a set of techniques aimed at modeling and solving real-world problems
that are difficult to solve mathematically. These approaches, approximately equivalent to
human decision-making, are designed to allow for partial truth, approximate reasoning,
uncertainty, and imprecision. This is different from the usual hard computing model, which
relies entirely on numerical calculations and logical reasoning. SC is an integrative field
in which there is a new phase of artificial intelligence called computational intelligence.
Federated learning is an effective learning strategy for disparate datasets [205]. It prevents
leakage of sensitive information when training a model on data from multiple devices. FL



Mathematics 2023, 11, 2466 27 of 37

has received a lot of attention, which has served as motivation for several useful initiatives
to build learning apps on a wide variety of decentralized devices. FL provides decentralized
learning that does not require the transfer of raw data between nodes, thereby protecting
user information. Moreover, FL guarantees a reduction in communication costs between
the server and the client. The communication between the client and the server has been
shortened, as training-related client data is not sent to the server. The advantages of FL
include increased privacy and lower communication costs. FL is used in situations where
respect for confidentiality and privacy is paramount [206].

Table 7. Types of fractional derivatives on finite interval [a, b] for gradient descent.

Type of Fractional Derivatives Formulas

Riemann–Liouville
(RLDα

a+ f )(t) = 1
Γ(n−α)

( d
dt )

κ
∫ t

a
f (τ)

(τ−t)α−κ+1 dτ,

(RLDα
b− f )(t) = 1

Γ(n−α)
( d

dt )
κ
∫ b

t
f (τ)

(τ−t)α−κ+1 dτ,
where Re(α) > 0

Liouville–Sonine–Caputo
(LSC Dα

a+ f )(t) = 1
Γ(κ−α)

∫ t
a

f (κ)(τ)
(τ−t)α−κ+1 dτ,

(LSC Dα
b− f )(t) = (−1)κ

Γ(κ−α)

∫ b
t

f (κ)(τ)
(τ−t)α−κ+1 dτ,

where Re(α) > 0 and κ = [Re(α)] + 1

Tarasov
(T Dα

a+ f )(t) = α
Γ(1−α)

∫ ∞
0

f (τ)− f (t−τ)

(τ)α+1 dτ,

(T Dα
b− f )(t) = α

Γ(1−α)

∫ ∞
0

f (τ)− f (t+τ)

(τ)α+1 dτ,
where 0 < α < 1 and a = 0, b = ∞

Hadamard
(H Dα

a+ f )(t) = 1
Γ(α) (t

d
dt )

κ
∫ t

a

(
log t

τ

)σ f (τ) dτ
tau ,

(H Dα
b− f )(t) = 1

Γ(α) (t
d
dt )

κ
∫ t

a

(
log τ

t
)σ f (τ) dτ

τ ,
where Re(α) > 0, σ ∈ C and κ = [Re(α)] + 1

Marchaud
(MDα

+ f )(t) = α
Γ(1−α)

∫ t
−∞

f (t)− f (τ)
(t−τ)α+1 dτ,

(MDα
− f )(t) = α

Γ(1−α)

∫ ∞
t

f (t)− f (τ)
(t−τ)α+1 dτ,

where 0 < Re(α) < 1

Liouville–Weyl
(LW Dα

+ f )(t) = 1
Γ(κ−α)

dκ

dtκ

∫ t
−∞

f (τ)
(t−τ)α−κ+1 dτ,

(LW Dα
+ f )(t) = 1

Γ(κ−α)
dκ

dtκ

∫ ∞
t

f (τ)
(τ−t)α−κ+1 dτ,

where 0 < Re(α) and −∞ < x < b < ∞

Sabzikar–Meerschaert–Chen
(SMC Dα,λ

+ f )(t) = α
Γ(1−α)

∫ ∞
0

e−λτ ( f (t)− f (t−τ))

τα+1 dτ,

(SMC Dα,λ
+ f )(t) = α

Γ(1−α)

∫ ∞
0

e−λτ ( f (t)+ f (t−τ))

τα+1 dτ,
where 0 < Re(α) and λ ∈ C

Katugampola
(K Dα,λ

a+,σ f )(t) = σα−κ+1eλt

Γ(κ−α)

(
t1−σ d

dt

)κ ∫ t
a

τσ−1e−λτ f (τ)
(tσ−τσ)α−κ+1 ,

(K Dα,λ
b−,σ f )(t) = σα−κ+1eλt

Γ(κ−α)

(
t1−σ d

dt

)κ ∫ b
t

τσ−1e−λτ f (τ)
(τσ−tσ)α−κ+1 ,

where 0 < Re(α) and λ ∈ C

6.2. Open Problems in the Modern Theory of Neural Network

Another problem in physics-informed neural networks is their extension on delay
differential equations. The problem of solving such equations with various delays has
not yet been solved. There is a model for solving fractional differential equations in [207].
In this case, one raises the question about using different activation functions, which,
consequently, impacts the loss function optimization. Therefore, one can use optimizers
based on information geometry. Afterward, they can be induced in delay physics-informed
models. In particular, information-geometric methods are relevant for complex-valued
neural networks.

Complex-valued neural networks demonstrate their efficiency in engineering areas
such as antenna design, radar imaging, optical/lightwave information processing, and
quantum devices such as superconductive devices. All these areas of applications contain
mathematical models with rotational points, wave functions, and integral transforms such
as Fourier, Laplace, and Hilbert. This model suggests the future realization of intrinsically
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non-von Neumann computers, including pattern-information-representing devices. Con-
ventional quantum computation is strictly limited in its treatable problems. In contrast,
CVNN-based quantum computing can solve more general tasks, leading to an application
of quantum informatics. Therefore, it is necessary to imply optimization methods based on
quantum and tensor computing. For example, Shampoo [208] can perform optimization at
the tensor level.

Quantum neural networks have attracted the attention of many researchers who
study and develop advanced machine learning methods. With the appearance of quantum
computers, it was necessary to expand the theory of neural networks on quantum devices,
which allowed analyzing quantum processes and tensor-network circuits. For problems
of image recognition, time series prediction, and moving object detection, one needs to
use convolutional neural networks [209], which engage a quantum natural gradient. This
optimization algorithm presents a quantum analog of vanilla natural gradient descent,
but it uses the Fubini–Study tensor instead of the Fisher information matrix. Unlike the
usual Fisher and Hessian matrices, such a tensor considers quantum computations with
wave functions, bra- and ket-vectors. Such a method can be equipped with exponential
moving and positive–negative averages. There is the proposition of combining quantum
neural networks with spiking neurons in recent research. This will lead to other tasks for
developing optimization methods with memory.

Recall that neural networks of the third generation are based on weights with memory.
Such a model is close to biological neural networks and makes the learning process more
accurate. For such models, one can use corresponding memory-based optimization algo-
rithms, such as mixed stochastic gradient descent, denoted MEGA I and MEGA II in [210].
The ability to remember past experiences while being trained on a continuum of tasks makes
it possible to raise the test accuracy of spiking neural networks. This kind of neural network
has experienced extension from multilayer perceptrons to various advanced networks,
such as feedback SNN, lattice map SNN, deep convolutional SNN, spike-timing-dependent
plasticity, and many other networks. Howeover, one of the most recent architectures is
graph networks, which can successfully train models without spiking neurons.

Graph neural networks, whose structures are reminiscent of simple graphs, are utilized
in many tasks related to medicine and biology. As can be seen in neuroscience resources,
biological neural networks do not present a linear, sequential, and organized determined-
order model but construct other more progressive connections, which significantly impact
mathematical models of neurons. If it is possible to create a model with the corresponding
structure, then one receives the network without unwanted layers and computations. How-
ever, such a model yields the error propagation problem, which differs from classical error
backpropagation. Subsequently, alternative error rectification methods were proposed,
called neighbor aggregation and information update in [211]. For these methods, it is
suitable to apply the first-order information-geometric optimizers. One of these is mirror
descent. Such an algorithm can be modified with new proximal functions and extended
versions of Bregman divergence in further research. Nevertheless, there are divergence for-
mulas that can produce new information-geometric optimization methods. For modifying
the structure of neural networks, however, one may use wavelet decompositions, which
can potentially process input data more accurately.

Neural networks, based on a wavelet, are dispersed in signal processing. Moreover,
such a tool is used in numerical solving of partial differential equations, which seems an
important advance of physics-informed neural networks. Wavelet decomposition has been
used in convolution, LSTM, and GRU layers, which makes data processing more accurate,
especially in cases of scaling input information. Moreover, a model of graph-wavelet neural
networks was present that gave the best results of node classification in [212], compared
with spectral CNN, ChebyNet, GCN, and MoNet. For wavelet neural networks, one can
use algorithms presented in Table 5. However, there are whale and butterfly optimization
methods, which are presented in [213]. In the case of binary neural networks [214], the
provided optimizers can be useful. For such a network, researchers often utilize the particle



Mathematics 2023, 11, 2466 29 of 37

swarm method, which is gradient-free. Therefore, there is a possibility of comparing
gradient-free optimization methods between each other and developing new approaches.

In summary, one needs to say that developing optimization algorithms is correlated
with the evolution of neural network architectures and challenges posed before research.
Moreover, such a relationship works backward, which happens in the case of quantum
natural gradient descent and quantum neural networks. Note that neural networks can
be improved only in terms of the pattern recognition problem. Therefore, one needs to
consider the moving detection problem. In the case of time series predictions, the stochastic
process and Brownian motion should be considered, which come from statistical physics
and thermodynamics. Such challenges have an influence on the theory of not only neural
networks but also of artificial intelligence.

7. Conclusions

In the conclusion of this review, we can say that fundamental development of the
theory of neural networks allows us to simplify the work of humans on additional scales.
Optimization methods have allowed us to achieve not only higher test accuracy in a short
time but to imply the necessary features and disadvantages of existing models, which
through time has allowed research to provide advanced architectures. First-order optimiza-
tion algorithms, presented in Section 2, have improved and are changing simultaneously
with the growth of neural networks in size and quality. SGD-, Adam- and PNM-type
algorithms are well described, as are their properties, improvements to the techniques,
and evolution. We presented second-order optimization algorithms, Newton and quasi-
Newton methods, in Section 3. We also presented their applications in neural networks,
simplifying their computation complexity using approximation theory, which produced
other modifications and variations. Such an approximation led to changing the Hessian by
gradient flow tensor and Fisher information matrix. This modification brought us to infor-
mation geometry, which allowed us to provide natural gradient and mirror descents, whose
equivalence is introduced in Section 4. Afterward, we summarized in Table 5 all types
of neural networks suitable for the introduced optimization methods. Modern networks
are provided in which the introduced optimization algorithms have already been used
and those that could be used for increasing test accuracy. In Section 6, we demonstrated
further ways of developing and applications of optimization methods. Also provided are
gradient-free, fractional order, and bilevel optimization algorithms, their existing versions,
and potentials for increasing test accuracy for various types of neural networks. In the
end, this survey has presented to readers all types of existing optimization methods, their
modifications, and applications, which can help in studies to comprehend the state of
the modern theory of optimization and machine learning. Such information allows us to
create advanced fundamental modifications and extend the area of applications for modern
neural networks of all types. Optimization algorithms are constructed according to the
practice and neural network architectures. However, their approach to minimizing the loss
functions impacts the neural network architectures. The evolution of convolutional neural
networks has passed along with the development of Adam-type optimizers, and conversely.
Newton and quasi-Newton optimization methods have extended the neural networks to
their geometrical analogs, such as Riemannian and Kahlerian, for real- and complex-valued
models, respectively. Information-geometric optimization algorithms influence the devel-
opment of quantum neural networks, where the loss function minimization is based on
quantum natural gradient descent, which calculates the Fisher–Rao metrics instead of the
Fisher matrix. Gradient-based and gradient-free optimizers impact the development of the
modern theory of ensemble learning.
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Notations

θ weight
α learning rate
f (θ) loss function
gt gradient ∇ f (θt)
λ weight decay parameter, L2 regularization factor
µ momentum
Gt sum of gradients Gt+1 = Gt +∇ f (θt−1)
mt exponential moving average of gt
vt horizontal direction converging, exponential moving average of g2

t
E[g2]t running average E[g2]t = γE[g2]t−1 + (1 − γ)g2

t , where ρ ∈ (0, 1) is a
decay rate

ηt schedule multiplier
ν immediate discount factor
β momentum buffer’s discount factor
β0, β1, β2 moments

ρt variance ρt = ρ∞ − 2tβt
2

1−βt
2

rt variance rectification
ξ DiffGrad friction coefficient (DFC)
Hess(θt) Hessian matrix Hess(θt) = ∇2 f (θt)
Ht inverse BFGS Hessian approximation
(st, yt) curvature pairs
Dt Hessian diagonal matrix
Dt Hessian diagonal matrix with momentum
(Mn, g) Riemannian manifold with n-dimensional topological space Mn and

metric g
∇ affine connection, gradient
TMn tangent bundle
Φ(·, ·) proximity function
B(·, ·) Bregman
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