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Abstract: This paper seeks to find optical soliton solutions for Lakshmanan–Porsezian–Daniel (LPD)
model with the parabolic law of nonlinearity. The spatiotemporal dispersion is included to the
model, as it can contribute to handling the problem of internet bottleneck. This study was performed
analytically using the traveling wave hypothesis to reduce the model to an integrable form. Then,
the resulting equation was handled with two approaches, namely, the auxiliary equation method
and the Bernoulli subordinary differential equation (sub-ODE) method. With an intentional focus on
hyperbolic function solutions, abundant optical soliton waves including W-shaped, bright, dark, kink-
dark, singular, kink, and antikink solitons were derived with the existing conditions. Furthermore,
the behaviors of some optical solitons are illustrated. The spatiotemporal dispersion was found to
significantly affect the pulse propagation dynamics. Finally, the modulation instability (MI) of the
LPD model is explained in detail along with the extraction of the expression of MI gain.

Keywords: Lakshmanan–Porsezian–Daniel model; optical solitons; parabolic law; modulation
instability

MSC: 78A60

1. Introduction

The concept of an optical soliton has been a significant subject in many physical and
engineering studies such as those of electronic telecommunication system and social media
networks [1–3]. Optical solitons play a crucial role since they represent the nature of the
propagation of pulse in various nonlinear media [4]. In nonlinear optics, the existence
of optical solitons is based on the delicate balance between the group velocity dispersion
and the nonlinearity of self-phase modulation (SPM) of the pulse propagation. SPM is a
dominant effect in nonlinear optical media, and it has an important role in optical systems
that use short, intense pulses of light, such as lasers and optical fiber communications
systems. Over the last three decades, various forms of models that are considered as a
generalization of nonlinear Schrödinger equation (NLSE) have been developed to charac-
terize the dynamic behaviors of optical solitons in fiber medium. Among these attractive
models are the Fokas–Lenells equation [5–7], the Gerdjikov–Ivanov equation [8–10], and
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the Schrödinger–Hirota equation [11–14] equation, which have been dealt with by many
authors. Chirped and chirped-free optical solitons of these models are scrutinized com-
prehensively so as to contribute to diagnosing the physical properties of optical fiber
and its applications. Moreover, NLSE with nonlocal characteristics can generate a vari-
ety of new solitons such as fundamental solitons, in-phase and out-of-phase bound-state
solitons, multipeak solitons, spatial solitons, and breathers [15–17]. The literature de-
scribes various mathematical tools that have been implemented to create solitons and
other wave structures for mathematical models. Some of these techniques are Sardar
subequation scheme [18], exp(−ϕ(ξ))-expansion approach [19,20], the modified extended
tanh-function method [21], and the unified method [22].

The high-level usage of the internet leads to slow internet flow and hence causes
network congestion whenmany users attempt to access specific content. In addition,
the network demands increases and grows with time, generating the pressures on networks.
Thus, all users try to exploit the bandwidth at the same time creating an internet traffic
jam. This crisis is known as the internet bottleneck, and it is a growing problem in the
telecommunications industry. Researchers across the world have proposed various forms
of techniques to overcome this problem and to facilitate the transfer of data smoothly. One
of these mechanisms is to introduce the spatiotemporal dispersion (STD) into the medium.
The internet bottleneck can be manipulated through reducing the level of internet traffic
flow in one direction and enabling full flow in the cross-direction. For this reason, this
study was conducted in the presence of STD and chromatic dispersion (CD) in order to
address and control the effect of internet bottleneck.

In this paper, we are interested in investigating a model that also describes the nature
of optical soliton transmission through optical waveguides—the Lakshmanan–Porsezian–
Daniel model (LPD) equation. The first description of this equation appeared in 1988 in the
context of the Heisenburg Spain chain equation [23]. Since that time, it has been studied
in the content of fiber optics extensively. The dimensionless form of the LPD model that
includes different physical effects such as higher order dispersion, full nonlinearity, and
spatiotemporal dispersion is addressed as [24]

iQt + aQxx + bQxt + cF
(
|Q|2

)
Q = σQxxxx + α(Qx)

2Q∗

+β|Qx|2Q + γ|Q|2Qxx + λQ2Q∗xx + δ|Q|4Q, (1)

where Q(x, t) stands for the complex valued wave function in space x and time t. On the
left hand side of Equation (1), the first term is the time evolution, the second term with the
coefficient a is the group velocity dispersion, and the third term with the coefficient b is the
spatiotemporal dispersion. The last term on this side of the equation represents the effect of
nonlinearity given by the function F . On the right hand side of Equation (1), the term with
the coefficient σ accounts for the fourth order dispersion whereas the term with coefficient
δ defines a two-photon absorption. The reset of terms containing the coefficients α, β, γ, and
λ represent perturbation terms with nonlinear forms of dispersion. The symbol ∗ indicates
the complex conjugate of the function Q(x, t) and i =

√
−1.

The LPD model (1) was discussed in the past by some experts to investigate the
dynamics of solitons under the influence of various forms of nonlinearity. These previous
studies were carried out using different mathematical methods, including the improved
tanh-expansion technique [25], method of undetermined coefficients [26], the semi-inverse
variational principle [27], and many others [28–35].

The present work focuses on deriving distinct structures of optical solitons for the
LPD model with a parabolic law of nonlinearity. The effect of spatiotemporal dispersion on
the soliton behaviors is also examined. The study was implemented with the aid of two
integration schemes known as the auxiliary equation method and the Bernoulli sub-ODE
method. To shed light on the behaviors of obtained solitons, the graphical representations
of some solutions are displayed. In addition, the modulation instability of LPD model was
executed via a standard linear stability analysis.
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2. Governing Model

In particular, we consider here the LPD model (1) with the parabolic law of nonlinearity
in which the function F is expressed as F (r) = c1r + c2r2. Thus, Equation (1) takes the
form [24,36]

iQt + aQxx + bQxt +
(

c1|Q|2 + c2|Q|4
)

Q = σQxxxx + α(Qx)
2Q∗

+β|Qx|2Q + γ|Q|2Qxx + λQ2Q∗xx + δ|Q|4Q. (2)

To overcome the complexity and to reach an integrable form for this equation, assume
that Equation (2) has the traveling wave solution of the form

Q(x, t) = q(ξ) eiϕ(x,t), ξ = x− vt. (3)

The function q(ξ) is the amplitude component of the soliton, and ξ = x − vt is the
wave variable, where v is the velocity of the soliton. The phase component is denoted by
ϕ(x, t) which is defined as

ϕ(x, t) = −kx + ωt + θ, (4)

where k, w, and θ describe the soliton frequency, wave number, and phase constant, respec-
tively. Substituting (3) into Equation (2) and splitting the resulting equation into real and
imaginary parts, we obtain the following equations:

σq′′′ − (6σk2 − bv + a)q′′ − (bωk− σk4 − ak2 −ω)q− [c1 + k2(α− β + γ + λ)]q3

−(c2 − δ)q5 + (α + β)qq′2 + (γ + λ)q2q′′ = 0, (5)

(bω + bkv− v− 2ak− 4σk3)q′ + 2k(α + γ− λ)q2q′ + 4σkq′′′ = 0. (6)

Now, taking the coefficients of the linearly independent functions and equating them
to zero gives the following:

σ = 0, (7)

α + β = 0, (8)

γ + λ = 0, (9)

α + γ− λ = 0, (10)

bω + bkv− v− 2ak = 0. (11)

From Equation (11), one can deduce that

v =
2ak− bω

bk− 1
, (12)

which represents the wave speed provided that bk 6= 1. With the constraints (7)–(10),
Equation (5) becomes

L0q′′ + L1q + L2q3 + L3q5 = 0, (13)

which can be integrated after multiplying by q′ to arrive at

L0q′2 + L1q2 +
L2

2
q4 +

L3

3
q6 + 2L4 = 0, (14)
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where L4 is an arbitrary constant of integration, and L0, L1, L2, L3 are given by

L0 = a− bv, (15)

L1 = bωk− ak2 −ω, (16)

L2 = c1 − 4γk2, (17)

L3 = c2 − δ. (18)

For convenience, we employ the variable transformation, presented as

q2 = P, (19)

From this, Equation (14) is converted into the following form:

L0P′′ + 4L1P + 3L2P2 +
8
3

L3P3 + 4L4 = 0. (20)

3. Optical Soliton Solutions

This section is dedicated to creating optical soliton solutions for the LPD model (2)
through tackling Equation (20) with two powerful approaches: the auxiliary equation
method and the Bernoulli sub-ODE method. To apply these techniques, we firstly set

P(ξ) = W(ζ), ζ = Ω ξ, (21)

from which Equation (20) becomes

Ω2L0W ′′ + 4L1W + 3L2W2 +
8
3

L3W3 + 4L4 = 0, (22)

where the prime represents the derivative with respect to ζ.

3.1. Auxiliary Equation Method

Herein, we assume that Equation (22) has solutions in the form

W(Ω) = a0 + a1F(ζ) + a2F2(ζ), (23)

where a0, a1 and a2 are constants to be determined. The function F(ζ) satisfies(
dF
dζ

)2
= h0 + h2F2(ζ) + h4F4(ζ), (24)

where h0, h2 and h4 are constants to be obtained. Substituting (23) and (24) into Equation (22)
gives a polynomial in Fi(ζ), i = 0, 1, 2, . . . , 6. Equating the coefficients of various powers of
Fi(ζ) in this polynomial to zero gives the following system of algebraic equations.

F0 : 2Ω2L0a2h0 + 4L1a0 + 3L2a2
0 +

8
3

L3a3
0 + 4L4 = 0,

F1 : Ω2a1h2L0 + 8a2
0a1L3 + 6a0a1L2 + 4a1L1 = 0,

F2 : 4Ω2a2h2L0 + 8a2
0a2L3 + 8a0a2

1L3 + 6a0a2L2 + 3a2
1L2 + 4a2L1 = 0,

F3 : 6L2a1a2 +
8
3

L3a3
1 + 2Ω2L0a1h4 + 16L3a0a1a2 = 0,

F4 : 6Ω2a2h4L0 + 8a0a2
2L3 + 8a2

1a2L3 + 3a2
2L2 = 0,

F5 : 8L3a1a2
2 = 0,

F6 :
8
3

L3a3
2 = 0.

(25)
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The solution of the above system constructs two sets of values for the constants a0, a1
and a2 under specific conditions. Each set yields many cases of abundant solutions to
Equation (2).

• Set 1

a0 =
−2
3L2

(
L1 + h2

√
L2

1 − 3L2L4

h2
2 − 3h0h4

)
, a1 = 0, a2 =

−2h4

L2

√
L2

1 − 3L2L4

h2
2 − 3h0h4

,

Ω =

(
L2

1 − 3L2L4

L2
0(h

2
2 − 3h0h4)

) 1
4

, L3 = 0.

(26)

From (26), one can retrieve the general form of the Jacobi elliptic function (JEF) solu-
tions of Equation (20) as

P(ξ) =
−2
3L2

(
L1 +

√
L2

1 − 3L2L4

h2
2 − 3h0h4

{
h2 + 3h4 F2(Ωξ)

})
, (27)

provided that L2 6= 0 and h2
2 6= 3h0h4. Hence, the relations (3) and (19) lead to the

general solution of Equation (2) as

Q(x, t) = ±
[

−2
3(c1 − 4γk2)

(
bωk− ak2 −ω +

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

h2
2 − 3h0h4

×
{

h2 + 3h4 F2(Ω[x− vt])
}) ] 1

2 ei(−kx+ωt+θ),

(28)

where Ω =

[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2(h2
2 − 3h0h4)

] 1
4

provided that c1 6= 4γk2 and

a 6= bv.
Making use of some of Jacobi elliptic functions, we can obtain the following types of
solutions:
Case 1. If h0 = 1, h2 = −(1 + m2), h4 = m2, then F(ξ) = sn(ξ). Subsequently, we
extract JEF solutions of Equation (2) in the form

Q(x, t) = ±

 −2
3(c1 − 4γk2)

bωk− ak2 −ω−

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

m4 −m2 + 1

×
{
(m2 + 1)− 3m2 sn2(Ω[x− vt])

)}] 1
2 ei(−kx+ωt+θ),

(29)

where Ω =

[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2(m4 −m2 + 1)

] 1
4

. As m→ 1, solution (29) degener-

ates to soliton solutions given by

Q(x, t) = ±
[

−2
3(c1 − 4γk2)

(
bωk− ak2 −ω−

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

×
{

2− 3 tanh2(Ω[x− vt])
) } ] 1

2 ei(−kx+ωt+θ),
(30)

where Ω =

[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2

] 1
4

.

Case 2. If h0 = 1−m2, h2 = 2m2 − 1, h4 = −m2, then F(ξ) = cn(ξ). Accordingly,
the JEF solutions of Equation (2) are written as
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Q(x, t) = ±

 −2
3(c1 − 4γk2)

bωk− ak2 −ω +

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

m4 −m2 + 1

×
{
(2m2 − 1)− 3m2 cn2(Ω[x− vt])

})] 1
2 ei(−kx+ωt+θ),

(31)

where Ω =

[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2(m4 −m2 + 1)

] 1
4

. As m → 1, solution (31) gives

rise to soliton solutions given by

Q(x, t) = ±
[

−2
3(c1 − 4γk2)

(
bωk− ak2 −ω +

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

×
{

1− 3 sech2(Ω[x− vt])
})] 1

2 ei(−kx+ωt+θ),
(32)

where Ω =

[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2

] 1
4

.

Case 3. If h0 = h4 =
1
4

, h2 =
1− 2m2

2
, then F(ξ) =

sn(ξ)
1 + cn(ξ)

. Thus, we end up with

JEF solutions of Equation (2) in the form

Q(x, t) = ±

 −2
3(c1 − 4γk2)

bωk− ak2 −ω +

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

16m4 − 16m2 + 1

×
{
(2− 4m2) + 3

(
sn(Ω[x− vt])

1 + cn(Ω[x− vt])

)2
})] 1

2

ei(−kx+ωt+θ),

(33)

where Ω = 2
[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2(16m4 − 16m2 + 1)

] 1
4

. As m→ 1, solution (33) reduces

to soliton solutions given by

Q(x, t) = ±
[

−2
3(c1 − 4γk2)

(
bωk− ak2 −ω +

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

×
{
−2 + 3

(
tanh(Ω[x− vt])

1 + sech(Ω[x− vt])

)2
})] 1

2

ei(−kx+ωt+θ),
(34)

where Ω = 2
[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2

] 1
4

.

Case 4. If h0 = 1−m2, h2 = 2−m2, h4 = 1, then F(ξ) = cs(ξ). In consequence, we
obtain JEF solutions of Equation (2) as

Q(x, t) = ±

 −2
3(c1 − 4γk2)

bωk− ak2 −ω +

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

m4 −m2 + 1

×
{
(2−m2) + 3 cs2(Ω[x− vt])

})] 1
2 ei(−kx+ωt+θ),

(35)

where Ω =

[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2(m4 −m2 + 1)

] 1
4

. As m → 1, solution (35) is con-

verted into singular soliton solutions given by
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Q(x, t) = ±
[

−2
3(c1 − 4γk2)

(
bωk− ak2 −ω +

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

×
{

1 + 3 csch2(Ω[x− vt])
})] 1

2 ei(−kx+ωt+θ),
(36)

where Ω =

[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2

] 1
4

.

Case 5. If h0 = m2, h2 = −(1 + m2), h4 = 1, then F(ξ) = ns(ξ). Therefore, we obtain
JEF solutions of Equation (2) presented as

Q(x, t) = ±

 −2
3(c1 − 4γk2)

bωk− ak2 −ω−

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

m4 −m2 + 1

×
{
(m2 + 1)− 3 ns2(Ω[x− vt])

})] 1
2 ei(−kx+ωt+θ),

(37)

where Ω =

[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2(m4 −m2 + 1)

] 1
4

. As m→ 1, solution (37) changes

to soliton solutions having a profile of singular wave given by

Q(x, t) = ±
[

−2
3(c1 − 4γk2)

(
bωk− ak2 −ω−

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

×
{

2− 3 coth2(Ω[x− vt])
})] 1

2 ei(−kx+ωt+θ),
(38)

where Ω =

[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2

] 1
4

.

Case 6. If h0 = 4m(1 + m)2, h2 = −(4m + (1 + m)2), h4 = 1, then F(ξ) = m sn(ξ) +
ns(ξ). Consequently, we obtain JEF solutions of Equation (2) as follows

Q(x, t) = ±

 −2
3(c1 − 4γk2)

bωk− ak2 −ω−

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

m4 + 14m2 + 1

×
{
(m2 + 6m + 1)− 3( m sn(Ω[x− vt]) + ns(Ω[x− vt]))2

})] 1
2 ei(−kx+ωt+θ),

(39)

where Ω =

[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2(m4 + 14m2 + 1)

] 1
4

. As m → 1, solution (39) results

in singular soliton solutions as follows

Q(x, t) = ±
[

−2
3(c1 − 4γk2)

(
bωk− ak2 −ω− 1

4

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

×
{

8− 3 ( tanh(Ω[x− vt]) + coth(Ω[x− vt]) )2
})] 1

2 ei(−kx+ωt+θ),
(40)

where Ω =

[
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

16(a− bv)2

] 1
4

.

• Set 2

a0 =
−3L2

8L3
, a1 = ± 1

8L3

√
6h4(32L1L3 − 9L2

2)

h2
, a2 = 0,

Ω =

√
9L2

2 − 32L1L3

8L3h2L0
, L4 =

48L1L2L3 − 9L3
2

128L2
3

.

(41)



Mathematics 2023, 11, 2471 8 of 20

From (41), the general form of JEF solutions of Equation (20) can be expressed as

P(ξ) =
1

8L3

−3L2 ±

√
6h4(32L1L3 − 9L2

2)

h2
F(Ωξ)

, (42)

provided that h2 6= 0 and L3 6= 0. By virtue of relations (3) and (19), the general
solution of Equation (2) is written as

Q(x, t) = ±

 1
8(c2 − δ)

−3(c1 − 4γk2)±

√
6h4[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

h2

×F(Ω[x− vt]))]
1
2 ei(−kx+ωt+θ),

(43)

where Ω =

√
−32(bωk− ak2 −ω)(c2 − δ) + 9(c1 − 4γk2)2

8h2(c2 − δ)(a− bv)
provided that c2 6= δ and

a 6= bv. Thus, implementing some of the Jacobi elliptic functions generates distinct
types of solutions displayed as follows.
Case 1. If h0 = 1, h2 = −(1 + m2), h4 = m2, then F(ξ) = sn(ξ). Hence, we secure JEF
solutions of Equation (2) as

Q(x, t) = ±

 1
8(c2 − δ)

−3(c1 − 4γk2)±

√
−6m2[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

m2 + 1

× sn(Ω[x− vt]))]
1
2 ei(−kx+ωt+θ),

(44)

where Ω =

√
32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2

8(c2 − δ)(m2 + 1)(a− bv)
. As m → 1, solution (44)

degenerates to soliton solutions as

Q(x, t) = ±
[

1
8(c2 − δ)

(
−3(c1 − 4γk2)±

√
−3 [32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

× tanh(Ω[x− vt]))]
1
2 ei(−kx+ωt+θ),

(45)

where Ω =

√
32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2

16(c2 − δ)(a− bv)
.

Case 2. If h0 = 1−m2, h2 = 2m2 − 1, h4 = −m2, then F(ξ) = cn(ξ). Therefore, we
arrive at JEF solutions of Equation (2) given by

Q(x, t) = ±

 1
8(c2 − δ)

−3(c1 − 4γk2)±

√
−6m2[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

2m2 − 1

× cn(Ω[x− vt]))]
1
2 ei(−kx+ωt+θ),

(46)

where Ω =

√
−32(bωk− ak2 −ω)(c2 − δ) + 9(c1 − 4γk2)2

8(c2 − δ)(2m2 − 1)(a− bv)
provided that m 6= 1√

2
.

As m→ 1, solution (46) is converted to soliton solutions in the form

Q(x, t) = ±
[

1
8(c2 − δ)

(
−3(c1 − 4γk2)±

√
−6[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

× sech(Ω[x− vt]))]
1
2 ei(−kx+ωt+θ),

(47)

where Ω =

√
−32(bωk− ak2 −ω)(c2 − δ) + 9(c1 − 4γk2)2

8 (c2 − δ)(a− bv)
.
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Case 3. If h0 = h4 =
1
4

, h2 =
1− 2m2

2
, then F(ξ) =

sn(ξ)
1 + cn(ξ)

. As a consequence, we

obtain JEF solutions of Equation (2) as follows

Q(x, t) = ±

 1
8(c2 − δ)

−3(c1 − 4γk2)±

√
3[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

−2m2 + 1

× sn(Ω[x− vt])
1 + cn(Ω[x− vt])

)] 1
2
ei(−kx+ωt+θ),

(48)

where Ω =

√
32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2

4(c2 − δ)(2m2 − 1)(a− bv)
provided that m 6= 1√

2
. As

m→ 1, solution (48) reduces to the soliton solutions as

Q(x, t) = ±
[

1
8(c2 − δ)

(
−3(c1 − 4γk2)±

√
−3[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

× tanh(Ω[x− vt])
1 + sech(Ω[x− vt])

)] 1
2
ei(−kx+ωt+θ),

(49)

where Ω =

√
32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2

4(c2 − δ)(a− bv)
.

Case 4. If h0 = 1−m2, h2 = 2−m2, h4 = 1, then F(ξ) = cs(ξ). Subsequently, we
obtain JEF solutions of Equation (2) with the form

Q(x, t) = ±

 1
8(c2 − δ)

−3(c1 − 4γk2)±

√
6[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

2−m2

× cs(Ω[x− vt]))]
1
2 ei(−kx+ωt+θ),

(50)

where Ω =

√
−32(bωk− ak2 −ω)(c2 − δ) + 9(c1 − 4γk2)2

8(c2 − δ)(2−m2)(a− bv)
. As m → 1, solution (50)

gives rise to singular soliton solutions as

Q(x, t) = ±
[

1
8(c2 − δ)

(
−3(c1 − 4γk2)±

√
6[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

× csch(Ω[x− vt]))]
1
2 ei(−kx+ωt+θ),

(51)

where Ω =

√
−32(bωk− ak2 −ω)(c2 − δ) + 9(c1 − 4γk2)2

8(c2 − δ)(a− bv)
.

Case 5. If h0 = m2, h2 = −(1 + m2), h4 = 1, then F(ξ) = ns(ξ). From this, we obtain
JEF solutions of Equation (2) as

Q(x, t) = ±

 1
8(c2 − δ)

−3(c1 − 4γk2)±

√
−6[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

m2 + 1

× ns(Ω[x− vt]))]
1
2 ei(−kx+ωt+θ),

(52)

where Ω =

√
32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2

8(c2 − δ)(m2 + 1)(a− bv)
. As m → 1, solution (52)

changes into singular soliton solutions

Q(x, t) = ±
[

1
8(c2 − δ)

(
−3(c1 − 4γk2)±

√
−3[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

× coth(Ω[x− vt]))]
1
2 ei(−kx+ωt+θ),

(53)
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where Ω =

√
32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2

16 (c2 − δ)(a− bv)
.

Case 6. If h0 = 4m(1 + m)2, h2 = −(4m + (1 + m)2), h4 = 1, then F(ξ) = m sn(ξ) +
ns(ξ). As a result, we obtain JEF solutions of Equation (2) as

Q(x, t) = ±

 1
8(c2 − δ)

−3(c1 − 4γk2)±

√
6[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

−m2 − 6m− 1

×{m sn(Ω[x− vt]) + ns(Ω[x− vt])})]
1
2 ei(−kx+ωt+θ),

(54)

where Ω =

√
32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2

8(c2 − δ)(m2 + 6m + 1)(a− bv)
. As m → 1, solution (54)

degenerates to singular soliton solutions in the form

Q(x, t) = ±
[

1
8(c2 − δ)

(
−3(c1 − 4γk2)± 1

2

√
−3[32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2]

×{tanh(Ω[x− vt]) + coth(Ω[x− vt])})]
1
2 ei(−kx+ωt+θ),

(55)

where Ω =

√
32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2

64(c2 − δ)(a− bv)
.

3.2. Bernoulli Sub-ODE Method

Now, we aim to procure soliton solutions to LPD Equation (2) through applying a
specific form of the Bernoulli sub-ODE method. Thus, we consider that the general solution
of Equation (22) is given as

W( ζ) = b0 + b1 G(ζ) + b2 G2(ζ) , (56)

where b0, b1 and b2 are constants to be identified. The function G(ζ) satisfies the type of
Bernoulli equation given by

G′(ζ) = η2 G2(ζ)− η G(ζ) , (57)

which has the solution of the form

G(ζ) =
1

η + ρ eηζ
, (58)

where η and ρ are arbitrary constants.
Substituting (56) and (57) into Equation (22) gives a polynomial in Gi(ζ), i = 0, 1, . . . , 6.

Equating the coefficients of various powers of G to zero, we arrive at the following system
of algebraic equations.

G0 : 4L1b0 + 3L2b2
0 +

8
3

L3b3
0 + 4L4 = 0,

G1 : Ω2η2b1L0 + 8b2
0b1L3 + 6b0b1L2 + 4b1L1 = 0,

G2 : −3Ω2η3b1L0 + 4Ω2η2b2L0 + 8b2
0b2L3 + 8b0b2

1L3 + 6b0b2L2 + 3b2
1L2 + 4b2L1 = 0,

G3 : 6l2b1b2 +
8
3

l3b3
1 + 2Ω2L0η4b1 − 10Ω2L0η3b2 + 16L3b0b1b2 = 0,

G4 : 6Ω2η4b2L0 + 8b0b2
2L3 + 8b2

1b2L3 + 3b2
2L2 = 0,

G5 : 8L3b1b2
2 = 0,

G6 :
8
3

L3b3
2 = 0.

(59)

Solving the above system yields several sets of solutions for the constants b0, b1 and b2
which are presented below.
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• Set 1

b0 =
2
(

L1 ±
√

L2
1 − 3L2L4

)
−3L2

, b1 = ±
8η
√

L2
1 − 3l2L4

L2
, b2 = ∓

8η2
√

L2
1 − 3L2L4

L2
,

Ω = ± 2
η

(
L2

1 − 3L2L4

L2
0

) 1
4

, L3 = 0.

(60)

From (60) and using (58) together with (21), the general solution (56) to Equation (22)
collapses to

P(ξ) =
−2
3L2

(
L1 ±

√
L2

1 − 3L2L4

{
1− 12η

η + ρ eηΩξ
+

12 η2(
η + ρ eηΩξ

)2

})
, (61)

provided that L2
1 6= 3L2L4 and L2 6= 0. Hence, the soliton solution of Equation (2) can

be written as

Q(x, t) = ±
[

−2
3(c1 − 4γk2)

(
bωk− ak2 −ω ±

√
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4{

1− 12η

η + ρ eηΩξ
+

12 η2(
η + ρ eηΩξ

)2

})] 1
2

ei(−kx+ωt+θ),
(62)

where Ω = ± 2
η

(
(bωk− ak2 −ω)2 − 3(c1 − 4γk2)L4

(a− bv)2

) 1
4

provided that c1 6= 4λk2,

a 6= bv and c2 = δ.

• Set 2

b0 =
3L2 ±

√
3(9L2

2 − 32L1L3)

−8L3
, b1 = ±

η
√

3(9L2
2 − 32L3L1)

4L3
, b2 = 0,

Ω = ± 1
2 η

(
32L1L3 − 9L2

2
L0L3

) 1
2

, L4 =
48L1L2L3 − 9L3

2
128L2

3
.

(63)

From (63) and using (58) along with (21), the general solution (56) to Equation (22)
becomes

P(ξ) =
−1
8L3

(
3L2 ±

√
3(9L2

2 − 32L1L3)

{
1− 2η

η + ρ eηΩξ

})
, (64)

provided that 9L2
2 6= 32L1L3 and L3 6= 0. Therefore, the soliton solution of Equation (2)

is introduced as

Q(x, t) = ±
[
−1

8(c2 − δ)

(
3(c1 − 4γk2) ±

√
3(9(c1 − 4γk2)2 − 32(bωk− ak2 −ω)(c2 − δ)){

1− 2η

η + ρ eηΩξ

})] 1
2
ei(−kx+ωt+θ),

(65)

where

Ω = ± 1
2 η

(
32(bωk− ak2 −ω)(c2 − δ)− 9(c1 − 4γk2)2

(a− bv)(c2 − δ)

) 1
2

, (66)

L4 =
48(bωk− ak2 −ω)(c1 − 4γk2)(c2 − δ)− 9(c1 − 4γk2)3

128(c2 − δ)2 , (67)
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provided that a 6= bv and c2 6= δ.

• Set 3

b0 =
−4L1

3L2
, b1 =

8ηL1

L2
, b2 =

−8η2L1

L2
, Ω = ± 2

η

√
L1

L0
, L3 = L4 = 0 . (68)

From these findings and using (58) in conjunction with (21), the general solution (56)
to Equation (22) reduces to

P(ξ) =
−4L1

3L2

{
1− 6η

η + ρ eηΩξ
+

6η2

(η + ρ eηΩξ)2

}
, (69)

provided that L1 6= 0 and L2 6= 0. As a result, the soliton solution of Equation (2)
becomes

Q(x, t) = ±
[
−4(bωk− ak2 −ω)

3(c1 − 4γk2)

{
1− 6η

η + ρ eηΩξ
+

6η2

(η + ρ eηΩξ)2

}] 1
2

ei(−kx+ωt+θ), (70)

where Ω = ± 2
η

√
bωk− ak2 −ω

a− bv
provided that c1 6= 4λk2, a 6= bv and c2 = δ.

• Set 4

b0 = 0, b1 =
−8ηL1

L2
, b2 =

8η2L1

L2
, Ω = ± 2

η

√
−L1

L0
, L3 = L4 = 0. (71)

From (71) and using (58) in conjunction with (21), the general solution (56) to Equation (22)
changes into the form

P(ξ) =
−8ηL1

L2

{
1

η + ρ eηΩξ
− η(

η + ρ eηΩξ
)2

}
, (72)

provided that L1 6= 0 and L2 6= 0. For this reason, the soliton solution of Equation (2)
is presented as

Q(x, t) = ±
[
−8η (bωk− ak2 −ω)

c1 − 4γk2

{
1

η + ρ eηΩξ
− η(

η + ρ eηΩξ
)2

}] 1
2

ei(−kx+ωt+θ), (73)

where Ω = ± 2
η

√
− (bωk− ak2 −ω)

a− bv
provided that c1 6= 4λk2, a 6= bv and c2 = δ.

• Set 5

b0 =
−4L1

L2
, b1 =

4ηL1

L2
, b2 = 0, Ω = ± 2

η

√
−L1

L0
, L3 =

3L2
2

16L1
, L4 = 0. (74)

From these results and using (58) along with (21), the general solution (56) to
Equation (22) has the form

P(ξ) =
−4L1

L2

{
1− η

η + ρ eηΩξ

}
, (75)
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provided that L1 6= 0 and L2 6= 0. Thus, the soliton solution of Equation (2) is
addressed as

Q(x, t) = ±
[
−4(bωk− ak2 −ω)

c1 − 4γk2

{
1− η

η + ρ eηΩξ

}] 1
2

ei(−kx+ωt+θ), (76)

where Ω = ± 2
η

√
−(bωk− ak2 −ω)

a− bv
and 16(c2 − δ)(bωk− ak2 −ω) = 3(c1 − 4γk2)2

provided that c1 6= 4λk2 and a 6= bv.

• Set 6

b0 = 0, b1 =
−4ηL1

L2
, b2 = 0, Ω = ± 2

η

√
−L1

L0
, L3 =

3L2
2

16L1
, L4 = 0. (77)

From (77) and using (58) together with (21), the general solution (56) to Equation (22)
has the form

P(ξ) =
−4 ηL1

L2
(

η + ρ eηΩξ
) , (78)

provided that L1 6= 0 and L2 6= 0. Therefore, the soliton solution of Equation (2) is
given by

Q(x, t) = ±
[
−4 η (bωk− ak2 −ω)

(c1 − 4γk2)
(

η + ρ eηΩξ
)] 1

2

ei(−kx+ωt+θ), (79)

where Ω = ± 2
η

√
− (bωk− ak2 −ω)

a− bv
and 16(c2− δ)(bωk− ak2−ω) = 3(c1− 4γk2)2

provided that c1 6= 4λk2 and a 6= bv.

• Set 7

b0 = ∓1
2

√
−6L1

L3
, b1 = ±η

√
−6L1

L3
, b2 = 0, Ω = ± 2

η

√
2L1

L0
, L2 = L4 = 0. (80)

Based on (80) and using (58) in addition to (21), the general solution (56) to
Equation (22) reads as

P(ξ) = ∓1
2

√
−6L1

L3

{
1− 2 η

η + ρ eηΩξ

}
, (81)

provided that L1 6= 0 and L3 6= 0. Hence, the soliton solution of Equation (2) is

Q(x, t) = ±

∓1
2

√
−6(bωk− ak2 −ω)

c2 − δ

{
1− 2η

η + ρeηΩξ

} 1
2

ei(−kx+ωt+θ), (82)

where Ω = ± 2
η

√
2 (bωk− ak2 −ω)

a− bv
provided that c2 6= δ, a 6= bv and c1 = 4γk2.

4. Modulation Instability Analysis

Our purpose now is to discuss the modulation instability of the LPD model (2) with the
help of the standard linear stability analysis. In order to achieve this target, the steady-state
solution of the LPD model (2) is assumed to be

Q(x, t) =
√

P eiΦt, (83)
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where Φ = c1P + (c2 − δ)P2, and P is the normalized optical power. According to the
standard linear stability analysis, we include the perturbation term in (83) to obtain

Q(x, t) =
[√

P + Υ(x, t)
]

eiΦt, (84)

where Υ(x, t) is a small perturbation such that Υ(x, t) �
√

P. The perturbation Υ(x, t) is
examined by utilizing linear stability analysis through inserting (84) into Equation (2) and
collecting the linearized terms to obtain

i
∂Q
∂t

+ (a− γP)
∂2Q
∂x2 + b

∂2Q
∂x∂t

− σ
∂4Q
∂x4 − λP

∂2Q∗

∂x2

+P[c1 + 2P(c2 − δ)](Q + Q∗) + ibP[c1 + (c2 − δ)P]
∂Q
∂x

= 0,
(85)

where ∗ denotes the conjugate of the complex function Q(x, t). Then, suppose that the
solution of Equation (85) is expressed as

Q(x, t) = β1ei(κx−vt) + β2e−i(κx−vt), (86)

where κ is the normalized wave number, and v is the frequency of perturbation. Sub-
stituting solution (86) into Equation (85) and separating the coefficients of ei(κx−vt) and
e−i(κx−vt) results in two equations in β1 and β2 given as(

Pκ2λ− 2P2δ + 2P2c2 + Pc1
)

β1 +
(
−P2bδκ + P2bκc2 − κ4σ

+Pbκc1 + Pγκ2 + vbκ − 2P2δ + 2P2c2 − aκ2 + Pc1 −v
)

β2 = 0,(
P2bδκ − P2bκc2 − κ4σ− Pbκc1 + Pγκ2 + vbκ − 2P2δ + 2P2c2
−aκ2 + Pc1 + v

)
β1 +

(
Pκ2λ− 2P2δ + 2P2c2 + Pc1

)
β2 = 0.

(87)

From the coupled Equations (87), one can construct the coefficient matrix of β1 and
β2. The determinant of this matrix has to vanish to secure nontrivial solution. Accordingly,
the dispersion relation is obtained as(

b2κ2 − 1
)

v2 − 2b
{

σκ5 + (a− γP)κ3 − P[3(c2 − δ)P + 2c1]κ
}

v + σ2κ8

+ 2σ(a− γP)κ6 −
{[

4σ(c2 − δ) + λ2 − γ2
]

P2 + 2(aγ + c1σ)P− a2
}

κ4

−
{

b2(c2 − δ)2P4 + [2b2c1 + 4(λ− γ)](c2 − δ)P3

+[b2c2
1 + 2(λ− γ)c1 + 4a(c2 − δ)]P2 + 2ac1P

}
κ2 = 0, (88)

and its solution has the form

v =
κ

b2κ2 − 1

[
bσκ4 + b(a− γP)κ2 − 3b(c2 − δ)P2 − 2bc1P

±
√

σ2κ6 + χ4κ4 + χ2κ2 + χ0

]
, (89)

where b2κ2 6= 1. The parameters χ0, χ2 and χ4 are defined as

χ4 =
[
λ2 − 2σ(c2 − δ)

]
b2P2 − 2(b2c1 + γ)σP + 2σa, (90)

χ2 =b4(c2 − δ)2P4 + 2b2(c2 − δ)(b2c1 + γ + 2λ)P3

+
{

c2
1b4 + 2[c1(γ + λ)− a(c2 − δ)]b2 − 4σ(c2 − δ) + γ2 − λ2

}
P2

− 2(ab2c1 + aγ + c1σ)P + a2, (91)

χ0 =
{

4b2(c2 − δ)P2 + (3b2c1 + 2γ− 2λ)P− 2a
}
[2(c2 − δ)P2 + c1P]. (92)
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If σ2κ6 + χ4κ4 + χ2κ2 + χ0 ≥ 0, the frequency v is real for all real values of a, b, c1, c2, σ,
γ, λ, δ, κ, and P. Hence, the steady state is stable against small perturbations. Conversely,
if σ2κ6 + χ4κ4 + χ2κ2 + χ0 < 0, then v is imaginary, which means that the perturbation
grows exponentially. Hence, the steady-state solution becomes unstable.

Ultimately, the growth rate of modulation instability gain spectrum G(κ) can be
expressed as follows:

G(κ) = 2Im(v) = 2Im
(

κ

b2κ2 − 1
[

bσκ4 + b(a− γP)κ2 − 3b(c2 − δ)P2 − 2bc1P

±
√

σ2κ6 + χ4κ4 + χ2κ2 + χ0

] )
.

5. Results and Discussion

The analytic processes presented above demonstrate that the two proposed integration
approaches are highly efficient at providing many structures of optical soliton solutions
for the LPD model (2). To add physical understanding to our mathematical analysis,
the 3D-plot of the intensity profiles of optical solitons are exhibited with suitable values of
parameters. Additionally, the effect of spatiotemporal dispersion on the wave propagation
is reported through depicting the 2D-plot of solutions for three distinct values of the
coefficient of spatiotemporal dispersion, b.

Since the auxiliary equation method yielded abundant exact solutions, we display the
behaviors of some of the extracted solutions. In Figure 1, the 3D-plots given in (Figure 1a,c)
show the propagation of W-shaped solitons which describe solutions (32) and (34) with
the values of parameters a = 0.05, b = 1.5, k = v = ω = 1, γ = c1 = 0.1, and L4 = 0.5.
The 2D-plots in (Figure 1b,d) present a noteworthy influence of spatiotemporal dispersion
on the amplitude of W-shaped solitons which is enhanced by increasing the value of b.
Further to this, the evolution of soliton solution (40) illustrates a singular-type wave as
delineated in Figure 2a for the same values of parameters as in Figure 1. It is clear that the
amplitude of singular soliton is stretched by increasing the value of b. In Figure 3, the graph
presents a kink-dark soliton for solution (45) with the same values of the parameters as
those in Figure 1 besides c2 = 0.1 and δ = 0.5. As shown in the plot in (Figure 3b),
the spatiotemporal dispersion amplifies the amplitude of kink-dark soliton. It can be clearly
seen that the plot in Figure 4 represents the profile of bright soliton pulse characterizing
solution (47) with the same values of parameters as those in Figure 1 except a = c2 = 0.5,
b = −0.5, δ = 0.1. The spatiotemporal dispersion can be seen to adversely affect the
amplitude of bright soliton which undergoes a continuous decline once b increases, as
shown in Figure 4b.

Similarly, some of soliton solutions created by the Bernoulli sub-ODE method are
graphically represented to recognize the physical characteristics of solitons. In Figure 5,
the graph describes the W-shaped soliton pulse for solution (70) with the values of pa-
rameters a = 0.05, b = γ = η = 0.5, k = v = ω = ρ = 1 and c1 = 0.3. The increase in
the value of spatiotemporal dispersion reduces the amplitude of soliton wave as given
in Figure 5b. Moreover, we can observe that the plot in Figure 6 represents a bright soli-
ton wave for solution (73) for the same values of parameters as those in Figure 5 except
a = 0.5, b = 0.1, η = ρ = 0.3, γ = 1. The amplitude of bright soliton experiences a gradual
decrease with an increase in the value of b. One can clearly see that the plots in Figure 7a,c
show the structures of kink- and antikink-type waves for solutions (76) and (79), respec-
tively, for the same values of parameters as those in Figure 6 except η = 0.5, ρ = 1 in both
graphs in addition to γ = −1 in Figure 7c. Both amplitudes of kink and antikink waves
suffer reductions when the value of b increases as presented in Figure 7b,d. Finally, the evo-
lution of soliton solution (82) is depicted in Figure 8 with the same values of parameters
as those in Figure 5, where the plot characterizes the profile of dark soliton. It is easily
noticed in Figure 8b that the growth in the value of b leads to a collapse in the amplitude of
dark soliton.
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(a) 3D-plot of W-shaped soliton (b) Effect of STD on W-shaped soliton

(c) 3D-plot of W-shaped soliton (d) Effect of STD on W-shaped soliton

Figure 1. The behaviors of soliton solutions (32) and (34) with the values of parameters a = 0.05,
b = 1.5, k = v = ω = 1, γ = c1 = 0.1 and L4 = 0.5.

(a) 3D-plot of singular soliton (b) Effect of STD on singular soliton

Figure 2. The behavior of soliton solution (40) for the same values of parameters as in Figure 1.

(a) 3D-plot of kink-dark soliton (b) Effect of STD on kink-dark soliton

Figure 3. The behavior of soliton solution (45) with the same values of parameters as in Figure 1
besides c2 = 0.1 and δ = 0.5.
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(a) 3D-plot of bright soliton (b) Effect of STD on bright soliton

Figure 4. The behavior of soliton solution (47) with the same values of parameters as those in Figure 1
except a = c2 = 0.5, b = −0.5, δ = 0.1.

(a) 3D-plot of W-shaped soliton (b) Effect of STD on W-shaped soliton

Figure 5. The behavior of soliton solution (70) with the values of parameters a = 0.05, b = γ = η = 0.5,
k = v = ω = ρ = 1 and c1 = 0.3.

(a) 3D-plot of bright soliton (b) Effect of STD on bright soliton

Figure 6. The behavior of soliton solution (73) for the same values of parameters as in Figure 5 except
a = 0.5, b = 0.1, η = ρ = 0.3, γ = 1.

From the above illustrated graphs, one can see that the obtained analytic solutions
demonstrate various types of soliton profiles which are dominated by the model parameters.
Furthermore, it can be obviously deduced that the spatiotemporal dispersion causes an
impressive evolution to the amplitude of pulses. This intensive impact of the spatiotemporal
dispersion can be exploited to manipulate the crisis of internet bottleneck. In comparison
with mathematical approaches used in the previous studies [24,36], the applied integral
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schemes in this study have given rise to an abundance of entirely new, exact solutions
that describe different wave structures including the W-shaped, bright, dark, kink-dark,
singular, kink, and anti-kink type solitons. Further to this, the effect of spatiotemporal
dispersion on the soliton propagation is discussed more thoroughly as compared to the
studies that have previously addressed the LPD model in the past.

(a) 3D-plot of kink soliton (b) Effect of STD on kink soliton

(c) 3D-plot of anti-kink soliton (d) Effect of STD on anti-kink soliton

Figure 7. The behaviors of soliton solutions (76) and (79) for the same values of parameters as in
Figure 6 except η = 0.5, ρ = 1, and in (c) γ = −1.

(a) 3D-plot of dark soliton (b) Effect of STD on dark soliton

Figure 8. The behavior of soliton solution (82) with the same values of parameters as those in Figure 5.

6. Conclusions

This work discusses the optical soliton solutions of the LPD equation with the parabolic
law of nonlinearity which describes the propagation of optical pulses through optical fibers.
The spatiotemporal dispersion is included in this model because of its effective role in
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handling the internet bottleneck problem. Two powerful integration schemes, the auxiliary
equation method and Bernoulli sub-ODE method, are employed to explore the soliton
solutions analytically. Consequently, slow-light optical solitons of different profiles such
as W-shaped, bright, dark, kink-dark, singular, kink, and anti-kink solitons were revealed
under specific restrictions. The outcomes indicate that the spatiotemporal dispersion causes
a significant variation to the wave dynamics. Hence, these types of pulses can be employed
to control the internet bottleneck issue and to allow smooth internet traffic flow. Some
of obtained solutions have been represented graphically to give a clear insight into the
optical soliton behaviors. In addition, the modulation instability (MI) of the LPD model
was examined in conjunction with the MI gain formula. The results of this work can be
exploited for possible applications in the engineering and physics of nonlinear optics.
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