
Citation: Guo, C.; Xu, M.; Hu, S.;

Song, J. Balanced-DRL: A

DQN-Based Job Allocation

Algorithm in BaaS. Mathematics 2023,

11, 2638. https://doi.org/10.3390/

math11122638

Academic Editor: Jan Lansky

Received: 10 May 2023

Revised: 6 June 2023

Accepted: 8 June 2023

Published: 9 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Balanced-DRL: A DQN-Based Job Allocation Algorithm in BaaS
Chaopeng Guo , Ming Xu, Shengqiang Hu and Jie Song *

Software College, Northeastern University, Shenyang 110169, China; guochaopeng@swc.neu.edu.cn (C.G.);
2101253@stu.neu.edu.cn (M.X.); 1801237@stu.neu.edu.cn (S.H.)
* Correspondence: songjie@mail.neu.edu.cn

Abstract: Blockchain as a Service (BaaS) combines features of cloud computing and blockchain,
making blockchain applications more convenient and promising. Although current BaaS platforms
have been widely adopted by both industry and academia, concerns arise regarding their performance,
especially in job allocation. Existing BaaS job allocation strategies are simple and do not guarantee
load balancing due to the dynamic nature and complexity of BaaS job execution. In this paper,
we propose a deep reinforcement learning-based algorithm, Balanced-DRL, to learn an optimized
allocation strategy in BaaS based on analyzing the execution process of BaaS jobs and a set of job scale
characteristics. Following extensive experiments with generated job request workloads, the results
show that Balanced-DRL significantly improves BaaS performance, achieving a 5% to 8% increase in
job throughput and a 5% to 20% decrease in job latency.

Keywords: Blockchain as a Service; job allocation; load balancing; deep reinforcement learning
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1. Introduction

Blockchain as a Service (BaaS) has recently emerged as a platform that provides
blockchain technology as cloud services [1]. BaaS not only reduces the development and
management costs associated with blockchain, but it also benefits from cloud computing
characteristics such as high flexibility, scalability, and reliability [2]. BaaS is now widely
adopted by both industries [3] and academic institutions, including Microsoft Azure
(https://azure.microsoft.com/en-gb/solutions/blockchain/, accessed on 10 May 2023),
IBM Blockchain Platform (https://www.ibm.com/blockchain/platform, accessed on 10
May 2023), and Amazon (https://aws.amazon.com/cn/blockchain/, accessed on 10 May
2023). Additionally, distinctive BaaS platforms are currently under development [4,5]. Due
to the broad applications of BaaS, concerns have arisen regarding its performance. To
measure the performance of BaaS, indicators such as average job throughput and average
job delay are typically used [6].

Job allocation is an effective approach in cloud computing to improve platform per-
formance. It involves allocating cloud computing jobs to proper execution nodes using a
specific allocation strategy. In a data center, an execution node can be a physical server or a
virtual machine. Typical job allocation algorithms include packing algorithms, heuristic
algorithms [7], and machine learning-based algorithms [8]. The main objective of these al-
gorithms is to achieve load balancing, which improves average job throughput and reduces
average job delay.

Although BaaS utilizes concepts and techniques from cloud computing, the exist-
ing job allocation approaches used in cloud computing are insufficient for BaaS. Firstly,
most job allocation approaches in cloud computing are based on allocating resources to
virtual machines with consistent resources. This allows these allocation problems to be
solved using boxing or heuristic algorithms [9,10]. However, in BaaS, jobs are allocated
to containers with varying and dynamic resources during runtime. Secondly, BaaS job
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characteristics differ from those in cloud computing. The resources required by BaaS jobs
are more complex and dynamic. For instance, when generating a new block in Fabric [11],
the required resources are influenced by endorsement nodes and endorsement strategies.
All in all, the existing job allocation approaches used in cloud computing cannot be directly
applied to BaaS.

The current job allocation approaches BaaS uses mostly consist of two simple allocation
strategies: round-robin polling and random allocation. However, these strategies cannot
guarantee load balancing among BaaS containers. As a result, these strategies might
decrease average job throughput and increase average job delay.

Therefore, our research motivation comes from the following statements: (1) BaaS
urgently needs continuous development to boost its performance. (2) The existing allocation
methods for cloud computing platforms are difficult to apply to the BaaS platform. (3) The
job size of BaaS is difficult to measure, which limits job allocation in BaaS. (4) The dynamic
nature of BaaS containers makes it challenging for current optimization algorithms to
generate optimized allocation strategies in a reasonable amount of time.

To overcome the job allocation problem in BaaS, we analyzed the execution process of
BaaS jobs and proposed a set of job characteristics to measure job scale. Next, we formulated
the job allocation problem as an optimization problem and analyzed the corresponding
constraints and objectives. Finally, we propose a novel deep reinforcement learning-
based (DRL) algorithm, named Balanced-DRL, to learn the optimal allocation strategy.
We designed corresponding state and action spaces for the job allocation problem and
replaced the network structure used in the original algorithm. Additionally, our algorithm
adopts a Boltzmann action exploration strategy to accelerate the training process. Our main
contributions include the following:

• We analyzed the execution and allocation processes of BaaS jobs in detail and proposed
a set of job scale characteristics that can benefit our job allocation approach and other
BaaS-related optimization approaches in the future.

• We propose a novel deep reinforcement learning (DRL)-based algorithm, Balanced-
DRL, to produce an optimized job allocation strategy in BaaS. We carefully designed
the action space, state space, and reward function required for DRL.

• We conducted experiments to evaluate the performance of Balanced-DRL compared
with other commonly-used allocation strategies, including random allocation, round-
robin allocation, and minimum resource allocation. The results show that Balanced-
DRL can maximize job throughput and minimize job delay, especially under various
load scenarios.

The rest of the paper is organized as follows: In Section 2, we discuss the differences
and improvements of our work compared with related research. Section 3 presents an
overview of BaaS jobs, including their definitions and allocation process, as well as our
proposed job scale characteristics. We also discuss the constraints and objectives of the
job allocation problem. In Section 4, we first discuss the different allocation strategies
required in different job-workload scenarios; then, we propose a novel algorithm, Balanced-
DRL, and demonstrate its process for allocating BaaS jobs. Section 5 proposes a deep
Q-network-based algorithm, HDQN, for optimizing job allocation in the high-load scenario.
We explain the design of the action space, the state space, and the reward function, as well
as the training procedure. Section 6 describes a series of experiments we conducted to
validate the performance of Balanced-DRL, including comparisons with other traditional
allocation strategies. In Section 7, we first discuss the experimental results of our study,
followed by a comparative analysis between the algorithm proposed in this paper and
some representative works in the related field. Finally, in Section 8, we conclude the paper
and propose future research directions.

2. Related Works

In the Related Works section, we first introduce the relevant algorithms for traditional
data center job allocation problems, analyze their applicable scenarios, and identify their
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limitations when applied to the BaaS job allocation problem. We then discuss optimization
solutions for blockchain, particularly Hyperledger Fabric, which is the most widely used
blockchain for enterprise applications. In the end, we review research on BaaS platforms.

2.1. Job Allocation Algorithms for Traditional Data Centers

In traditional data centers, job allocation to suitable nodes is also important to improve
resource utilization, increase throughput, reduce energy costs, and ensure load balancing.
In this section, we will introduce job allocation algorithms in traditional data centers from
three perspectives: traditional bin-packing algorithms, heuristic algorithms, and machine
learning algorithms.

Regarding bin-packing algorithms, Li et al. [9] addressed the problem of reliable
resource allocation in the context of an unreliable bin-packing problem. They used the First-
Fit algorithm combined with the mirror algorithm to minimize the number of bins used
while satisfying reliability requirements. Liu et al. [12] abstracted the job allocation problem
in cloud computing environments as the MinUsageTime dynamic bin-packing problem.
To address the issue that traditional dynamic bin-packing algorithms do not provide any
performance guarantees in harsh environments, they proposed a robust and consistent
algorithm that guarantees a lower bound on performance. Gupta et al. [10] proposed two
new dynamic bin-packing algorithms based on the Best-Fit-Decreasing heuristic, achieving
optimization in terms of energy consumption, resource utilization, and completion time.
However, bin-packing algorithms are only suitable for static job allocation with known
resources. They do not apply to the dynamic job allocation problem in BaaS, where the
resources are unknown.

Regarding heuristic algorithms, Kumar et al. [13] studied energy-aware resource
allocation in cloud data centers using a two-level ant colony optimization algorithm.
Li et al. [14] proposed a new multi-objective particle swarm optimization algorithm for
dynamic resource allocation that assigns a sub-problem to each particle using problem
decomposition and accelerates convergence to the optimal solution by introducing a new
particle velocity update strategy. Shiekh et al. [15] proposed a hybrid heuristic algorithm
for parallel task allocation and load balancing in cloud computing environments. By maxi-
mizing resource utilization using three stages—parallelization, task allocation, and task
redistribution—the algorithm aims to provide better services. Infantia et al. [16] proposed
a novel meta-heuristic algorithm for virtual machine (VM) placement and migration in
cloud environments, aiming to achieve optimal VM placement and migration, reduce
the number of active servers, and minimize completion time and energy consumption.
Ghobaei-Arani et al. [17] proposed an efficient IoT service deployment solution based on
the whale optimization algorithm to address the deployment problem of IoT applications
in fog computing. The proposed solution selects suitable fog nodes based on through-
put and energy consumption, while satisfying the quality of service (QoS) requirements
of IoT services. Simulation results showed that this solution reduces both latency and
energy consumption.

Although heuristic algorithms such as ant colony optimization and particle swarm
optimization have been widely used in resource allocation problems, they cannot guaran-
tee the optimal solution and cannot predict the deviation between feasible and optimal
solutions. Moreover, their stability and generality may be limited. Therefore, in this paper,
we do not adopt heuristic algorithms for BaaS job allocation optimization.

Regarding machine learning algorithms, Zhang et al. [18] proposed two resource
allocation prediction algorithms, Linear-ALLOC and Logistic-ALLOC, based on linear
and logistic regression, respectively. These algorithms generalize and learn the optimal
multi-dimensional cloud resource allocation scheme by learning the optimal allocation
schemes on small training sets. Bal et al. [19] proposed a combined approach for secure
and efficient task scheduling and resource allocation in cloud computing using a hybrid
machine learning technique called RATS-HM. Experimental results showed improved
resource utilization, energy consumption, and response time. Talwani et al. [20] proposed
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an energy-efficient VM allocation and migration algorithm using a machine learning-based
artificial bee colony algorithm to rank VMs based on load and select the most efficient VMs
for job allocation and migration. Simulation experiments showed that this research was
able to reduce energy consumption.

Yi et al. [21] used deep reinforcement learning to allocate long-running compute-
intensive jobs. They used the deep Q-network to train the job allocation offline to maximize
cumulative rewards. They used a computational model based on the LSTM network
to capture the dynamic changes in server energy consumption and heat. To reduce the
energy consumption of cloud data centers, Yan et al. [22] proposed a method based on
deep reinforcement learning to allocate incoming jobs to appropriate virtual machines,
to achieve high-quality service. Jayanetti et al. [23] proposed a workflow scheduling
framework based on deep reinforcement learning to address the task scheduling problem
in cloud–edge collaborative environments. Compared with other benchmark algorithms,
their framework showed significant improvements in multiple metrics, such as energy
consumption, execution time, and the percentage of jobs completed before their deadlines.

Seid et al. [24] proposed a dynamic resource allocation algorithm based on blockchain
and multi-agent deep reinforcement learning for allocating resources of multiple drones to
mobile user devices. The blockchain in the algorithm ensures the security of virtual resource
transactions among mobile user devices, infrastructure providers, and virtual network
operators. The resource allocation problem is abstracted as a multi-layered Stackelberg
game problem, and reinforcement learning is used to learn allocation strategies. The
experiments demonstrated that the algorithm achieved state-of-the-art results in utility
optimization and service quality.

Wang et al. [25] proposed a new blockchain-based, hierarchical, digital twin Internet
of Things (IoT) framework that aims to minimize system latency and energy consumption.
To address the resource allocation problem, a multi-agent reinforcement learning algorithm
based on proximity policy optimization was employed. The experimental results demon-
strated that this approach can improve system efficiency and balance system latency and
energy consumption.

Reinforcement learning can learn efficient job resource allocation methods without
requiring specific models or prior knowledge, by interacting with the data center environ-
ment. Deep reinforcement learning, particularly deep Q-learning, combines the strong
generalization ability of deep neural networks and can handle high-dimensional state space
problems that traditional reinforcement learning cannot solve. Therefore, in this paper, we
implement efficient BaaS job allocation based on deep reinforcement learning.

2.2. Optimization Solutions for Blockchain

Currently, the main optimization goals for blockchain are to improve the throughput
of job requests and reduce latency.

FastFabric [26] achieves higher throughput by identifying performance bottlenecks
and optimizing consensus, validation modules, and the world state. However, its test
data and environment are too ideal and may not apply to the complex situation of the
Hyperledger Fabric network in BaaS.

Javaid et al. [27] analyzed various fine-grained delays occurring during the block
verification phase and achieved 1.3 to 2 times greater verification latency optimization
by using chaincode caching and concurrent read–write of the world state during the
verification phase.

Kwon et al. [28] proposed two optimization methods in the endorsement and ordering
phases. For the endorsement phase, they optimized the throughput of read requests. For
the ordering phase, they optimized the ordering service by creating a new consensus
protocol, reducing latency.

Hang et al. [29] proposed a new method for building blockchain networks to address
scalability and performance issues. They analyzed the configurable network components
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in Hyperledger Fabric and proposed an optimized network configuration, which improved
throughput and latency.

Nakaike et al. [30] tested the performance of Hyperledger Fabric using GoLevelDB as
the database and found that the database was one of the bottlenecks affecting throughput.
To improve the performance of Hyperledger Fabric, they disabled database compression.

Zhang et al. [31] identified performance bottleneck analysis rules with extensive
performance testing. For the network running in real time, they monitored performance
data, node resources, and network parameters in real time. They identified the reasons for
performance limitations based on the performance bottleneck analysis rules. Finally, they
dynamically adjusted network parameters to improve performance.

The paper [32,33] focused on reducing the latency caused by block propagation
through the network. They proposed a score-based algorithm for neighbor selection,
using propagation latency as the scoring criterion. By using this algorithm, they reduced
latency in the blockchain network.

Li et al. [34] proposed a method to reduce the average latency of blockchain networks
by using a probabilistic verification approach. By introducing a metric to determine whether
verification is necessary, transmission can occur immediately if verification is not required.
However, this method may have certain security risks.

To improve the throughput of blockchain, Locher et al. [35] proposed an optimization
algorithm at the consensus layer, a synchronous, leader-based Byzantine agreement proto-
col. This protocol is easy to implement and malleable, and can accelerate the consensus
speed and improve throughput.

Geng et al. [36] employed deep reinforcement learning algorithms to optimize
blockchain consensus algorithms, which is denoted as the Deep Reinforcement Consensus
algorithm, and applied the algorithm to the business model of intelligent manufacturing.
The experimental results demonstrated that the algorithm with blockchain could enhance
system decentralization, save storage space, and improve the efficiency of intelligent manu-
facturing.

Cao et al. [37] addressed the issue of severe performance degradation of the Raft
algorithm in private chains when network latency is high and proposed using the Multi-
Raft algorithm with multiple leaders instead of the Raft algorithm. Experiments showed
that the Multi-Raft algorithm could reduce network traffic in larger-scale networks and
improve system scalability and performance.

Jalalzai et al. [38] proposed an algorithm that randomly selects a group of nodes for
consensus to improve the complexity of the Byzantine Fault-Tolerant protocol in blockchain
and address the performance issues of a single primary node. This algorithm can save
bandwidth and enhance the scalability of the blockchain.

To address the issue of low throughput in public blockchains, Zhang et al. [39] im-
proved the compact-block relaying protocol in blockchain, which allows blocks with a large
number of transactions to propagate without introducing additional propagation latency.

The above methods have achieved certain optimizations for blockchain performance,
especially throughput and latency. However, these studies mostly focus on modifying
Hyperledger Fabric itself or related network parameters, which may have poor adaptability
to environmental changes. This article proposes a performance optimization method for
BaaS without changing the underlying blockchain technology.

2.3. Research Related to BaaS Platform

Lu et al. [5] proposed a unified BaaS platform solution called uBaaS, which suggests
deploying as a service to avoid the impact of different cloud computing used by different
BaaS platforms on development. Additionally, the proposed solution introduces a design
model as a service to address the issues of data management and contract design in a
unified manner, thereby avoiding the impact of different blockchain services provided by
different BaaS platforms.
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Zheng et al. [40] designed a BaaS platform named NutBaaS, which provides functions
such as network deployment, system monitoring, contract analysis, and testing, allowing
developers to focus more on business logic development.

Ma et al. [41] implemented a trusted BaaS platform called TrustedBaaS based on
Hyperledger Fabric. The platform provides functions such as identity authentication,
sensitive data protection, and trusted data storage, effectively protecting the privacy and
security of data without sacrificing performance.

Weerasinghe et al. [42] proposed a blockchain-based platform to address issues such
as subscriber management, roaming customers, spectrum, security, and infrastructure that
arise from deploying 5G networks. This platform includes functions such as service rating,
bidding, and selection, which can ensure advantages such as availability, decentralization,
secure transfer payments, and more.

Onik et al. [43] summarized the current major BaaS platforms and compared the
blockchain services supported by these platforms.

Jiang et al. [44] proposed a general-purpose BaaS platform called Polychain to ad-
dress the scalability limitations and customization difficulties of existing BaaS platforms.
Polychain is designed with high modularity, flexibility, scalability, reliability, and security,
utilizing multiple design principles from software engineering to make it more flexible and
convenient.

Li et al. [45] studied recent BaaS models and classified them into three categories: data-
layer models, network layer models, and others. These models have optimized security,
privacy, and trust, but most do not address issues such as energy and cost.

Rajendra et al. [46] addressed the issue that most existing blockchain platforms run
and deploy in virtual environments without considering the performance and power
consumption of IoT devices. They designed and developed BlockPaaS, which allows
users to run various blockchain protocols in a real IoT environment, considering device
performance, power consumption, deployment, and other issues.

Zheng et al. [47] found that existing BaaS platforms do not provide Service Level
Agreements to ensure the quality of service. Therefore, they proposed a consensus algo-
rithm based on the KNN algorithm. This algorithm classifies transactions by priority and
guarantees the quality of service by prioritizing the execution of some users’ requests.

Cai et al. [48] believe that current BaaS platforms built in the environment of cloud
service providers compromise the trustlessness and availability of blockchain. Therefore,
they designed a new cloud–edge collaborative BaaS platform. By selecting redundant
blockchain nodes, leader election, and self-recovering edge networks, they built a highly
available BaaS platform.

The research mentioned above mainly focuses on constructing BaaS platforms, making
it more convenient for users to use and deploy BaaS platforms. In contrast, this paper
proposes optimization schemes for BaaS platforms’ performance.

2.4. Brief Summary

In Section 2, we introduce our related work from three aspects: traditional job schedul-
ing algorithms in data centers, optimization methods for blockchain, and research on
BaaS platforms. By summarizing the traditional job scheduling algorithms, we analyze
their shortcomings and gain inspiration from reinforcement learning algorithms. Through
the summary of optimization methods for blockchain, we identify the main optimization
objectives, including throughput and latency. We also recognize that current methods
mainly focus on optimizing the blockchain itself and lack optimization for BaaS. Finally, by
summarizing research on BaaS platforms, we find that the focus of current research is on
the construction of the platform, lacking research on performance improvement. From the
perspective of job scheduling on BaaS platforms, we focus on improving the performance
of BaaS platforms, especially in terms of throughput and latency.
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3. Allocation Model

This section analyzes the characteristics of BaaS jobs and presents a detailed overview
of the job allocation process. We then formulate the allocation process as an optimization
problem, proposing corresponding constraints and objectives that must be satisfied for
optimal job allocation.

3.1. BaaS Job Analysis

Two main types of BaaS jobs can be identified: query and transaction. Query jobs
involve clients sending queries to the ledger to retrieve transaction records, which are then
returned. Transaction jobs, on the other hand, involve the ledger generating transaction
records based on trading operations, which are then recorded in the account book.

Figure 1 illustrates a typical process for BaaS query jobs, which involves the following
three steps:

1. A client submits a request using the BaaS service. The service application constructs a
query proposal and sends it to a peer node in the corresponding channel.

2. Upon receiving the proposal, a local chaincode is called by the peer node to query
local account data in the ledger. This step includes proposers’ identity verification,
proposal validation, query simulation, and generation of a reading set. Eventually,
the query result is returned to the application.

3. Upon receiving the query result, the service application returns it to the client.

A
pp

lic
at

io
n Chiancode

Peer Node

Ledger

1. Query Request

3. Return Request
2. Query Ledger

Figure 1. Query Job Execution Flow in Hyperledger Fabric.

In a query job flow, the execution of the chaincode constitutes a key and complex
process, which is the primary source of latency.

Figure 2 shows the execution process of a BaaS transaction job, which includes the
following five steps:

• A client initiates a transaction job by sending a transaction proposal to an endorsement
node P using the BaaS service. The endorsement strategy in the organization of the
channel determines the endorsement node.

• Upon receiving the proposal, endorsement node P verifies the proposal’s legitimacy
and determines the chaincode to be called. It then simulates the execution of the
chaincode function, which includes reading and writing to the ledger, generating
simulated transaction results, and puts the results into a read–write set. P signs the
results to indicate the endorsement by the organization and sends them back to the
application.

• After collecting the results that meet the endorsement strategy, the application pack-
ages the endorsement results together with the proposal into endorsement transactions
and sends them to a sorting node S.

• Sorting node S collects endorsement transactions from each client in the channel.
It sorts and packages multiple transactions into blocks and distributes them to all
submission nodes under each organization in the channel.
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• Submission nodes P1 and P2 verify the block and each endorsement transaction in the
block, and they update the local ledger data. At the same time, the application notifies
the client on completing the job.

A
pp

lic
at

io
n

Chiancode

Endorsement Node P

Ledger

1. Transaction Request

2. Read and Write Ledger

3. Send Result

5. Check Block
Update Ledger

Sort Node S

4. Packcage and Distribute Blocks

3. Send Result

Ledger

5. Check Block
Update Ledger

Peer Node P1

4. Packcage and Distribute Blocks

Ledger

5. Check Block
Update Ledger

Peer Node P2

4. Packcage and Distribute Blocks

Figure 2. Transaction Job Execution Flow in Hyperledger Fabric.

In the transaction process, step 2 needs to complete jobs such as verification, simulation
execution, saving and reading data, transaction results, and endorsement, which is the
main reason for latency.

Whether a job is a query job or a transaction job, the steps of executing the chaincode
are always the most complex and time-consuming. Although BaaS jobs need to consume
resources in each step of the execution process, we only consider the resources consumed
in chaincode execution, namely, step 2, in query jobs and transaction jobs.

To measure the scale of BaaS jobs, two types of characteristics must be considered:
the number of reading and writing operations, and the size of datasets. Based on process
analysis, we selected the features listed in Table 1 to measure the job scale. These charac-
teristics can effectively describe the scale evaluation for both query and transaction jobs.
The only difference is that transaction jobs generate a written set. To maintain simplicity
and consistency in job scale measurement, we established the following convention: if both
Put State and Del State are 0, the corresponding job is a transaction job. Otherwise, it is a
query job.

Table 1. BaaS Job Scale Characteristics.

Item Unit Description Target Dataset

Chain Size Block Size/height of the currently queried blockchain -
Query Block Block Number of times to query historical blocks Blockchain and block index

Query Transaction Transaction Query historical transaction times Blockchain and block index
Query State Number of key Number of query key history writes Blockchain and history index
World Size Megabytes The size of the current world state -
Get State Key value pair Number of times to query world state World State and Read Set
Put State Key value pair Number of times to update world state World State and Write Set
Del State Number of Key Number of times to delete world state World State and Write Set



Mathematics 2023, 11, 2638 9 of 31

BaaS jobs in Fabric call chaincode APIs to perform designed functions, and jobs are
written in GO language. Therefore, the above job scale characteristics can be obtained with
the language static analysis method.

3.2. BaaS Job Allocation Model

A chaincode is always instantiated on a peer node, and it runs in a container. Com-
pared with virtual machines, containers are lighter and more flexible [49]. Resources
consumed by a container only depend on the overhead of chaincode operations. When
a BaaS job is assigned to a peer node, the chaincode receives the job and starts execution.
When a peer node has no job, the chaincode container is idle. For the convenience of
modeling, we have the following assumptions:

• When a chaincode is idle, it does not consume any resources.
• When a chaincode is running, the total resources required from the beginning to the

end remain unchanged.
• The BaaS service dynamically creates more chaincode containers for a higher job

workload since a chaincode can only process one job per time.
• The total number of chaincode containers created on one peer node is limited to avoid

affecting the performance and isolation of containers.
• The resource types considered are CPU, memory, and disk I/O. We assume that the

disk storage and network bandwidth are unlimited.

(1) BaaS Job Request

Let J = {j1, j2, · · · } represent a set of BaaS jobs. A job j = < ChannelID, ChaincodeID,
Args > indicates a requirement for calling the chaincode in the corresponding channel and
passing the related parameters. In addition, let ti represent the specific time when job ji is
submitted to the BaaS.

(2) BaaS Platform

The BaaS platform can be considered a general cloud computing platform, including
servers, virtual machines, peer nodes, and containers. The server set of BaaS is denoted
as N = {n1, n2, · · · }. ∀i, ni contains several virtual machines. In general, we assume
that a virtual machine is a peer node. Therefore, the peer nodes set in ni is denoted as
Pi =

{
pi

1, pi
2, · · ·

}
, and the set of all peer nodes is denoted as P. Furthermore, we denote

jobs allocated to Pi as Ji. pi
j hosts several containers, denoted as Cij =

{
cij

1 , cij
2 , · · ·

}
. Each

container only hosts one chaincode.
To simplify our description, we have the following simplified denotations:

• A peer node pi
j of node ni is simplified as pj to indicate an arbitrary peer node.

• A container cij
z of peer node pi

j is simplified as cz to indicate an arbitrary container.

(3) Resources and Utilization

A function R indicates the total amount of resources of a server, a peer node. For
example, R(pj, C), R(pj,M), and R(pj,D) represent pj’s CPU capacity, memory capacity,
and disk I/O, respectively. The resource allocation constraint is shown in Equation (1),
indicating that the total resources allocated to peer nodes equal the resources available on
the server.

∑
pj∈Pi

R(pj, T ) = R(ni, T ), T ∈ {C,M,D} (1)

A function U indicates the total amount of resources a container uses at a specific
time. For example, U(cz, C, t) gives the total amount of CPU used by cz at t. Combined
with the resource allocation constraint of pj, we have the resource usage constraint for cz as
shown in Equation (2). Equation (2) indicates that the usage of a certain resource T by all
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containers cz on peer node pj should be less than the amount of resource T owned by the
peer node.

∑
cz∈Cij

U(cz, T , t) ≤ R(pj, T ) (2)

For resource T of a peer node pj, the usage rate of this resource at time t is equal to
the sum of the resource usage of all containers divided by the total amount of resources
available on the peer node. The resource utilization rate of pj at time t is denoted as
Ut(pj, T ), presented by Equation (3). The resource utilization rate of nodes is a critical
metric. Improving the resource utilization rate of nodes can enhance the ability of BaaS to
process job requests, namely, increasing throughput and reducing latency.

Ut(pj, T ) =
∑cz∈Cij U(cz, T , t)

R(pj, T )
(3)

To compare the relative resource utilization of different peer nodes, the comprehensive
resource utilization for pj is denoted as Ut(pj), which is shown in Equation (4), where
ωC , ωM, and ωD represent the weight factors for CPU utilization, memory utilization,
and disk I/O utilization. Additionally, we have ωC + ωM + ωD = 1. Traditional cloud
computing applications can be divided into compute-intensive and I/O-intensive. For the
former, CPU resources are more precious and should be given greater weight, while for the
latter, memory and disk resources are more important and should be given greater weight.
However, for BaaS applications, there are no obvious features of CPU, memory, or disk
resource usage. In this case, we refer to some literature [19] and treat all resources equally.

Ut(pj) = ωC ×Ut(pj, C) + ωM ×Ut(pj,M) + ωD ×Ut(pj,D) (4)

The resources required by a container are determined by the job it runs, which is
presented as a resource vector, shown in Equation (5). U(j, C), U(j,M), and U(j,D)
represent the amount of CPU resources, memory resources, and hard disk I/O required to
complete job j, respectively. ∆t represents the time required to complete the job. We assume
that the total resources required by a chaincode container to complete the job are the same
from the job start to the job end. Therefore, we omit ∆t in Equation (5).

< U(j, C), U(j,M), U(j,D) > (5)

(4) Allocation Constraints

If a BaaS job is about to be assigned to a peer node, the node must meet the following
constraints:

1. The peer node is equipped with a chaincode.
2. The peer node currently has at least one available chaincode.
3. If it is a transaction job, the node complies with the endorsement policy corresponding

to the chaincode.

For constraint 1, we introduce a binary variable φ, denoted as φ(ChannelID, ChaincodeID,
pj), to indicate whether the corresponding chaincode is installed on a peer node. Specifically,
if φ = 1, it indicates that the chaincode is installed; otherwise, if φ = 0, it is not installed.

For constraint 2, we consider a scenario in which the containers on a node are running
and the number of containers has already reached the maximum limit. In this case, the
job cannot be assigned to the node immediately. Instead, it has to wait for an available
chaincode before execution. Consequently, this waiting time introduces a certain latency in
the job allocation.

For constraint 3, in Hyperledger, an endorsement policy for a transaction chaincode can
be specified using logical operators such as AND, OR, and NoutOf, as well as role assign-
ments to specific organizations. For instance, the policy OR(o1.Admin, AND(o2.Member,
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o3.Member)) requires endorsement from either the administrator of organization o1 or both
members of organizations o2 and o3. To simplify our model, we only consider a single layer
of AND/OR policies composed of organizations.

3.3. Optimization Goal

The main goal of this work is to improve the performance of BaaS and thereby enhance
the quality of service. To quantify BaaS performance, we use four indicators: resource
utilization, load balancing, job throughput, and job latency.

(1) Resource Utilization

Equation (6) defines the total resource utilization of BaaS Ut at time t. Its value is equal
to the weighted sum of the total resource utilization of all nodes Ut(N, C), Ut(N,M), and
Ut(N,D) under the weights ωC , ωM, and ωD . The range of Ut(N) is [0, 1].

Ut(N, T ) =
∑ij U(pi

j, T , t)

∑ij R(pi
j, T )

Ut(N) = ωC ×Ut(N, C) + ωM ×Ut(N,M) + ωD ×Ut(N,D)

(6)

(2) Load Balancing

Load balancing can be described as resource balancing and job balancing. In particular,
we measure the load balancing factor between peer nodes at time t using the quantity
RBt(T ) (resource balancing) and JBt (job balancing). Both values approach zero as the
load across peer nodes becomes more balanced. To calculate the load balancing factor, we
use Equation (7) to obtain the absolute deviation of each node’s relative average utilization
and job number and divide them by the number of nodes. Here, the average utilization
and the average of jobs are represented by Ut(P, T ) and J.

Ut(P, T ) =
∑i ∑j Ut

(
pi

j, T
)

∑Pi∈P
∣∣Pi
∣∣

RBt(T ) =
∑Pi∈P

∣∣∣Ut(Pi, T
)
−Ut(P, T )

∣∣∣
∑Pi∈P

∣∣Pi
∣∣

J =
|J|

∑Pi∈P
∣∣Pi
∣∣

JBt =
∑Pi∈P

∣∣|Ji| − J
∣∣

∑Pi∈P
∣∣Pi
∣∣

(7)

(3) Job Throughput

Equation (8) defines job throughput, JPS. J defines a job set composing a series of job
requests {j1, j2, · · · } reaching BaaS service. ∆T is the completion interval that is equal to
the difference between the arrival time of the first job and the completion time of the last
job. JPS is equal to the ratio of the number of jobs |J| and interval time ∆T. It is worth
noting that when the workload is too low, JPS is linear with the workload. Therefore, JPS
is more important in the time-varying scenario and a high-workload scenario.

JPS =
|J|
∆T

(8)

(4) Job Latency

Equation (9) defines three indicators to measure the job latency: Latency Average (LA),
Latency Size (LS), and Latency Ratio (LR), where LA represents the average total time of
job completion, LS represents the average of job latency, and LR represents the average
proportion of job latency. The actual running time of job j is defined as T(j,R), and the
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ideal running time under the condition of sufficient resources is T(j,N ). In addition, we
count the latency of all jobs without distinguishing between transactions or queries.

LA =
∑j∈J T(j,R)

|J|

LS =
∑j∈J(T(j,R)− T(j,N ))

|J|

LR =
∑j∈J

T(j,R)−T(j,N )
T(j,N )

|J|

(9)

Based on the above indicators, the objective functions of the BaaS job allocation
problem are shown in Equation (10). The optimized strategy should maximize resource
utilization, minimize the load balancing factor, maximize job throughput, and minimize
job latency. It is worth noting that even though we have four indicators, all of them reflect
the performance of BaaS.

max Ut(N)

min RBt(T ), JBt

max JPS

min LA, LS, LR

(10)

3.4. Brief Summary

In Section 3, we analyze the execution process of two types of jobs in BaaS and identify
the key factors that primarily affect performance, specifically, the execution of the chaincode.
In this analysis, we identify eight features used to measure the job scale in BaaS. Then,
mathematical modeling is applied to the job allocation in the BaaS platform, and the
constraints on job allocation are discussed, including the number of chaincode containers
and endorsement policies. The symbols used in the equations are summarized in Table 2.
Finally, to optimize the performance of BaaS, we illustrate our objective equations.

Table 2. Summary Table of Equation Symbols.

Symbol Description

pj An arbitrary peer node
cz An arbitrary container
N The server set of BaaS
T A type of resource. It might be CPU, memory, or hard disk.
R(pj, T ) Total resource amount of T on pj
U(cz, T , t) Used resource of T on cz
Ut(pj, T ) Resource utilization rate of T on pj at time t
Ut(N, T ) Resource utilization rate of T on N at time t
Ut(P, T ) The average utilization of all peer nodes
RBt(T ) Resource balancing factor of T at time t
J The average jobs of all peer node
JBt Job balancing factor
JPS Average number of completed jobs per second
LA Average completion time of jobs
LS Average job latency
LR Average proportion of job latency

4. Balanced-DRL

In BaaS, the different workload types influence the specific allocation strategy of the
allocation algorithm, as well as the specific optimization goals. Therefore, we first analyze
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the requirements of the allocation algorithm in different workload scenarios. Then, the
allocation process of Balanced-DRL is discussed in a complex workload scenario.

4.1. Workload Scenario Analysis

(1) Low-Workload Scenario
When the BaaS processes a low workload, job latency prioritizes job throughput.

Job throughput with a low workload only depends on the workload size, with a larger
workload achieving greater throughput. As for job latency, it only increases when the job
demands on a node exceed the node’s available resources. Therefore, the job allocation
algorithm must maintain relatively balanced resource utilization of each node, known as
resource workload balancing. To balance resource workload, jobs should be allocated to
candidate nodes with the lowest utilization.

(2) High-Workload Scenario
During a high-workload scenario, the job allocation algorithm must improve overall

throughput and reduce job latency. Two problems need to be addressed. Firstly, the
resource utilization rate of all nodes is relatively high in the scenario, which may result in
many small resource fragments. Therefore, the allocation algorithm needs to allocate jobs
to nodes that are beneficial to further improve resource utilization. Secondly, each node
undertakes an excessive number of jobs, leading to remarkable job latency. Therefore, the
allocation algorithm also needs to consider allocating jobs to nodes with fewer jobs.

(3) Time-Varying-Workload Scenario
When the cluster processes a time-varying job workload, it processes a job workload

whose workload size changes with time. Because the workload changes and the scale and
resources required by different jobs are different, the following four node types often exist
in BaaS at the same time:

1. Nodes with low utilization and a high number of jobs.
2. Nodes with low utilization and a low number of jobs.
3. Nodes with high utilization and a high number of jobs.
4. Nodes with high utilization and a low number of jobs.

Therefore, the allocation algorithm should distinguish the types of peer nodes and apply
the corresponding strategies in the low-workload scenario and the high-workload scenario.

4.2. Allocation in Balanced-DRL

The allocation of jobs in varying-workload scenarios necessitates implementing dif-
ferent job allocation strategies. To this end, Balanced-DRL treats nodes with differing
workloads in distinct manners. The allocation process of Balanced-DRL, as illustrated in
Figure 3, begins by selecting potential peer nodes based on endorsement policies. Following
this, the candidate nodes are split into low-workload and high-workload node sets based
on a pre-defined resource utilization threshold. When the set of the low-workload node is
non-empty, the job is assigned to the peer node with minimum resource utilization.

However, if the set of the low-workload node is empty, it implies that the current
status of BaaS is under a high-workload scenario. In the scenario, Balanced-DRL has
to consider not only improving overall resource balancing (RB), namely, reducing the
resource fragments on peer nodes, but also reducing job latency, namely, improving job
balancing (JB). In a high-workload scenario, the set of validated peer nodes is split into a
low-job-number workload node set and a high-job-number workload set by a pre-defined
job-number threshold. Balanced-DRL tries to allocate the job to a node in the low-job-
number workload node set. If no nodes are within the set, the job is allocated to nodes
within the high-job-number workload node set. It is noteworthy that because the allocation
in a high-workload scenario needs to decrease the resource fragments of each peer node
while considering the job’s scale, this process is more intricate. To solve this problem, a
deep reinforcement learning-based allocation algorithm, HDQN, is proposed in Section 5.

The interaction process of the aforementioned allocation procedure is shown in Figure 4.
The user sends a job request to the BaaS platform using the application. During the job



Mathematics 2023, 11, 2638 14 of 31

allocation process, the Endorsement module first selects the available nodes for allocation
based on the job’s endorsement policy. Then, a message is sent to the NodeSet module to
query the status of the candidate nodes. If there are low-workload nodes among the candidate
nodes, the low-workload node set is sent to the MinRes module, and the job is allocated to the
node with the lowest resource load. If there are no low-workload nodes among the candidate
nodes, but there are low-job nodes that exist, the job is allocated according to the HDQN
module within the low-job node set. If both the low-workload node set and the low-job node
set are empty, then the job is sent to the HDQN module for allocation within all nodes.

Start

Select Node According
to Endorsement strategy

Split the Nodes into
Low/High Workload Node Set

Is Low Workload
Node Set Empty?

Allocate the Job to the Node
with Minimum Utilzation Node

Split the Nodes into
Low/High Job Number Set

Is Low Job
Number Set Empty?

Allocate the Job by DQN
in Low Job Number Set

Allocate the Job by DQN
in High Job Number Set

End

Not Empty Empty

Not Empty Empty

Figure 3. Allocation Process in Balanced-DRL.
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:Application :Endorsement :NodeSet :MinRes :HDQN

1. Send Job

2.Choose Node

Return Result
3. Query Node State

3. Allocate

4. Return Result

AltAlt Low workload node set is not empty

3. Allocate within Low Job Node Set

4. Return Result

AltAlt Low workload node set is empty,
but low job node set is not empty

3. Allocate within All Nodes

4. Return Result

AltAlt Low workload node set is empty,
and low job node set is empty

5. Return Result

6. Return Result

Figure 4. Sequence Diagram of Allocation Process.

For instance, let us consider a new job request, which can be allocated to any of the
three nodes that satisfy its endorsement policy. Consider the following scenarios:

• If two of the nodes are low-load nodes, then the MinRes allocation strategy allocates
the job to the node with the lowest resource utilization.

• If all three nodes are high-load nodes, but two of them have low job counts, then the
HDQN allocation strategy allocates the task to the low job count nodes to achieve the
highest overall resource utilization.

• If all three nodes have a high resource load and a high job count, then the HDQN
allocation strategy is used to allocate among the three nodes to achieve the highest
overall resource utilization.

4.3. Brief Summary

Section 4 first analyzes the impact of allocation strategies under different workload
scenarios. In low-workload scenarios, a greedy allocation strategy is adopted directly.
However, in both high-workload scenarios and time-varying-workload scenarios, the job
allocation process is more complex. In high-workload scenarios, both resource utilization
and job-load balancing should be considered. In time-varying-workload scenarios, different
types of node partitions should be determined, and the current high- and low-workload
scenarios should be identified to decide which strategy to use.
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Furthermore, this section discusses the job allocation process of Balanced-DRL. If there
are available low-workload nodes, the job is assigned to the node with the lowest resource
utilization rate. Otherwise, we check whether there are nodes with low job numbers.
If there are, the job is allocated to the node with the lowest number of jobs. If not, the
DQN-based algorithm is used for job allocation.

5. Allocation Based on DQN

This section proposes a deep reinforcement learning-based allocation algorithm to
solve the BaaS job allocation problem in the high-workload scenario, named HDQN. Firstly,
the algorithm design, including the state space, the action space, and the reward function, is
illustrated. Then, we focus on the training process of the deep Q-learning network (DQN),
including network design and the Boltzmann action exploration strategy.

5.1. Algorithm Design

Given a BaaS job, j, and its validated peer nodes set, P̂, the state space of HDQN is
denoted as S, as shown in Equation (11). It is worth noting that we denote a valid peer node
as p̂ ∈ P̂. The validated peer node set is obtained according to the endorsement strategy.

S =< S(j),< R̂( p̂, T ) >,< R( p̂, T ) >, ∑̂
j∈ p̂

S( ĵ) > T ∈ {C,M,D} (11)

To fully describe job allocation steps, S is presented by a connected vector including
the following four components:

• S(j) presents the scale of j obtained using code static analysis as discussed in Section 3.1.
S(j) includes the eight items shown in Table 1.

• R̂( p̂, T ) shows the remaining resources of peer node p. In our model, it is obtained
as
(
1−Ut( p̂, T )

)
× R( p̂, T ) T ∈ {C,M,D}. If a peer node is not a validated node

according to the endorsement strategy, then we set the corresponding R̂(p, T ) to 0 to
unify the length of the state.

• R( p̂, T ) indicates the total resources of a valid peer node. To avoid heterogeneous
clusters, the resources are indicated by their absolute amount rather than usage rate.

• ∑ ĵ∈ p̂ S( ĵ) shows the total allocated job scale ĵ in peer node p̂, which is calculated

with the sum of all allocated jobs. However, ∑ ĵ∈ p̂ S( ĵ) do not contain ChainSize and
WorldSize, since they are included in S(j).

The action space for assigning job j is denoted as A. Since the allocation process can be
treated as a selection of nodes, we have A = P̂, where p̂ ∈ P̂ represents the action allocating
job j to valid peer node p̂. Obviously, the action space size equals the number of validated
peer nodes.

The reward function of HDQN is defined in Equation (12). In the allocation process, if
job j is allocated to peer node p?, then we define the reward as the total resource utilization
rate of p?.

R = Ut(p?) (12)

5.2. Training Process

DQN [50] is used to train an agent for gameplay, in which a convolution neural
network is adopted to extract the features of input frames. The states are frame sequences,
and the actions are game operations. HDQN deals with numerical features such as job
scale and resource amount of peer nodes. Therefore, we adopt a simple fully connected
network as our network architecture with the following changes:

• The training network of the original algorithm uses the convolutional neural network
(CNN) to extract the input state, that is, the characteristics of a frame of picture. The
training network of HDQN uses the fully connected depth neural network to process
the state.
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• The original algorithm uses multiple continuous picture frames and action sequences
as the state, because a single frame cannot describe the continuous change. In contrast,
the state used in HDQN can describe the job scale and all node resources without
using sequences.

• The original algorithm divides training into multiple episodes for the fragment job
in the training end state. However, HDQN involves the non-termination state and
continuous job allocation, so the total step count of training termination is artificially
specified.

• The original algorithm uses the ε-greedy strategy, while HDQN uses the Boltzmann
strategy to improve the exploratory action.

5.3. Boltzmann Action Exploration Strategy

Traditional deep reinforcement learning algorithms such as DQN [51] generally use
the ε-greedy strategy to select actions. In the training process, the ε-greedy strategy selects
the action with the highest Q value with the probability of 1− ε and randomly selects the
action with the probability of ε to maintain action exploration. ε often takes a smaller value.

π(a | s, θ) =
eQ(s,a,θ)

∑n
i=1 eQ(s,a,θ)

(13)

a =


a1, with π(a1 | s, θ) prob

a2, with π(a2 | s, θ) prob

· · ·
an, with π(an | s, θ) prob

(14)

In our implementation, ε-greedy might cause two problems: 1. At the beginning of
training, the cluster utilization rate might increase slowly. 2. The training process might
have poor convergence. Therefore, we introduce the Boltzmann strategy. To train with the
Boltzmann strategy, the probability of selecting each action is calculated using the exponential
proportion of the Q value of each action to the sum of the Q values, as shown in Equation (13).

For problem 1, ε-greedy assigns jobs to the node corresponding to the highest Q value
during most of the beginning of training, leading to a rapid increase in the utilization of
the node and making ε-greedy still assign more jobs to the node next time to improve the
utilization and obtain the maximum reward value, while other nodes are starving. It is
difficult for these nodes to allocate jobs to improve overall utilization. Of course, with the
continuous arrival of a high workload, most nodes will be in high utilization after a period
of time, but the early utilization is slow, and the improvement still affects the training effect
to a certain extent.

For problem 2, similarly, the more balanced the resources of each node are, the faster
the training Q value converges. The convergence of ε-greedy is worse. On the contrary,
the Boltzmann strategy allocates actions according to the probability corresponding to
the proportion of Q value, and each action is executed with a certain probability, which
increases the action selectivity and has relatively better convergence.

5.4. Complexity Analysis

In the HDQN, a fully connected network is used. Let Zn denote the number of neu-
rons in the nth layer of the neural network. The computational complexity of the nth

layer is O(Zn−1Zn + ZnZn+1). For a fully connected network with N layers, the computa-
tional complexity is O ∑N−1

n=2 (Zn−1Zn + ZnZn+1). Therefore, the computational complexity
of the proposed algorithm during training is O(H × T × K(∑N−1

n=2 (Zn−1Zn + ZnZn+1))).
Here, H, T, and K represent the mini-batch size, the number of training steps, and
the maximum episode, respectively. The computational complexity during inference
is O(T × K(∑N−1

n=2 (Zn−1Zn + ZnZn+1))) .
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5.5. Brief Summary

Section 5 first designs the state space, action space, and reward function of the HDQN
algorithm. Then, in the training process of HDQN, improvements are made to the network
structure, input data, training termination conditions, and exploration strategy based on the
original DQN. Finally, by comparing and analyzing the greedy strategy and the Boltzmann
strategy, the advantages of the Boltzmann strategy in this project are demonstrated.

6. Experiment

The optimization of this experiment lies in the job allocation algorithm of the BaaS
platform. Conducting simulation experiments allows the experimental results to focus
on the impact of the allocation algorithm, rather than being affected by other factors,
such as physical equipment, blockchain, and network. Therefore, we adopted simulation
experiments.

The first step of this experiment was to determine the relationship between job work-
load, and resource utilization, throughput, and latency, and to identify the boundary
between high and low workload under a given configuration, to facilitate testing the algo-
rithm’s performance under different workloads and stages. Next, the training model was
obtained. Finally, by comparing with different allocation algorithms, we demonstrated the
optimization effect of Balanced-DRL on throughput and latency.

This section first introduces the simulation experiment configuration and then provides
the design of experiments on simulated job workload, allocation model training, fixed low
job workload, fixed high job workload, and time-varying job workload. In the end, we
show our results and analysis.

6.1. Experimental Environment

The default configuration considered a single-channel homogeneous cluster to facili-
tate the experiment. Single channel refers to a cluster where Hyperledger Fabric contains
only one channel, and homogeneous means that each physical machine and virtual machine
in the cluster has the same amount of resources. The default simulation parameters for this
section’s BaaS platform are shown in Table 3.

Table 3. Parameters for homogeneous BaaS platform with single channel.

Class Item Value Description

Platform
configuration

Physical machine 50 Total number of physical machines in the cluster
Resource of physical
machine < 10, 10, 10 > Resource configuration of the physical machine

Virtual machine 50 Total number of virtual machines in the cluster
Resource of virtual
machine < 10, 10, 10 > Resource configuration of the virtual machine

Maximum containers 15 Maximum number of containers in a virtual
machine

Hyperledger

Organizations 5 Total number of organizations
Channels 1 Total number of channels
Peers 50 Total number of peer nodes
Chaincodes 20 Total number of chaincodes

Job workload
λ 0.5–4.0 Size of job workload under Poisson distribution.
Jobs 30,000 Total number of jobs
Tick 0.01 s Interval for the simulation platform to process jobs

Threshold Resource-load threshold 90% Threshold of resource load
Job-load threshold 50% Threshold of job load
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The cluster consisted of 50 homogeneous physical machines, and the CPU, memory,
and disk resources of each physical machine were the same and equal to 10. Each physical
machine contained only one virtual machine, so there were 50 virtual machines with
the same configuration in the cluster. The Hyperledger Fabric network contained one
channel, which was participated by 5 organizations, and each organization had 10 peer
nodes. Therefore, the network had 50 peer nodes, and exactly one virtual machine/physical
machine could be used by each peer node. The input job workload included 30,000 BaaS
job requests, which randomly called 20 chaincodes defined by the above channel, and the
requests arrived with fixed workload sizes according to λ = 0.5, 1.0, · · · , 4.0. λ represents
the number of jobs arriving on average within 0.01 s. The resource workload threshold
was set to 90%, and the nodes with a resource workload greater than 90% were considered
high-resource-load nodes. The job-workload threshold was set to 50%, and the nodes with
a job workload greater than 50% were considered low-resource-workload nodes.

6.2. Experiment Design

We generally have 3 types of experiments: “Job WorkLoad Experiment”, “Allocation
Model Training Experiment”, and “Experiments under Different Workload Scenarios”. In
this section, we illustrate the experiment design in detail.

6.2.1. Job-Workload Experiment

The purpose of this experiment is to investigate the changes in the resource utilization,
job throughput, and job latency of a BaaS platform with varying job workloads. Specifically,
the experiment uses a job-workload generation module to generate jobs, following a Poisson
distribution with a parameter λ. The job-workload generation module randomly generates
the channel, chaincode, function, and arrival time of job requests. In the experiment,
different job workloads are generated by adjusting the λ parameter. The changes in cluster
utilization, job throughput, and job latency with the size of the job workload are observed.

6.2.2. Allocation Model Training

In a high-workload scenario, we adopt HDQN as our allocation method. We use the
Boltzmann action exploration strategy to train the model. In this section, we compare the
training process with the Boltzmann action exploration strategy and the training process
with the ε-greedy strategy. The neural network modules are fully connected networks with
ReLu activation functions and MES loss functions. The reinforcement learning parameters
are given in Table 4.

Table 4. Parameters for DQN training.

Symbol Value Description

α 0.01 Learning rate for updating value
γ 0.9 Reward discount

ωC ωM ωD 1/3 The weight of each resource in the reward
Batch size 32 Size of mini-batch during training

Learning rate 0.001 Learning rate for updating network
ε 0.1 The probability of randomly selecting actions under ε-greedy
R 1000 The capacity of the experience replay buffer
C 50 The interval steps for updating the target network

6.2.3. Experiments under Different Workload Scenarios

We conducted simulation comparison experiments in three different scenarios, i.e.,
fixed low job workload, fixed high job workload, and time-varying job workload, by
comparing Balanced-DRL (Ours), and random allocation (R), round-robin allocation (RR),
and minimum resource allocation (MR). The performance of the algorithms in cluster
utilization, job throughput, job latency, and load balancing were measured.
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R randomly selects a node from the candidate nodes to allocate the job. RR distributes
job requests to candidate nodes in turn. MR allocates job requests to the candidate node
with the lowest resource utilization.

For the fixed workload experiment, we used the platform configuration based on Table
3. For the time-varying-workload experiment, to simulate a more realistic scenario, we
conducted comparison experiments on a multi-channel heterogeneous BaaS cluster. Table 5
provides the parameter configuration of the BaaS platform.

Table 5. Parameters for heterogeneous BaaS Platform with multiple channels.

Class Item Value Description

Platform
configuration

Physical machine 60 Total number of physical machines in the cluster

Resource of
physical machine

< 15, 10, 10 >
< 10, 15, 10 >
< 10, 10, 15 >
< 15, 15, 15 >

Resource configuration of the physical machine

Virtual machine 120 Total number of virtual machines in the cluster
Resource of
virtual machine

< 10, 10, 10 > Resource configuration of the virtual machine

Maximum containers 15 Maximum number of containers in a virtual
machine

Hyperledger

Organizations 20 Total number of organizations
Channels 5 Total number of channels
Peers 120 Total number of peer nodes
Chaincodes 20 Total number of chaincodes

Job workload
λ Time varying Size of job workload under Poisson distribution
Jobs 111,150 Total number of jobs
Tick 0.01 s Interval for the simulation platform to process jobs

Threshold Resource-load threshold 90% Threshold of resource load
Job-load threshold 50% Threshold of job load

As shown in Table 5, the platform consisted of 60 heterogeneous physical machines, with
4 types of resource configurations, i.e., <15, 10, 10>, <10, 15, 10>, <10, 10, 15>, and <15, 15, 15>, with
15 physical machines for each configuration. Each physical machine hosted 2 virtual machines
that occupied half of the resources, so there were a total of 120 virtual machines in the cluster.
Hyperledger Fabric included 5 channels, each with 4 organizations, and each organization had
6 peer nodes so that each node could be assigned exactly one virtual machine.

In addition to the above configuration, the time-varying job workload refers to the
Alibaba cluster-trace V2017 dataset generated and open-sourced on GitHub (https://
github.com/alibaba/clusterdata, accessed on 10 May 2023). This dataset records the job
instance requests and resource changes on 1300 physical machines in the cluster over a
24 h period. In this experiment, according to the job instance workload shown in Figure 5,
the time-varying workload of BaaS jobs was generated by adjusting the value of λ. This
generated workload contained 110,000 job requests, which made it more fine-grained than
the original real workload while also ensuring the coverage of the corresponding high- and
low-workload sizes for the multi-channel heterogeneous cluster.

https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
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Figure 5. Time-Varying Job Workload Generated from Real Traces.

6.3. Experimental Results

Regarding the experiment design, this section presents the experimental results of
the job-workload experiment, allocation model training, fixed-low-job-workload experi-
ment, fixed-high-job-workload experiment, and time-varying-job-workload experiment
and analyzes the reasons for the corresponding results.

6.3.1. BaaS Job-Workload Experiment

The input job workload consisted of 30,000 BaaS job requests, which randomly invoked
the chaincode on the platform, and the requests arrived with fixed workload sizes of
λ = 0.5, 1.0, · · · , 4.0. Below, Figure 6 shows the changes in utilization, throughput, and
latency with workload under default random job allocation.
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Figure 6. Metrics of BaaS Changing with Job-Workload Factor λ.

From Figure 6, we can see that cluster utilization, job throughput, and job latency
all exhibited different changes around λ = 2.5. Therefore, for the BaaS configuration,
when the job-workload factor λ < 2.5, it was considered a low job workload, while when
the job-workload factor λ ≥ 2.5, it was a high job workload. Regarding utilization, it
linearly increased with the increase in workload under low workloads. At the same
time, it grew very slowly. It never approached 100% under high workloads, indicating
that the BaaS could not fully utilize the resources due to internal resource fragmentation
under a high workload. Throughput increased linearly with the increase in workload
under low workloads, but it did not increase with the increase in workload under high
workloads, maintaining a maximum throughput of around 230 Job/s. Regarding latency,
job completion latency was smaller under low workloads, but it significantly increased
as it approached high workloads and always increased with the increase in workload. In
addition, RR and MR also had similar results, all changing around λ = 2.5.

Overall, this experiment shows that the utilization and throughput of the BaaS cluster
increased with the increase in workload, while job latency decreased with the decrease
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in workload. In addition, the BaaS job workload could be clearly divided into low and
high workloads, and λ = 2.5 could be measured as the boundary between high and low
workloads for this simulation configuration.

6.3.2. Allocation Model Training

As mentioned in the previous section, deep reinforcement learning only trains job
allocation strategies when nodes are at high utilization, so training used high job workloads
at λ = 2.5, 3.0, 3.5, and 4.0 as inputs. Figure 7 shows the loss curve of two training
processes based on Boltzmann and ε-greedy policies with λ = 3. The training loss of
Boltzmann converges faster than that of ε-greedy. This is because the Boltzmann strategy
has stronger action selection, considers more nodes during allocation training, and learns
more interaction data between jobs and node allocation.
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Figure 7. Training Loss of Balanced-DRL.

6.3.3. Fixed-Low-Workload Experiment

This experiment compared the relative performance of R, RR, MR, and Balanced-DRL
(Ours) under a low job workload (λ = 2). Figure 8a shows the changes in utilization of
these allocation algorithms during the simulation process.

As shown in Figure 8a, the BaaS utilization of each algorithm was not high when
handling low job workloads, mainly due to the influence of job size. Specifically, the
average utilization rates of Balanced-DRL and MR were around 77% and 75%, respectively,
which were significantly higher than the 66% and 68% rates of R and RR. As mentioned in
the previous section, Balanced-DRL, similarly to the MR algorithm, allocates jobs to nodes
with the lowest utilization under low job workloads. This not only maintains resource-load
balancing among nodes but also increases cluster utilization by consuming the resources of
low-utilization nodes. The reason why the Balanced-DRL algorithm has a slightly higher
utilization rate than the MR algorithm is that in low-workload scenarios, there are still
nodes with high resource loads, which leads to the adoption of the HDQN algorithm for
job allocation.

To further validate the above content and eliminate the influence of randomness, we
performed a significance analysis of the experimental results. We assumed that the resource
utilization rates of different algorithms followed a normal distribution and analyzed the
significance of the results between three other algorithms and Balanced-DRL. Since all
four algorithms were executed in the same environment, it is reasonable to assume that
the four normal distributions had the same variance. This problem was transformed
into a hypothesis-testing problem for the means of two normal populations with equal
variances. The p-values for the RR, R, and MR algorithms compared with Balanced-DRL
were 1.19× 10−16, 4.11× 10−22, and 0.042, respectively. It can be seen that the proposed
algorithm has significant differences from the RR and R algorithms. The p-value with
respect to the MR algorithm was less than 0.05, indicating that there was still statistical
significance.
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Figure 8. Comparison Results under Low Job Workload.

Figure 8b–e summarize the simulation results of each algorithm when handling low
job workloads.

According to Figure 8c, the total job throughput of each algorithm was close to
200 Job/s, which was determined by the job-workload size under low job workloads.
According to Figure 8d, the average job duration generated by the simulation system was
2 s, and the average job completion time of each algorithm was greater than 2 s. The
latency indicators of Balanced-DRL and MR were smaller than those of the other two
algorithms. This is because the former two algorithms always allocate jobs to nodes with
the lowest utilization to satisfy the job’s required resources as much as possible and avoid
increasing latency. In a fixed-low-load scenario, the Balanced-DRL algorithm uses the
MinRes algorithm to allocate tasks. Hence, the time cost of task allocation is very small and
can be considered negligible, similar to the other three algorithms.

According to Figure 8e, the resource allocation was more balanced for Balanced-DRL
and MR, while the job workload was more balanced for RR.
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This experiment compared the performance of various allocation algorithms in han-
dling low job workloads on a BaaS platform. The results show that the utilization of
Balanced-DRL (77%) was higher than that of R and RR (66% and 68%, respectively), be-
cause the former algorithm effectively utilizes the resources of each node by ensuring
resource-load balancing, thus increasing cluster utilization. In addition, the job completion
time of Balanced-DRL was also reduced by 6% and 8% compared with that of R and RR.
This is also due to the resource-load balancing mechanism of the Balanced-DRL algorithm,
which avoids latency caused by overloaded nodes.

6.3.4. Fixed-High-Workload Experiment

This experiment compared the performance of four algorithms under a fixed high job
workload (λ = 4). Figure 9a presents the utilization rates for each algorithm. As shown
in Figure 9a, compared with the low job workload, the utilization rates of each algorithm
significantly increased under the high workload and remained above 90%. At this point, the
difference in utilization rates is related to the allocation algorithms. Specifically, the average
utilization rate of Balanced-DRL was approximately 97%, while the utilization rates of RR,
R, and MR were 93%, 91%, and 91%, respectively. We had a utilization rate 4% to 6% higher
than that of the other algorithms. Balanced-DRL uses a Q-network trained by DQN under
a high workload to reduce resource fragmentation and improve utilization rates.

To avoid the influence of randomness on the experimental results, a significance
analysis was performed on the low-workload scenarios. After calculation, the p-values for
RR, R, and MR algorithms compared with Balanced-DRL were 4.41× 10−5, 2.62× 10−8,
and 4.18× 10−10, respectively. Therefore, statistically, the proposed algorithm in this paper
is indeed superior to the other three algorithms and not affected by random factors.

According to Figure 9b, the average utilization rate of Balanced-DRL remained signifi-
cantly higher than that of other allocation algorithms.

According to Figure 9c, for a high job workload of λ = 4, namely, an average of
400 Jobs/s, Balanced-DRL achieved a maximum throughput of 244 Job/s, which was 5% to
8% higher than the maximum throughput of other algorithms.

According to Figure 9d, due to the job workload exceeding the cluster’s processing
capacity, job requests accumulated continuously, causing the average job completion time to
increase from over 2 s under low workloads to 8–11 s under high workloads. Nevertheless,
the average job completion time of Balanced-DRL was still reduced by 5% to 21% compared
with other algorithms.

During the task allocation process using the HDQN algorithm, the actual time con-
sumption is on the millisecond level. Compared with the degree of reduced latency, the
time consumed by the allocation algorithm can be considered negligible.

According to Figure 9e, the node resource workloads for all algorithms were relatively
balanced. In contrast, the job workloads on nodes for Balanced-DRL were more evenly
distributed than for other algorithms.

The results show that the utilization rate of Balanced-DRL was approximately 4%
to 6% higher than that of other algorithms, with an average utilization rate of 97%, due
to using HDQN to reduce node resource fragmentation and improve BaaS utilization.
Correspondingly, the higher utilization rate led to a 5% to 8% increase in throughput for
Balanced-DRL. Latency for Balanced-DRL was significantly reduced by 5% to 21%, partly
due to a higher utilization rate, which allowed jobs to be allocated more resources and
be executed more quickly, and partly due to job-workload balancing, which prevented
excessive job latency on certain nodes. Finally, although R and RR also consider job-
workload balancing, their job balancing factors are inferior to those of Balanced-DRL, as
they achieve balance from a distribution perspective. In contrast, Balanced-DRL achieved
balance from a job quantity perspective based on node job workloads.
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Figure 9. Comparison Results under High Job Workload.

6.3.5. Time-Varying-Workload Experiment

Based on the time-varying platform configuration and job workload mentioned in the
design, Figure 10a presents the utilization rate changes for each algorithm. The utilization
rates for each algorithm exhibited consistent changes with the time-varying workload, as
shown in Figure 5. Under high job workloads, Balanced-DRL achieved a cluster utilization
rate of 96%, which was significantly higher than the utilization rates of other algorithms,
which ranged from 87% to 91%. Under low job workloads, the utilization rates for each
algorithm were similar, with Balanced-DRL and MR having slightly higher utilization rates
than the other two algorithms. These results are consistent with those of fixed low and
fixed high job workloads in the previous experiments. Overall, in the process of handling
time-varying job workloads, Balanced-DRL consistently maintained the highest resource
utilization rate.
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Figure 10. Comparison Results under Time-Varying Job Workload.

In the time-varying-workload scenarios, besides random factors, the factors that
cause changes in resource utilization rates include changes in job workload. Therefore,
it is impossible to assume that the changes in resource utilization rates follow a normal
distribution, and hypothesis testing cannot be used for significance analysis. At the same
time, the significance analysis of low and high job workloads is analyzed in the previous
section, and the scenario of time-varying job workloads combines these two scenarios.
Therefore, significance analysis was not performed in this case.

Figure 10b,c present the running results of each job under time-varying job workloads,
including only the job total throughput and latency results and not the average utilization
rate and load factor, as the latter two vary significantly with time and have little meaning
in terms of their average values.

From Figure 10c, it can be seen that the throughput for different algorithms was similar,
as most of the time, in the time-varying job workload scenario, we had low job workloads,
similar to the real workload. Therefore, the total time required for the cluster to process the
job workload was also similar.

From Figure 10b, it can be seen that all latency indicators of Balanced-DRL were
smaller than those for other algorithms, indicating that under time-varying workloads,
Balanced-DRL has a certain optimization effect on job completion latency.

This experiment compared the performance of various allocation algorithms for BaaS
clusters under time-varying job workloads. The experimental results show that the utiliza-
tion rate and latency indicators of Balanced-DRL were superior to those of other algorithms.
Obviously, since any time-varying job workload can be viewed as a sequence of high and
low job workloads over time and the indicators of Balanced-DRL under high and low job
loads were superior to those of other allocation algorithms, this algorithm can achieve
certain optimizations for any job workload overall.
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7. Discussion

In this section, we first discuss the experimental results presented in the paper. Fur-
thermore, a comparison is made between the algorithm proposed in this paper and some
representative algorithms from related work.

7.1. Experimental Results Discussion

Balanced-DRL, the job allocation algorithm proposed in this paper, can achieve cor-
responding optimization of the resource utilization rate handling various job workloads,
thereby improving job throughput and reducing job latency compared with the R, RR,
and MR algorithms. Under the given cluster configuration, with low job workloads, the
Balanced-DRL algorithm could improve the utilization rate by about 10% and reduce
latency by 6% to 8% compared with the R and RR algorithms. Under high job workloads,
the algorithm could increase the utilization rate by 4% to 6%, reduce job latency by 5% to
21%, and increase the maximum throughput by 5% to 8% compared with other algorithms.
Under time-varying workloads, the algorithm could reduce job latency by 6% to 10%
compared with other algorithms.

7.2. Comparison Discussion

The comparison between Balanced-DRL and some typical works in related research in
terms of field, problem type, approach, and achievements is shown in Table 6.

Table 6. Comparison between Balanced-DRL and Related Works: O = Optimization; F = Framework;
CM = Consensus Mechanism.

Ref. Field Problem
Type

Approach Objective Performance
Metric Dataset

[10]

Cloud
com-

puting

O Bin packing Latency and energy
consumption

Resource utilization
Time
Energy

Private

[16] O Heuristic Latency and energy
consumption

Resource utilization
Time
Energy

Randomly
generated

[19] O Machine
learning

Latency and Energy
consumption

Resource utilization
Time
Energy

Randomly
generated

[22] O Reinforcement
learning

Latency and energy
consumption

Time
Energy

Randomly
generated

[32]

Block-
chain

O Topology
optimization

Latency Time Simulated

[39] O Data-layer
optimization

Throughput Time Simulated

[37] O Multi-leader
design

Throughput and
scalability

CPU Cost
Network traffic

Simulated

[35] O
Consensus
mechanism
design

Throughput Throughput Simulated

[46]

BaaS

F Architecture
design

Scalability and usability - -

[47] CM Machine
learning

Usability TPS Simulated

[41] F Architecture
design

Reliability Throughput -

Ours O Reinforcement
learning

Throughput and latency
Resource utilization
Time
Throughput

Generated from
Alibaba
cluster-trace
dataset
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The papers [10,16,19,22] focus on optimizing job allocation in cloud computing plat-
forms. Each paper proposes optimization algorithms with varying key performance in-
dicators, such as latency and energy consumption, while employing different types of
algorithms. Most of these optimization algorithms optimize performance metrics such
as resource utilization, time, and energy consumption on randomly generated datasets.
However, we cannot utilize these research results on the BaaS platform due to the dynamic
nature of BaaS jobs and the BaaS environment. Firstly, the resource requirements of BaaS
jobs fluctuate and have to comply with the endorsement policies of blockchain. Addition-
ally, containers are deployed in BaaS rather than virtual machines in a cloud environment,
in which resource occupation and resource release are more flexible. To address these
challenges, this paper leverages reinforcement learning algorithms, which possess strong
flexibility and adaptability.

The papers [32,35,37,39] conduct research on blockchain performance optimization to
improve throughput or reduce latency. Their focus mainly lies on blockchain itself, such as
enhancing the data layer and modifying the consensus mechanism. Their experiments were
mainly performed using simulated data, and performance improvements were measured
using time or throughput. Our work, however, concentrates on the BaaS platform that
deploys blockchain and cloud computing to provide easy access to blockchain-related
applications. Rather than improving the blockchain, we optimize the job allocation process
in BaaS. Since we still deploy a blockchain in BaaS, our proposal is compatible with
these works.

Currently, research related to BaaS [41,46,47] places more emphasis on the usability,
convenience, and reliability of the BaaS platform. Most of these research works optimize
the platform architecture or job execution process to enable BaaS to be applied in scenarios
such as the Internet of Things and big data analysis. Although we also concentrate on the
BaaS platform, we differ from them in that we do not modify the BaaS architecture. Instead,
we only focus on the job allocation process.

In conclusion, our proposal focuses on optimizing BaaS performance by improving
job throughput and reducing latency in the BaaS job allocation process. Our main con-
tribution is proposing the Balanced-DRL algorithm based on DQN, which can optimize
the performance of BaaS without affecting the blockchain itself. The experimental dataset
used in this paper was generated from real datasets, which have higher credibility. Re-
garding resource utilization, the latency, throughput, and performance of Balanced-DRL
are improved compared with traditional algorithms. The basic idea of Balanced-DRL
was inspired by job allocation optimization in cloud computing. Optimization methods
developed for blockchain and BaaS are compatible with our proposal and can further
improve BaaS performance.

8. Conclusions

The contributions of this paper are as follows: (1) We modeled the allocation problem
of BaaS by analyzing Hyperledger Fabric and its job execution process. (2) We summarized
the characteristics of BaaS jobs by analyzing the job chaincode. (3) We propose a BaaS
job allocation algorithm, Balanced-DRL, which adopts different allocation strategies for
different job workloads. (4) Our experiments demonstrate that the proposed Balanced-DRL
algorithm can effectively improve the utilization of BaaS when processing jobs, ensure load
balancing, increase job throughput, and reduce job latency compared with other algorithms,
such as random allocation, round-robin allocation, and minimum resource allocation.

One limitation of this paper is using a rule-based minimum resource allocation strategy
for low-job-workload scenarios. In future work, we plan to adopt a deep reinforcement
learning algorithm that does not distinguish among job workloads to satisfy all application
scenarios. Additionally, we only consider performance optimization in the paper. We
want to introduce an energy consumption optimization objective or an energy-efficiency
objective in future work.
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The following abbreviations are used in this manuscript:

Abbreviation Full Name
BaaS Blockchain as a Service
DRL Deep reinforcement learning
QoS Quality of service
VM Virtual machine
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