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1. Preliminaries and Literature
The topic of computational methods in resolving partial differential equations (PDEs)

of the fractional type is an active area of research with a wide range of applications in
various fields. Let the real function a be continuous and v be a constant, then the modified
Riemann–Liouville (RL) fractional differentiation has the following definition [1]:

a(α)(t) :=
dαa(t)

dtα
=


(Γ(1− α))−1 d

dt

∫ t

0
(t−ω)−α(−a(0) + a(ω))dω, 0 < α < 1,

(Γ(−α))−1
∫ t

0
(t−ω)−α−1(−a(0) + a(ω))dω, α < 0,

dv(a(α−v)(t))
dtv , v ≤ α < v + 1,

(1)

where Γ(·) is the Gamma’s function. In addition, the Caputo fractional derivative can be
expressed as [2]:

C
0 Dα

t a(t) = (1/Γ(−α + 1))
(∫ t

0
(t−ω)−αa′(ω)dω

)
, 0 < α < 1. (2)

By considering the (right) modified Riemann–Liouville (RL) time derivative, the Black–
Scholes (BS) option price in the fractional sense could be given as comes next (forward in
time) [3,4]:

∂αb(y, t)
∂tα

=
1
2

σ2y2 ∂2b(y, t)
∂y2 + (r− q)y

∂b(y, t)
∂y

− rb(y, t), y ≥ 0, (3)

Mathematics 2023, 11, 2641. https://doi.org/10.3390/math11122641 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122641
https://doi.org/10.3390/math11122641
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2944-0352
https://orcid.org/0000-0002-5829-8634
https://doi.org/10.3390/math11122641
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122641?type=check_update&version=2


Mathematics 2023, 11, 2641 2 of 12

wherein T > 0 is the maturity time, the rate of interest is r and 0 < α ≤ 1. Moreover, q, σ
are scalars. Here, y is unbounded from one side. Additionally, α = 2H is the real Hurst
exponent and 1/2 > H > 0, [5]. It is clear that (3) would yield in the classical BS PDE by
considering H = 0.5.

The initial condition for (3) can be, respectively, given by the put and call vanilla
options as comes next [6] (Chapter 1):

b(y, 0) = (K− y)+, (4)

and
b(y, 0) = (y− K)+, (5)

wherein K is the price of strike. Here, the symbol of + stands for the function (·)+ =
max{0, ·}.

Note that the stochastic integrals under the Itô theory cannot be used since the frac-
tional Brownian motion (FBM) is a semi-martingale. In fact, as the underlying market is
driven by FBM, it must be clarified how to ensure the unique price of the market, as for
this market, in the absence of transaction costs (taxes, commissions, etc.), there could still
be an arbitrage strategy. In this paper, we follow the approach presented in [7–9], where
the authors introduce the concept of a centered Gaussian martingale, referred to as the
fundamental martingale. They demonstrate that this martingale produces the same filtra-
tion as the FBM. Given that the filtration captures the market information rather than the
stochastic process alone, it is sensible to utilize this martingale for option pricing purposes.

On the other hand, one of the fundamental computational schemes for resolving the
fractional BS PDE is the finite difference (FD) scheme [10] (Part IV) [11,12], which is mostly
via equidistant discretization points and transforming the (3) into a system of discrete ones.
To discuss this further, a spectral method for solving time-fractional PDEs in mathematical
finance has been introduced in [13]. Recently, the FD method has been proposed in the
compact form for solving the temporal-fractional BS PDE in [14].

Another type of numerical method that has attracted the attention of researchers is the
meshfree method, see, for example, [15] and the references therein. Radial basis function
(RBF) methods are a category of meshfree schemes that have been divided into two main
categories of local and global ones. The local RBF meshfree method has the advantage
of the sparse matrices when doing the discretizations. Another well-resulted approach
that inherits both from the RBF and FD methods is the localized RBF-FD scheme [16,17].
The appearance and progressively comprehensive adoption of meshfree RBF-FD methods
submit supplementary opportunities to reduce the computational cost when dealing with
arbitrary domains in high dimensions.

In some works from the literature, such as [18], a logarithmic transformation is first
performed on the fractional BS PDE to transform it into a PDE with constant coefficients. Al-
though this may be useful at first sight, its problematic issue is that it makes the transformed
PDE be defined on unbounded domains from both sides. This makes the application of
numerical methods and the incorporation of boundary conditions more challenging. Thus,
we do not perform such an act here in this work.

The major aim of this study is to pursue the recent literature [19,20] and present an
effective numerical method for resolving (3) with the help of a well-known and general
RBF, i.e., the generalized multiquadric (GMQ) RBF. We are here motivated to propose a
new method-based RBF-FD methodology, which is based on a general family of RBF and
can contain different types of RBFs as well as has fourth order of convergence on stencils
having five uniform discretization points.

The remaining portions of this work unfold as follows:

• Section 2 is assigned to three parts, in which the first part discusses the fractional
temporal discretization, while the second and the third parts are for the RBF-FD
methodology and obtaining the weighting coefficients for a stencil having five nodes.
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• Section 2 also furnishes a quartically convergent discretization for the space variable
(i.e., the underlying asset) by using five adjacent uniform points.

• Section 3 studies how the presented method could be derived in matrix notations for
the convenience of the users.

• Section 4 is furnished to put on show the comparisons of our solver in contrast to the
state-of-the-art solvers of the same type.

• Section 5 gives brief conclusions of this manuscript with several outlines for forthcom-
ing works.

2. Discretizations
2.1. Temporal Discretization

Assuming that the mesh of time discretization nodes 0 = t0 < t1 < · · · < tn = T, is
given on [0, T] with equidistant increments ∆t. The work [21] gives the L1 scheme in the
calculation of the differentiation in the fractional RL sense on a as follows:

R
0 Dα

t (a(tn)) = ∆t−α
n

∑
j=0

f j,na(tn−j) +O(∆t2−α), (6)

where the weights f j,n can be extracted from

Γ(2− α) f j,n =


(−1 + j)1−α + (j + 1)−α+1 − 2j1−α, 1 ≤ j ≤ n− 1,
−j1−α + (j− 1)−α+1, j = n,
1, j = 0.

(7)

Noting that for the uniform stencils, the L1 scheme might be furnished as follows:

C
0 Dα

t (b(yi, tk+1)) =
∆t−α

Γ(2− α)

k

∑
j=0

bi,j+1 − bi,j

∆t

(
−(j)−α+1 + (1 + j)−α+1

)
. (8)

2.2. RBF-FD Formulation

Let us assume L as a linear operator. For calculating µi in the RBF-FD at y = y
p

for the

point locations y
i
, we write down [22]:


Λ1(y1

) Λ1(y2
) · · · Λ1(ym

)

Λ2(y1
) Λ2(y2

) · · · Λ2(ym
)

...
...

...
Λm(y1

) Λm(y2
) · · · Λm(ym

)




µ1
µ2
...

µm

 =


LΛ1(y)|y=y

p

LΛ2(y)|y=y
p

...
LΛm(y)|y=y

p

, (9)

where y indicates a vector quantity in d as its dimension for Λ(y). Here, the weights µi
are the RBF-FD weights obtained by considering a stencil and then imposing the RBF and
its derivatives to find them. As discussed in [22], for the appropriate choice of the shape
parameter and the RBF, the resulting linear system obtained through (9) is invertible and
the weights can be obtained both theoretically and numerically. We here focus on finding
and using the weights in their closed form since finding them numerically will cause both
higher CPU time and instability. Here, although L is a linear operator, it can be proved that
to obtain the weights in the RBF-FD methodology, this operator will finally only act on the
right-hand side vector, and the matrix in (9) is constructed based on the stance matrix.

2.3. Spatial Discretization Nodes

Now, we take into account the famous GMQ RBF as comes next [23,24]:

Λ(ri) = (p2 + r2
i )

l , 1 ≤ i ≤ n, (10)
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for a suitable value, l, ri = ‖y− yi‖ indicates the Euclidean distance and p is the parameter
of shape. In this work, we examine a stencil comprising n scattered nodes. To determine
the weights for the RBF-FD methodology, we formulate the following expression at a given
point y = yj, 1 ≤ j ≤ n:

L[Λ(‖yk − yj‖] '
ψ

∑
i=1

µiΛ(‖yk − yi‖), 1 ≤ k ≤ ψ, (11)

where ψ is the number of knots inside the stencil. The purpose here is to obtain the weights
of the GMQ RBF-FD scheme for a stencil with five discretization points. Hence, it is taken
into account that:

{yi − 2h, yi − h, yi, yi + h, yi + 2h}, h > 0, (12)

is an equally-spaced stencil. To compute the weights associated with the estimation of the
first derivative, one now considers

a′(yi) '
i+2

∑
j=i−2

µja(yj) = â′(yi). (13)

Here, µj are the weights in this case. Substituting the function a by (10), centered at
yi−2 = yi − 2h, yi−1 = yi − h, yi, yi+1 = yi + h, and yi+2 = yi + 2h gives a set of symbolic
linear equations as follows:

4hl
(

p2 + 4h2
)l−1

= µi−2 p2l + µi−1

(
p2 + h2

)l
+ µi

(
p2 + 4h2

)l

+ µi+1

(
p2 + 9h2

)l
+ µi+2

(
p2 + 16h2

)l
,

2hl
(

p2 + h2
)l−1

= µi−1 p2l + µi−2

(
p2 + h2

)l
+ µi

(
p2 + h2

)l

+ µi+1

(
p2 + 4h2

)l
+ µi+2

(
p2 + 9h2

)l
,

µi p2l + µi−1

(
p2 + h2

)l
+ µi+1

(
p2 + h2

)l

+ µi−2

(
p2 + 4h2

)l
+ µi+2

(
p2 + 4h2

)l
= 0, (14)

− 2hl
(

p2 + h2
)l−1

= µi+1 p2l + µi

(
p2 + h2

)l
+ µi+2

(
p2 + h2

)l

+ µi−2

(
p2 + 9h2

)l
+ µi−1

(
p2 + 4h2

)l
,

− 4hl
(

p2 + 4h2
)l−1

= µi+2 p2l + µi+1

(
p2 + h2

)l

+ µi−2

(
p2 + 16h2

)l
+ µi−1

(
p2 + 9h2

)l
+ µi

(
p2 + 4h2

)l
.

The system (14) can be written as: H(µi−2, µi−1, µi, µi+1, µi+2, )∗ = −c, where

H =


−p2l −

(
p2 + h2)l −

(
p2 + 4h2)l −

(
p2 + 9h2)l −

(
p2 + 16h2)l

−
(

p2 + h2)l −p2l −
(

p2 + h2)l −
(

p2 + 4h2)l −
(

p2 + 9h2)l(
p2 + 4h2)l (

p2 + h2)l p2l (
p2 + h2)l (

p2 + 4h2)l

−
(

p2 + 9h2)l −
(

p2 + 4h2)l −
(

p2 + h2)l −p2l −
(

p2 + h2)l

−
(

p2 + 16h2)l −
(

p2 + 9h2)l −
(

p2 + 4h2)l −
(

p2 + h2)l −p2l

, (15)

and

c =
(

4h
(

p2 + 4h2
)l−1

l, 2h
(

p2 + h2
)l−1

l, 0,−2h
(

p2 + h2
)l−1

l,−4h(p2 + 4h2)l−1l
)∗

.
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Thus, the weighting coefficients of the GMQ RBF-FD technique to estimate f ′ when p� h
can be simplified and presented as follows:

µi−2 =
p2(2l − 7)− 4h2(l − 2)(2l − 9)

12p2h(2l − 7)
, (16)

µi−1 =
p2(14− 4l) + 2h2(l − 2)(2l − 9)

3p2h(2l − 7)
, (17)

µi = 0, (18)

µi−1 = −µi+1, (19)

µi−2 = −µi+2. (20)

Here, the term “simplified” means that the weights constructed through the RBF-FD
methodology (11) are a bit bulky and contain many terms. Hence, to make the weights
more revealing and useful in practice, we employ a Taylor expansion on them around zero
by having the condition p� h. Now, the error equation can be obtained by putting back
the weights into the approximation formula (13) and writing Taylor expansion up to the
desired order:

ε(yi) =

(
2(l − 2)(2l − 9)a(3)(yi)

3p2(2l − 7)
− 1

30
a(5)(yi)

)
h4 +O

(
h5
)

, (21)

where ε(yi) = â′(yi)− a′(yi).
For finding the approximation of the second derivative using RBF-FD methodology,

we write

a′′(yi) '
i+2

∑
j=i−2

β ja(yj) = â′′(yi). (22)

Similarly, as described above, we attain the weighting coefficients as follows:

βi−2 =
1

36

(
− 3

h2 +
12(l − 2)

(
8l3 − 92l2 + 294l − 273

)
p2(2l(4l2 − 38l + 99)− 165)

− η1

)
, (23)

βi−1 =
2
9

(
6
h2 −

6(l − 2)
(
8l3 − 92l2 + 294l − 273

)
p2(2l(4l2 − 38l + 99)− 165)

− η2

)
, (24)

βi =
1

6p4h2(165− 2l(4l2 − 38l + 99))2 (ω + ϑ), (25)

βi−1 = βi+1, (26)

βi−2 = βi+2. (27)

with
η1 =

a1

p4(165− 2l(4l2 − 38l + 99))2 ,

η2 =
a2

p4(165− 2l(4l2 − 38l + 99))2 ,
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and

ω = 12p2h2(l − 2)(8l3 − 92l2 + 294l − 273)(2l(4l2

− 38l + 99)− 165)− 15p4(165− 2l(4l2 − 38l + 99))2,

ϑ = 4h4(l − 2)(2l(2l(2l(2l(2l(2l(2l

− 61) + 1427)− 17237) + 116451)− 443571) + 897345)− 748035),

a1 = 4h2(l − 2)(4l(l(4l(l(4l(l(4l − 83)

+ 659)− 9817) + 16869)− 28713)− 58365) + 228285),

a2 = h2(l − 2)(l(4l(l(4l(l(4(l − 50)l

+ 2963)− 20947) + 315615)− 651000) + 2808765)− 1236195).

The error equation, in this case, can be obtained as follows:

ε̄(yi) =
((

30l − 2
(
−6(l − 1)

(
2l
(

4l2 − 54l + 211
)
− 525

)
a′′(yi)

+p2
(

8l3 − 92l2 + 294l − 273
)

a(4)(yi)
)

(28)

+p4
(

165− 2l
(

4l2 − 38l + 99
))

a(6)(yi)
))

h4/d +O
(

h5
)

,

where ε̄(yi) = â′′(yi)− a′′(yi) and

d =
(

90p4
(

2l
(

4l2 − 38l + 99
)
− 165

))
.

The approximated formulas are used for the practical fractional PDE problem (3) and
it is discussed how they can help our numerical method to possess faster convergence
in Section 4. To judge the quality and effectiveness of the proposed method and the
potential advantages with respect to the existing methods, it is also remarked that due to
employing five adjacent nodes in (11), we are able to construct linear systems consisting of
five equations with five unknowns theoretically and then obtain the weights by solving
the system analytically. The weights can one time be programmed and then each time
the five adjacent points change the weights will be changed and fill the appropriate row
of a differentiation matrix. This procedure saves computational time as well as reduces
the instability that occurs in finding the weights numerically for each set of five adjacent
points. Although we focused on finding the weights for the first and second derivatives,
the weights for higher-order derivatives can also be computed, which are not provided
here since we focus on solving a second-order PDE. Furthermore, currently, we are unable
to provide an analysis of the error bounds theoretically.

3. The Proposed Solver in Matrix Notation

By denoting bi,j ' b(yi, tj), we can write a full discretization scheme for (3) in what
follows:

Dα
t b(yi, tj+1) +O(∆t2−α) =

1
2

σ2y2
i [βi−2,jbi−2,j + βi−1,jbi−1,j

+ βi,jbi,j + βi+1,jbi+1,j + βi+2,jbi+2,j] +O(h4)

+ (r− q)yi[µi−2,jbi−2,j + µi−1,jbi−1,j + µi,jbi,j

+ µi+1,jbi+1,j + µi+2,jbi+2,j] +O(h4)

− rbi,j.

(29)

It is now possible to write down

Dα
t b(yi, tj+1) = (1/(Γ(−α + 2)))

j

∑
l=0

bi,l+1 − bi,l
∆tl+1

(
(−tl + tj+1)

1−α − (tj+1 − tl+1)
1−α
)

. (30)
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Noting that the application of the fourth-order RBF-FD formulations given in Section 2.3
will arise in sparse differentiation matrices having penta-diagonal structure.

To follow our procedure more carefully and make the contribution by furnishing
an efficient method in matrix notations, let us put all the differentiation weights into
appropriate matrices of proper dimensions. For the weights associated with the first and
the second derivatives, we can write down

My =



µi,j with (16) i− j = 2,
µi,j with (17) i− j = 1,
µi,j with (18) i− j = 0,
µi,j with (19) j− i = 1,
µi,j with (20) j− i = 2,
0 otherwise,

(31)

and

Myy =



βi,j with (23) i− j = 2,
βi,j with (24) i− j = 1,
βi,j with (25) i− j = 0,
βi,j with (26) j− i = 1,
βi,j with (27) j− i = 2,
0 otherwise.

(32)

It is remarked that for the nodes {y1, y2, ym−1, ym} in which the central RBF-D formulas
given in Section 2.3 are not valid, one may derive similar RBF-FD weights using similar
methodology given therein. Now, we are in a position to write down and fill up the
following matrix:

A = −rIN +
1
2

σ2Y2(Myy ⊗ It) + (r− q)Y(My ⊗ It), (33)

wherein ⊗ stands for the product of Kronecker [25] and

Y = diag(y1, y2, · · · , ym)⊗ It. (34)

Noticing that
IN = Iy ⊗ It,

is an N × N unit matrix, while It and Iy are n× n and m×m unit matrices, respectively.
Therefore, the time-fractional PDE (29) can be discretized fully through:

(Iy ⊗Mt)B = AB, (35)

wherein
B = (b1,1, b1,2, . . . , bm,n)

∗.

Let us consider:
A = (Iy ⊗Mt)− A. (36)

Therefore, we obtain AB = 0. Noting that now for put and call options, the boundary
conditions could be written, respectively, as [20]:

b(0, t) = K exp {−rt}, lim
y→∞

b(y, t) = 0, (37)

b(0, t) = 0, lim
y→∞

b(y, t) = ymax exp (−qt)− K exp (−rt), (38)
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wherein ymax is a large positive scalar. Ultimately, the whole numerical discretization
procedure for resolving the time-fractional BS PDE (29) could be simplified in the form of
an algebraic linear system of equations as comes next:

ĀB = b̄, (39)

where, respectively, Ā and b̄ are the system matrix and its associated vector after imposing
the initial and boundary conditions. Moreover, B contains the vector of unknowns after
having the Kronecker product. After having a theoretical discussion in this section about
how to construct the proposed method in matrix form as a linear system of equations, it
is now time to move on and test it on different types of input values on (3). This is the
concept of the next section.

The differentiation matrix Mt corresponding to the L1 scheme is an M-matrix (i.e., it
is a Z-matrix with eigenvalues whose real parts are non-negative), which makes Iy ⊗Mt
invertible. On the other hand, A in (33) is non-singular since no zero rows two so much close
knots are thereby in the spatial discretization (under appropriate choices of the financial
parameters in (3)). Thus, the system matrix Ā in (39) is invertible.

The whole computational high-order method can be summarized in Algorithm 1.

Algorithm 1 Solving the temporal-fractional BS PDE

Require: The boundary conditions as well as the initial data are given.
1: Consider the 1D domain for the spatial variable as well as the shape parameter in (10).
2: Distribute uniform/non-uniform points for discretization along time and discretize the

fractional temporal variable as in Section 2.1.
3: Distribute uniform points for discretization along space and then impose the weights

given in Section 2.3.
4: First, build up the matrix (33) and then (36).
5: Impose the boundary conditions (37) or (38) to obtain the final linear algebraic system

of equations (39).
6: Solve the system using the command LineaSolve[] in Mathematica.

4. Computational Results

This section is devoted to re-check the discussions given in Sections 2 and 3 by pricing
some financial options when ymax = 3K. To this goal, several famous solvers are compared
such as:

• The fundamental FD method on uniform meshes with quadratic convergence rate
along space and the first order of discretization along time given in [18] and denoted
by FDM2.

• The first published work based on the RBF-FD methodology on equally-spaced meshes
for solving (3) in [20] and shown by RBF-FD2.

• Our proposed solver based on uniform meshes but with quartical convergence along
space and the RBF-FD methodology and first-order discretization along the fractional
temporal variable shown by RBF-FD4.

Our laptop specifications are Windows 11 with Intel Core i7-12700H RTX 3070. Math-
ematica 13.0 [26,27] is employed to do the implementations and solve the linear system
of equations using automatic built-in commands. The elapsed CPU time is furnished in
seconds. Additionally, the absolute error is given by:

error = |bnumerical − bref|, (40)

wherein bref and bnumerical are the referenced and computational solutions, respectively.
One of the effective ways for obtaining a proper shape parameter can be used as

c = 4h.
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Example 1. Using the following set of parameters, here we investigate the efficacy of different
methods for call option pricing:

T = 1year, r = 5% σ = 40%, q = 0, K = 100$, α = 0.8. (41)

The price of reference is b(K, T) ' 18.1883, [20].

Table 1 is provided to compare the behavior of various solvers in resolving the frac-
tional problem (3). Three types of solvers have been compared. The standard second-order
FD method along with the second-order RBF-FD method over non-uniform stencils and
the proposed high-order RBF-FD scheme with fourth order of convergence. The presented
scheme beats the other solvers in terms of accuracy and CPU time. To also check the
stability and positivity of the presented method, it is necessary to observe the numerical
solutions for different numbers of discretization nodes in the computational domain. This
is performed in Figure 1. In Figure 1, we give the numerical solution based on two sets of
discretization points. The knots are uniform. The list point plots are given on the left, which
is the numerical solution in the discrete format while the right figures have been drawn
by passing an (automatically generated via the software Mathematica 12.0) interpolated
solution in the continuous mode.

Figure 1. Numerical reports in Example 1 for RBF-FD4. (Top Left): The point plot when n = m = 10.
(Top Right): The continuous plot when n = m = 10. (Bottom Left): The point plot when n = m = 40.
(Bottom Right): The continuous plot when n = m = 40.
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Table 1. Computational comparisons given for various solvers under Example 1.

m,n bFDM2 errorFDM2 TFDM2 bRBF−FD2 errorRBF−FD2 TRBF-FD2 bRBF−FD4 errorRBF−FD4 TRBF-FD4

10 16.070 2.11E0 0.01 17.378 8.10E-1 0.01 17.219 9.69E-1 0.01
20 17.889 2.98E-1 0.02 17.694 4.94E-1 0.02 17.810 3.78E-1 0.03
40 17.913 2.75E-1 0.16 18.003 1.85E-1 0.18 18.102 8.63E-2 0.20
80 18.039 1.48E-1 3.96 18.213 2.46E-2 3.84 18.169 1.93E-2 4.18
120 18.055 1.33E-1 20.02 18.190 1.64E-3 20.96 18.186 2.35E-3 21.67

Example 2. Using the following set of parameters, here we investigate the efficacy of the different
for the put option pricing:

q = 20%, σ = 30%, T = 2 year, r = 5%, K = 100$, α = 0.7. (42)

The reference price is b(K, T) ' 18.1883, [20].

Computational reports for this test are furnished in Table 2 reconfirming the efficacy
of the proposed RBF-FD solver with fourth order of convergence along space. Furthermore,
we showcase the numerical solution in Figure 2, demonstrating the robustness and stability
of our proposed solver while also highlighting its inherent positivity. Again, in Figure 2,
when m = n = 21 uniform knots are considered, and Algorithm 1 is followed in order to
obtain the numerical solution. The left figure shows the numerical solution in the discrete
mode while the right one is the continuous interpolated numerical solution.

The rationale behind using α = 0.7 or α = 0.8 is to consider the fractional value of
the derivative in (3) and test the efficiency of the proposed method for such values, which
makes the Hurst index two different values on the fractional Brownian motion in modeling
the data.

Table 2. Computational comparisons given for various solvers under Example 2.

m,n bFDM2 errorFDM2 TFDM2 bRBF−FD2 errorRBF−FD2 TRBF-FD2 bRBF−FD4 errorRBF−FD4 TRBF-FD4

11 23.914 7.1E-1 0.01 23.631 9.9E-1 0.03 23.709 9.20E-1 0.03
21 24.316 3.1E-1 0.03 24.117 5.1E-1 0.05 24.218 4.11E-1 0.06
41 24.466 1.6E-1 0.15 24.356 2.7E-1 0.21 24.551 7.89E-2 0.23
81 24.545 8.4E-2 4.14 24.565 6.4E-2 4.69 24.603 2.69E-2 4.97
161 24.580 4.9E-2 63.97 24.636 6.1E-3 64.01 24.626 3.90E-3 65.69

Figure 2. In Example 2, we present numerical results for RBF-FD4. On the (left), we provide a point
plot for the case of m = n = 21. On the (right), we display a continuous plot of the solution for the
same set of m = n = 21.
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5. Concluding Remarks

In this work, to solve temporal-fractional option pricing PDE problems arising in
finance, we introduced the weights for the GMQ RBF-FD methodology on stencils having
five uniform discretization points. The temporal-fractional PDE problem was transformed
by fourth-order discretizations coming from the RBF-FD methodology along the spatial
variable and the L1 scheme for the discretization along the time variable. The solver was
proposed in matrix notations to simplify the whole procedure. To the best of our knowledge,
this is the first paper that employed fourth-order local RBF-FD approximations on solving
the temporal fractional BS PDE under the GMQ RBF. Numerical tests were considered and
solved in Section 4. Computational results clearly showed that the proposed solver increase
the accuracy of the final approximations. Some further remarks are in order:

• Forthcoming works might concentrate on deriving super-efficient solvers based on
the Hermite idea to increase the speed of convergence without adding further stencil
nodes in solving time-dependent PDEs.

• We too investigate extending the applicability of the L2 scheme in estimating the
temporal fractional derivative to obtain higher-order accurate approximations for the
time-fractional PDE (29).
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