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Abstract: In this paper, we introduce the property (h) on Banach lattices and present its character-
ization in terms of disjoint sequences. Then, an example is given to show that an order-to-norm
continuous operator may not be σ-order continuous. Suppose T : E → F is an order-bounded
operator from Dedekind σ-complete Banach lattice E into Dedekind complete Banach lattice F. We
prove that T is σ-order-to-norm continuous if and only if T is both order weakly compact and σ-order
continuous. In addition, if E can be represented as an ideal of L0(µ), where (Ω, Σ, µ) is a σ-finite
measure space, then T is σ-order-to-norm continuous if and only if T is order-to-norm continuous.
As applications, we extend Wickstead’s results on the order continuity of norms on E and E′.
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1. Introduction

Throughout this paper, E and F will denote Banach lattices, whereas X and Y will
denote Archimedean Riesz spaces. The set of all positive vectors of X is called the positive
cone of X, and is denoted by X+. Similarly, E+ := {x ∈ E : x ≥ 0}. A net {xα} in X
is said to be order convergent to x, written as xα

o−→ 0, if there exists another net {pα}
in X satisfying pα ↓ 0, such that |xα − x| ≤ pα for all α. Put e ∈ X+. The net {xα} in X
converges e-uniformly to x if there exists a positive real number net {εα} with εα ↓ 0, such
that |xα − x| ≤ εαe for all α. In this case, we write xα → x(e-ru). And the net {xα} in X
converges relatively uniformly to x, denoted by xα

ru−→ x, if there exists e in X+ such that
{xα} converges e-uniformly to x. Every relatively uniformly convergent sequence is also
order convergent.

Recall that E is said to

• Have an order-continuous norm if xα
‖·‖−→ 0 whenever xα

o−→ 0 in E.

• Have a σ-order continuous norm if xn
‖·‖−→ 0 whenever xn

o−→ 0 in E.
• Be a KB space if every increasing norm-bounded sequence in E+ has a norm limit.

The concepts of order convergence and relative uniform convergence are identical on
E if and only if E has an order-continuous norm; see [1] (Proposition 3). If H is a closed
sublattice of E and {xn} ⊂ H, then xn

ru−→ 0 in H if and only if xn
ru−→ 0 in E; see [2]

(Proposition 2.12).
Niculescu [3] extended Lozanovskii’s results on Banach lattices with σ-order continu-

ous norms to type A operators defined on Banach lattices. In 2021, Jalili et al. continued
the study of operator versions of order-continuous norm and introduced order-to-norm
continuous operators (see [4]). An operator T : E→ F is said to be

• Type A if {Txn} is norm convergent whenever 0 ≤ xn ↓ in E.
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• Order weakly compact if for every x ∈ E+, T[0, x] is weakly compact in F.

• M weakly compact if Txn
‖·‖−→ 0 for every norm-bounded disjoint sequence {xn} in E.

• Order-to-norm continuous if Txα
‖·‖−→ 0 whenever xα

o−→ 0 in E.

• σ-order-to-norm continuous if Txn
‖·‖−→ 0 whenever xn

o−→ 0 in E.
• order continuous if Txα

o−→ 0 whenever xα
o−→ 0 in E.

• σ-order continuous if Txn
o−→ 0 whenever xn

o−→ 0 in E.

In Theorem 2, we also present that every order-bounded σ-order-to-norm continuous
operator into a Banach lattice with property (h) (see Definition 1) can be defined in order
relation. It is proved in [3] (Lemma 3.1) that type A operators and order weakly compact
operators are equivalent. Moreover, T : E → F is order weakly compact if and only if

Txn
‖·‖−→ 0 for every order bounded disjoint sequence {xn} in E. Meyer-Nieberg shows that

every order weakly compact operator T : E→ F admits a factorization through a Banach
lattice GT with an order continuous norm. These details can be found in [5] (Theorem 3.4.6)
and [6] (Theorem 5.58). Now, we are in position to list some necessary notes. The natural
factorization of T : E → F occurs through a quotient space. We define lattice seminorm
qT on E as qT(x) = sup{‖ Ty ‖:| y |≤| x |} for every x ∈ E. Let N(T) be the null ideal
{x ∈ E : qT(x) = 0} of qT . And let QT : E → E/N(T) denote the canonical projection.
Suppose that GT is the norm completion of normed Riesz space E/N(T) under the quotient
norm ‖ QTx ‖= qT(x). The formula ST(QTx) = Tx gives rise to a well-defined continuous
operator ST : E/N(T) → F with ‖ ST ‖≤ 1. Hence, S extends to all of GT , satisfying
‖ ST ‖≤ 1. We have the factorization of T,

E T //

QT   

F

GT

ST

>>

Moreover, if T : E → F is order bounded and F is Dedekind complete, then the
modulus |T| : E→ F of T exists. Given any 0 < x ∈ E, ‖ |T|x ‖≥ qT(x), hence

{x ∈ E : |T|(|x|) = 0} ⊂ N(T).

To see N(T) ⊂ {x ∈ E : |T|(|x|) = 0}, put 0 < x ∈ N(T). Since ‖ Ty ‖≤ qT(x) = 0
for every |y| ≤ x, by [6] (Theorem 1.18), we have |T|x = sup{|Ty| : |y| ≤ x} = 0. It
follows that

{x ∈ E : |T|(|x|) = 0} = N(T).

In this paper, we mainly study the relative uniform order convergence of sequence on
Banach lattices. At the same time, the main results of the article relate to the properties of
σ-order-to-norm continuous and order-to-norm continuous operators. We refer the reader
to [5–8] for unexplained terminology on Banach lattices.

2. Banach Lattices with Property (h)

Every relatively uniformly convergent sequence converges in norm. However, the
opposite may be not true. en denotes the sequence of real numbers whose nth term is one

and the rest are zero. 1
n en

‖·‖−→ 0 in l1 but not relatively uniformly convergent. Recall that E
is said to be an AM-space if ‖ x ∨ y ‖= max{‖ x ‖, ‖ y ‖} for x, y ∈ E+. In [9] (Proposition
2), Wirth proved that E is isomorphic to an AM-space if and only if every norm convergent
sequence in E is relatively uniformly convergent and if and only if every norm convergent
sequence in E is order convergent. If E is a AM-space or σ-order continuous Banach lattice,

then for every sequence {xn} in E, xn
ru−→ 0 if and only if xn

o−→ 0 and xn
‖·‖−→ 0.
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Definition 1. The Banach lattice E has property (h), provided that xn
ru−→ 0 if and only if xn

o−→ 0

and xn
‖·‖−→ 0 in E.

Example 1. Let E be the L∞-sum of the space sequence {En : En = l1, n ∈ N} i.e.,

E = l∞(l1) := {a = (a1, a2, . . . , an, . . .) : an ∈ l1 and ‖ a ‖:= sup
n
‖ an ‖1< +∞}.

E is a Dedekind complete Banach lattice without order continuous norm under the pointwise
ordering. In fact, E lacks property (h).

Proof. Define a sequence {zm} in E by

(e1, 0, 0, . . . , 0, . . .),

(0,
1
2

e1, 0, . . . , 0, . . .), (0,
1
2

e2, 0, . . . , 0, . . .),

. . .

(0, 0, 0, . . . ,
1
k

e1, . . .)︸ ︷︷ ︸
kth term

, (0, 0, 0, . . . ,
1
k

e2, . . .)︸ ︷︷ ︸
kth term

, . . . , (0, 0, 0, . . . ,
1
k

ek, . . .)︸ ︷︷ ︸
kth term

,

. . .

Evidently, {zm} is an order-bounded disjoint norm null sequence and ‖ ∑
m(m+1)

2 +m+2

j= m(m+1)
2 +1

zj ‖=

1 for all m. We claim that zm
ru−→ 0 is not true. Otherwise, there exists e ∈ E+ and a real

number sequence {εm} satisfying εm ↓ 0, such that 0 ≤ zm ≤ εme for all m ∈ N. It follows
that for every m ∈ N,

m(m+1)
2 +m+2

∑
j= m(m+1)

2 +1

zj =

m(m+1)
2 +m+2∨

j= m(m+1)
2 +1

zj ≤ ε m(m+1)
2 +1

e.

This implies that

1 =‖
m(m+1)

2 +m+2

∑
j= m(m+1)

2 +1

zj ‖≤ ε m(m+1)
2 +1

‖ e ‖

for every m. We obtain a contradiction.

Recall that in a discrete Banach lattice E, xn
o−→ 0 for every order bounded norm null

sequence {xn} in E.

Proposition 1. Let E be a discrete Dedekind σ-complete Banach lattice. The following assertions
are equivalent.

(1) E has property (h).

(2) xn
ru−→ 0 if and only if {xn} is order bounded and xn

‖·‖−→ 0.

Recall that Riesz space X has principal projection property if and only if every principal
band is a projection band i.e., for every u ∈ X,

∨∞
n=1 y ∧ n|u| exists for each y ∈ X+. In

this case, for u ∈ E+, the band projection from E onto [u] by Pu : E → [u] is defined by
Pux =

∨∞
n=1 y ∧ n|u| for every x ∈ X+, where [u] is the principal band generated by u in

E. By [6] (Theorem 1.47), every Dedekind σ-complete Riesz space has principal projection
property. The following lemmas will be useful in the sequel discussions of property (h).
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Lemma 1 ([5], Proposition 2.8.2). If Riesz space X has principal projection property, then the
following statements are hold.

(1) For any x, y in X+, there exist disjoint elements e1, e2 in X, such that x ∨ y = e1 + e2 and
e1 ≤ x, e2 ≤ y.

(2) For any x, y, z in X+ with x ≤ y ∨ z, there exist disjoint elements x1, x2 in X, such that
x = x1 + x2 and x1 ≤ y, x2 ≤ z.

Lemma 2 ([6], Theorem 4.12). Let X be a Riesz space and 0 ≤ xn ↑≤ x in X. For every k ∈ N,
there exist disjoint sequences {y1

n}, {y2
n}, . . . , {yk

n} of [0, x], such that for each n,

y1
n + y2

n + . . . + yk
n ≤ xn+1 − xn ≤ y1

n + y2
n + . . . + yk

n +
2

k + 3
x.

Lemma 3 ([10], Theorem 105.15). If xn ↓ and xn
‖·‖−→ 0 in E, then xn

ru−→ 0 in E.

Next, we characterize Banach lattices with property (h) in terms of disjoint sequences.

Theorem 1. Let E be a Dedekind σ-complete Banach lattice. The following assertions are equivalent.

(1) E has property (h).
(2) xn

ru−→ 0 for every order-bounded disjoint norm null sequence {xn} in E.

Proof. (1)⇒ (2) is evident. (2)⇒ (1) Let 0 ≤ xn
o−→ 0 and xn

‖·‖−→ 0. Since E is a Dedekind
σ-complete Banach lattice, according to [5] (Proposition 1.1.10), xn

o−→ 0 implies
∨∞

i=n xi ↓ 0.

We assert that
∨∞

i=n xi
‖·‖−→ 0. Next, we prove the assertion by contradiction. Assume that∨∞

i=n xi
‖·‖−→ 0 is not true. According to [11] (Theorem 15.4), {∨∞

i=n xi} is not a Cauchy
sequence since

∨∞
i=n xi ↓ 0. Thus, we can find ε0 > 0 and a subsequence {∨∞

i=nm
xi} of

{∨∞
i=n xi}, such that

‖
∞∨

i=nm

xi −
∞∨

i=nm+1

xi ‖≥ ε0

for every m ∈ N. Note that 0 ≤ ∨∞
i=1 xi −

∨∞
i=nm

xi ↑
∨∞

i=1 xi. According to Lemma 2, there
are disjoint sequences {z1

m}, {z2
m}, . . . , {zk

m}, such that for every n,

z1
m + z2

m + . . . + zk
m ≤

∞∨
i=nm

xi −
∞∨

i=nm+1

xi ≤ z1
m + z2

m + . . . + zk
m +

2
k + 3

∞∨
i=1

xi.

It follows from
∨∞

i=nm
xi −

∨∞
i=nm+1

xi = (
∨nm+1−1

i=nm
xi −

∨∞
i=nm+1

xi)
+ that 0 ≤ zj

m ≤∨nm+1−1
i=nm

xi for every j = 1, 2, . . . , k and m ∈ N. By Lemma 1, for every j = 1, 2, . . . , k

and m ∈ N there exist pairwise disjoint elements wj
nm , wj

nm+1, . . . , wj
nm+1−1, such that

zj
m = ∑

nm+1−1
i=nm

wj
i and wj

i ≤ xi for each i = nm, nm + 1, . . . , nm+1− 1. It follows that the order-

bounded disjoint sequence is wj
i
‖·‖−→ 0 for every j = 1, 2, . . . , k. Therefore, according to the

assumption of (2), wj
i

ru−→i 0. We can find e1, e2, . . . , ek ∈ E+ and {ε1
i }, {ε2

i }, . . . , {εk
i } ⊂ R,

such that ε
j
i ↓ 0 for every j and 0 ≤ wj

i ≤ ε
j
ie

j for every i and j. Therefore,
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ε0 ≤‖
∞∨

i=nm

xi −
∞∨

i=nm+1

xi ‖≤‖ z1
m ‖ + ‖ z2

m ‖ + . . .+ ‖ zk
m ‖ +

2
k + 3

‖
∞∨

i=1

xi ‖

=‖
nm+1−1

∑
i=nm

w1
i ‖ + ‖

nm+1−1

∑
i=nm

w2
i ‖ + . . .+ ‖

nm+1−1

∑
i=nm

wk
i ‖ +

2
k + 3

‖
∞∨

i=1

xi ‖

≤ ε1
nm ‖ e1 ‖ +ε2

nm ‖ e2 ‖ + . . . + εk
nm ‖ ek ‖ + 2

k + 3
‖

∞∨
i=1

xi ‖ .

Letting m → ∞, we determine that ε0 ≤ 2
k+3 ‖

∨∞
i=1 xi ‖ for every k. This is a

contradiction. Hence,
∨∞

i=n xi
‖·‖−→ 0. According to Lemma 3,

∨∞
i=n xi

ru−→ 0. This implies
xn

ru−→ 0.

Remark 1. Let {yn} and {zn} be two sequences in Riesz space X. {yn} is said to be dominated by
{zn}, written as {yn} 4 {zn}, if |yn| ≤ |zn| for every n ∈ N. According to the proof of Theorem 1,
for every sequence {xn} in Dedekind σ-complete Banach lattice, xn

ru−→ 0 if and only if the following
statements hold:

(1) xn
o−→ 0.

(2) If {wn} 4 {xn}, then wn
ru−→ 0.

In general, the property (h) cannot imply AM or order-continuous property.

Example 2. Let E be the L1-sum of the space sequence {En : En = l∞, n ∈ N} i.e.,

E = l1(l∞) := {a = (a1, a2, . . . , an, . . .) : an ∈ l1 and ‖ a ‖:=
∞

∑
n=1
‖ an ‖1< +∞}.

E is a Dedekind complete Banach lattice. Evidently, E is neither AM-space nor an order-continuous
Banach lattice. However, E has property (h).

Proof. Suppose that x ∈ E+ and {xn} is a disjoint norm null sequence in [0, x], where
x = (x1, x2, . . . , xm, . . .). For every m ∈ N, define the projection Pm : E→ E by Pma = am for
every a = (a1, a2, . . . , am, . . .) ∈ E. Now, fixed m, {Pmxn} is a disjoint norm null sequence
in [0, Pmx] ⊂ PmE = l∞. Note that l∞ is an AM-space. It follows that Pmxn ru−→ 0 in PmE for
every m. For fixed ε > 0, there exists 2 ≤ N ∈ N, such that ∑∞

m=N ‖ xm ‖≤ ε. Therefore,

‖
∞∨

m=N

∞∨
n=1

Pmxn ‖≤‖
∞∨

m=N
Pmx ‖=‖

∞∨
m=N

xm ‖≤ ε.

For every n ∈ N,
∨∞

k=n xk =
∨∞

k=n
∨∞

m=1 Pmxk =
∨∞

m=1
∨∞

k=n Pmxk = ∑N−1
m=1

∨∞
k=n Pmxk +∨∞

m=N
∨∞

k=n Pmxk. Given any m ∈ N, limn→∞ ‖
∨∞

k=n Pmxk ‖= 0 since Pmxn ru−→ 0. It fol-
lows that

lim sup
n→∞

‖
∞∨

k=n

xk ‖ = lim sup
n→∞

‖
N−1

∑
m=1

∞∨
k=n

Pmxk +
∞∨

m=N

∞∨
k=n

Pmxk ‖

≤ lim sup
n→∞

‖
N−1

∑
m=1

∞∨
k=n

Pmxk ‖ + lim sup
n→∞

‖
∞∨

m=N

∞∨
k=n

Pmxk ‖

≤ lim sup
n→∞

‖
N−1

∑
m=1

∞∨
k=n

Pmxk ‖ + ‖
∞∨

m=N
xm ‖

≤ lim sup
n→∞

N−1

∑
m=1
‖

∞∨
k=n

Pmxk ‖ +ε = ε
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Therefore, limn→∞ ‖
∨∞

k=n xk ‖= 0. According to Lemma 3, we obtain xn ru−→ 0.

In general, every Dedekind σ-complete Banach lattice contains a norm closed ideal
which has property (h).

Definition 2. Let E be a Banach lattice. An element x ∈ E is said to have property (h) if every

disjoint sequence {xn} ⊂ [0, |x|] with xn
‖·‖−→ 0 is uniformly convergent. The collection of all

elements that have property (h) is denoted by Eh.

In Example 1, it is easy to verify that Eh = c0(l1).

Theorem 2. Let E be a Dedekind σ-complete Banach lattice. Eh is a norm-closed ideal of E.

Proof.

(1) Eh is an ideal of E. Given any x, y ∈ Eh and α, β ∈ R, if {zn} is a disjoint sequence such

that 0 ≤ zn ≤ |αx + βy| and zn
‖·‖−→ 0, then due to the Riesz decomposition property

of [6] (Theorem 1.13), there exist two positive disjoint sequences, {zn,1} and {zn,2},
such that zn = zn,1 + zn,2 and zn,1 ≤ |α||x|, zn,2 ≤ |β||y| for every n. Then, zn,i

ru−→ 0
for i = 1, 2. This implies that zn = zn,1 + zn,2

ru−→ 0. We obtain that |αx + βy| ∈ Eh for
every x, y ∈ Eh and α, β ∈ R. It is easy to see that x ∈ Eh if and only |x| ∈ Eh. And
the condition 0 ≤ z ≤ x ∈ Eh and z ∈ E can imply that y ∈ Eh. We have proved that
Eh is an ideal of E.

(2) Assume that xn
‖·‖−→ x in E with {xn} ⊂ Eh. Let {zn} be a disjoint sequence in [0, |x|].

For every ε > 0, there exists N ∈ N, such that ‖ |x| − |xN | ‖≤ ε. It follows from
xN ∈ Eh that zn ∧ |xN |

ru−→ 0. Thus, we can find e ∈ E+ and a real number sequence
{εn} with εn ↓ 0, such that 0 ≤ zn ∧ |xN | ≤ εne for every n. For every m > n, we have

|zm ∧ |x| − zm ∧ |xN || ∧ |zn ∧ |x| − zn ∧ |xN || ≤ (2zm) ∧ (2zn) = 2(zm ∧ zn) = 0.

It follows that {|zn ∧ |x| − zn ∧ |xN ||} is a disjoint sequence. According to Birkhoff’s
inequalities (see [6], Theorem 1.9), for every n, k ∈ N,

‖
n+k

∑
i=n

zi ‖=‖
n+k

∑
i=n

(zi ∧ |x| − zi ∧ |xN |+ zi ∧ |xN |) ‖

≤‖
n+k

∑
i=n
|zi ∧ |x| − zi ∧ |xN ||+

n+k

∑
i=n

(zi ∧ |xN |) ‖

≤‖
n+k

∑
i=n
|zi ∧ |x| − zi ∧ |xN || ‖ + ‖

n+k

∑
i=n

(zi ∧ |xN |) ‖

=‖
n+k∨
i=n
|zi ∧ |x| − zi ∧ |xN || ‖ + ‖

n+k∨
i=n

(zi ∧ |xN |) ‖

≤‖ ||x| − |xN || ‖ +εn ‖ e ‖≤ ε + εn ‖ e ‖ .

This implies that the series ∑∞
n=1 |zn| converges in its norm. Therefore, ∑∞

i=n |zi|
‖·‖−→ 0.

According to Lemma 3, |zn| ≤ ∑∞
i=n |zi|

ru−→ 0. This implies that xn
ru−→ 0. Based on the

proceeding deduction, we conclude that x ∈ Eh. Hence, Eh is a closed subspace of E.

3. Order-to-Norm Continuous Operators on Banach Lattices

Evidently, every σ-order-to-norm continuous operator from a Dedekind σ-complete
Banach lattice to another Banach lattice is order weakly compact. The identity operator on
Banach lattice without σ-order continuous norm is neither order-to-norm continuous nor
order weakly compact.
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Example 3. Let E = c0 and F = l1. Then, there is an operator T : E→ F which is order-to-norm
continuous and order weakly compact but not σ-order continuous.

Proof. According to Dvoretzky–Rogers’ theorem (see [12], Theorem 2), there is an un-
conditionally convergent series ∑∞

n=1 xn in l1, such that ‖ xn ‖= 1

n
3
4

for every n. Define

T : E→ F by

Tw =
∞

∑
n=1

w(n)xn

for all w ∈ E. When using [13] (Corollary 2.5), T is not order bounded. Therefore, there
exists x ∈ E+, such that T[0, x] is not order bounded, i.e., {∨n

i=1 |Txi| : xi ∈ [0, x], n ∈ N} is
not order bounded. Note that F = l1 is a KB space. {∨n

i=1 |Txi| : xi ∈ [0, x], n ∈ N} is not
norm bounded. Therefore, there exists an increasing sequence {nk} ⊂ N and a subsequence
{xi}∞

i=n1
of [0, x], such that ‖ ∨nk+1−1

i=nk
|Txi| ‖≥ k2 for every k. Define a sequence {zi}∞

i=n1
in

[0, x] by zi =
1
k xi for every nk ≤ i ≤ nk+1 − 1 and k ∈ N. Clearly, zi

ru−→ 0. We claim that T
is not σ-order continuous. Otherwise, T is σ-order continuous. This implies that Tzi

o−→ 0.
It follows that there is y ∈ F, such that |Tzi| ≤ y for every i. Hence,

k ≤‖
nk+1−1∨

i=nk

|Tzi| ‖≤‖ y ‖ .

This is a contradiction.

Every order-bounded σ-order-to-norm continuous operator in a Banach lattice with
property (h) can be defined in order.

Proposition 2. Let E, F be Banach lattices with F Dedekind complete. T : E → F is an order-
bounded operator. The following statements hold.

(1) If T is σ-order-to-norm continuous, then T is σ-order continuous.
(2) If F has property (h), then the following assertions are equivalent.

(2a) Txn
ru−→ 0 for every xn

o−→ 0 in E.
(2b) T is σ-order-to-norm continuous.

Proof.

(1) Let xn
o−→ 0 in E. We have ‖ ∧∞

k=1 |Txk| ‖≤‖ Txn ‖→ 0. It follows that
∧∞

k=1 |Txk| = 0.
According to [6] (Theorem 1.56), T is σ-order continuous.

(2) (2a) ⇒ (2b) is evident. (2b) ⇒ (2a) Note that Txn
‖·‖−→ 0 and Txn

o−→ 0 for every
xn

o−→ 0 in E. Since F has property (h), we have Txn
ru−→ 0.

Recall that a net {xα} in E is said to be laterally decreasing if (xα − xβ) ∧ xβ = 0 for all
α � β. If E is Dedekind σ-complete, then {xn} ⊂ E+ is laterally decreasing to zero if and
only if there is a disjoint sequence {en} in E+, such that xn =

∨∞
i=n ei for every n.

Lemma 4 ([14], Proposition 0.3.5). Let E be a Dedekind σ-complete Banach lattice. The following
statements hold.

(1) If xα ↓ 0 in E, then for every ε > 0 and index α0, there exists a net {yα} satisfying yα ↓ 0,
such that Pyα xα0 ≤ 1

ε xα for all α and xα ≤ Pyα xα0 + εxα0 for α ≥ α0. Therefore, there exists
a laterally decreasing net {zα} ⊂ E+ such that zα ≤ 1

ε xα for all α and xα ≤ zα + εxα0 for
α ≥ α0.

(2) If xn ↓ 0 in E, then for every ε > 0, there exists an order-bounded disjoint sequence
{wn} ⊂ E+, such that

∨∞
i=n wi ≤ 1

ε xn and xn ≤
∨∞

i=n wi + εx1 for all n.
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Lemma 5 ([5], Lemma 3.4.3). Let T : E→ F be a norm-bounded operator between two Banach
lattices. Then, qT(x) = sup{|y′T|(|x|) :‖ y′ ‖≤ 1} for every x ∈ E.

The σ-order-to-norm continuous operators have a number of nice characterizations.

Theorem 3. Let E be a Dedekind σ-complete Banach lattice and F Dedekind complete. If T : E→ F
is an order-bounded operator, then the following statements are equivalent.

(1) T is σ-order-to-norm continuous.
(2) T : E→ F admits a factorization through an order-continuous Banach lattice GT ,

E T //

QT   

F

GT

ST

>>

where the factor QT is a σ-order-to-norm continuous lattice homomorphism and ST is a
norm-bounded operator.

(3) T(
∨∞

n=1 wn) = ∑∞
n=1 Twn for every order-bounded disjoint sequence {wn} in E+.

(4) Txn
w−→ 0 for every xn

o−→ 0 in E i.e., y′T : E → R is a σ-order continuous functional for
every y′ ∈ F′.

(5) Txn
w−→ 0 for every xn ↓ 0 in E.

(6) Txn
‖·‖−→ 0 for every xn ↓ 0 in E.

(7) T is order weakly compact and T is σ-order continuous.

Proof. The derivation of the proof of this theorem is shown as follows

(1)⇒ (6)⇒ (5)⇔ (4)⇒ (1)⇒ (2)⇒ (3)⇒ (1)⇒ (7)⇒ (6).

(5)⇔ (4) is obtained by [6] (Theorem 1.56). (1)⇒ (6) and (6)⇒ (5) are evident.
(1)⇒ (7) follows directly from Proposition 2.
(1)⇒ (2) Let xn

o−→ 0 in E. If qT(xn) 9 0, then passing to a subsequence, we assume
that there exists ε0 > 0, such that qT(xn) ≥ ε0 for every n. According to Lemma 5,

qT(xn) = sup{|y′T|(|xn|) :‖ y′ ‖≤ 1}.

Therefore, for all n, we can find some y′n ∈ BF′ satisfying |y′nT|(|xn|) ≥ ε0
2 . According

to [6] (Theorem 1.18), |y′nT|(xn) = sup{|y′nTz| : |z| ≤ |xn|}. It follows that there exists
zn ∈ [−|xn|, |xn|], such that |y′nTzn| ≥ ε0

4 . Hence, zn
o−→ 0 and ε0

4 ≤ |y′nTzn| ≤‖ Tzn ‖ for
every n ∈ N. This is a contradiction. We find that ‖ QTxn ‖= qT(xn)→ 0 for every xn

o−→ 0
in E.

(2)⇒ (3) Suppose that {wn} is an order-bounded disjoint sequence in E. Since E is
Dedekind σ-complete,

∨∞
n=1 wn exists in E. Therefore,

n

∑
i=1

QTei =
n∨

i=1

QTei ↑ QT(
∞∨

n=1

wn).

Note that GT has an order-continuous norm. QT(
∨∞

n=1 wn) = ∑∞
n=1 QTwn. This

implies that

T(
∞∨

n=1

wn) = STQT(
∞∨

n=1

wn) = ST(
∞

∑
n=1

QTwn) =
∞

∑
n=1

Twn.
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(3)⇒ (1) Let {zn} be an order-bounded disjoint sequence in E. Evidently,

∞

∑
n=1

(y′T)+zn = lim
n→∞

n

∑
i=1

(y′T)+zi = lim
n→∞

(y′T)+
n∨

i=1

zi ≤ (y′T)+(
∞∨

n=1

zn)

for any y′ ∈ F′. To see (y′T)+(
∨∞

n=1 zn) ≤ ∑∞
n=1(y

′T)+zn, put ε > 0. In view of [6]
(Theorem 1.18), (y′T)+x = sup{|y′Tz| : 0 ≤ z ≤ x}, there exists 0 ≤ z ≤ ∨∞

n=1 zn, such
that (y′T)+(

∨∞
n=1 zn) ≤ |y′Tz|+ ε. By our assumption in (3),

Tz = T(
∞∨

n=1

z ∧ zn) =
∞

∑
n=1

Tz ∧ zn.

It follows that

(y′T)+(
∞∨

n=1

zn) ≤ |y′Tz|+ ε = |y′T(
∞∨

n=1

z ∧ zn)|+ ε

= |
∞

∑
n=1

y′Tz ∧ zn|+ ε ≤
∞

∑
n=1
|y′Tz ∧ zn|+ ε

≤
∞

∑
n=1

(y′T)+z ∧ zn + ε ≤
∞

∑
n=1

(y′T)+zn + ε.

This implies that (y′T)+(
∨∞

n=1 zn) = ∑∞
n=1(y

′T)+zn. Similarly,

(y′T)−(
∞∨

n=1

zn) =
∞

∑
n=1

(y′T)−zn.

So |y′T|(∨∞
n=1 zn) = ∑∞

n=1 |y′T|zn. The order continuity of norm on GT implies the
series ∑∞

n=1 QTzn converges in norm. Therefore, in view of Lemma 5,

‖ QT

∞∨
k=n

zk ‖ = sup
‖y′‖≤1

|y′T|
∞∨

k=n

zk = sup
‖y′‖≤1

∞

∑
k=n
|y′T|zk

= sup
‖y′‖≤1

sup
m

m

∑
k=n
|y′T|zk = sup

m
sup
‖y′‖≤1

m

∑
k=n
|y′T|zk

= sup
m
‖

m

∑
k=n

QTzk ‖≤‖
∞

∑
k=n

QTzk ‖ .

Let xn
o−→ 0 in E. Suppose that |xn| ≤ pn ↓ 0. According to Lemma 4, for every

ε > 0, there exists a positive disjoint sequence {wn}, such that 0 ≤ pn ≤
∨∞

i=n wi + εp1 and∨∞
i=n wi ≤ 1

ε pn for every n. Therefore,

‖ QT pn ‖≤‖ QT

∞∨
i=n

wi ‖ +ε ‖ QT p1 ‖≤‖
∞

∑
i=n

QTwi ‖ +ε ‖ QT p1 ‖ .

This implies that lim supn→∞ ‖ QTxn ‖≤ lim supn→∞ ‖ QT pn ‖≤ ε ‖ QT p1 ‖ for
every ε > 0. Therefore, limn→∞ ‖ QTxn ‖= 0, hence limn→∞ Txn = limn→∞ STQTxn = 0.

(4) ⇒ (1) By this assumption, T is an order weakly compact operator and y′T is a
σ-order continuous operator for every y′ ∈ F′. Therefore, according to [5] (Theorem 3.4.4),
QT is order weakly compact and |y′T| is a σ-order continuous operator for every y′ ∈ F′.
We obtain that the series ∑∞

n=1 QTzn converges in norm for every order-bounded disjoint
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sequence {zn} in E. Given any an order-bounded disjoint sequence {zn} in E+, we also
have |y′T|(∑n

i=1 zi) ↑ |y′T|(
∨∞

n=1 zn). This implies that

∞

∑
n=1
|y′T|zn = lim

n→∞
|y′T|(

n

∑
i=1

zi) = |y′T|(
∞∨

n=1

zn).

The rest of the verification is contained in (3)⇒ (1).
(7)⇒ (6) Suppose that T is order weakly compact and σ-order continuous. Let xn ↓ 0

in E. Then, x1 − xn ↑ x1, according to [5] (Theorem 3.4.4), there exists y ∈ F, such that

T(x1 − xn)
‖·‖−→ y. Then, the σ-order continuity of T implies T(x1 − xn)

o−→ Tx1. Therefore,

y = Tx1. We obtain that Txn
‖·‖−→ 0.

Remark 2. In the above theorem, since GT has an order continuous norm, T is σ-order-to-norm
continuous. It is also equivalent to QT is σ-order continuous.

Let Lσon(E, F) be the collection of all order-bounded σ-order-to-norm continuous oper-
ators from E to F. We are interested in when Lσon(E, F) is an ideal in Lb(E, F). Evidently, if F
has an order-continuous norm, then, as demonstrated by Proposition 2 and [1] (Proposition
3), Lσon(E, F) = Lb(E, F). Recall that a Banach lattice E is said to be order-bounded AM if
the series ∑∞

n=1 |xn| converges in E for every unconditional convergent series ∑∞
n=1 xn in

E with {∑n
i=1 xi} order bounded. And E has a weakly Fatou property if there exists r > 0

such that for every net xα ↑ x in E, it follows that ‖ xα ‖≤ r supα ‖ xα ‖.

Corollary 1. Let Banach lattice E, F be Dedekind complete and T : E → F be an order-bounded
operator. If one of the following statements holds

(1) F is an AM-space with an order unit.
(2) F is order bounded AM and F has a weakly Fatou property.

Thus, T is σ-order-to-norm continuous if and only if |T| is σ-order-to-norm continuous.
In this case, Lσon(E, F) is an ideal in Lb(E, F).

Proof.

(1) Suppose that F is an AM-space with an order unit and T : E→ F is a σ-order-to-norm
continuous operator. According to Theorem 3, T : E → F admits a factorization
through an order-continuous Banach lattice GT ,

E T //

QT   

F

GT

ST

>>

where the factor QT is a σ-order continuous lattice homomorphism and ST is a norm-
bounded operator. Since F has an order unit, ST is order bounded. Let xn

o−→ 0 in E+.
We have QTxn

ru−→ 0. Therefore,

|T|xn = |STQT |xn ≤ |ST |QTxn
ru−→ 0.

(2) For every x ∈ E+, we write the restriction of T to Ix as Tx, where Ix is the ideal
generated by x in E. Evidently, T is order weakly compact if and only if Tx is weakly
compact for every x ∈ E+. According to S. Kakutani’ theorem (see [6], Theorem
4.29), for every x ∈ E+, there is Hausdorff compact topological space K, such that
Ie is isomorphic to C(K). In view of [15] (Theorem 3.3), |Tx| is weakly compact for
every x ∈ E+. Therefore, |T| is order weakly compact. It follows from the order
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continuity of T that |T| is order continuous; see [6] (Theorem 1.56). By Theorem 3, |T|
is σ-order-to-norm continuous.

In general, Lσon(E, F) may not be a band in Lb(E, F). For example, let Pn be the band
projection from l∞ onto span{en}. Then, ∑n

k=1 Pk ↑ and is contained in Lσon(l∞, l∞). How-
ever, supn ∑n

k=1 Pk ↑ id∞, the identity operator on l∞, is not σ-order-to-norm continuous.

Theorem 4. Let Banach lattice E be Dedekind complete. The followings are equivalent.

(1) E has order continuous norm.
(2) Every order-bounded operator from E to l∞ is σ-order-to-norm continuous.
(3) Every order-bounded σ-order continuous operator from E to l∞ is σ-order-to-norm continuous.

Proof. (1)⇒ (2) and (2)⇒ (3) are trivial.
(3)⇒ (1) If E is not order continuous, then there exists an order bounded sequence {xn}
of disjoint elements such that λ = inf

n
‖ xn ‖> 0. As shown by [14] (Proposition 0.5.5), the

sublattice

F = {(o)
∞

∑
n=1

tnxn : (tn) ∈ l∞}

is norm closed regular and order isomorphic to l∞, where (o)∑∞
n=1 tnxn is the order limit

of sequence {∑n
k=1 tkxk}. There exists an interval preserving projection P from E onto

F; see [14] (Proposition 0.5.5). We can find 0 < y′n ∈ E′ satisfying y′n(xn) =‖ xn ‖ and
‖ y′n ‖= 1. Let Pn be the band projection onto the band [{xn}] generated by {xn} in E. Set
x′n = 1

‖xn‖y′nPn, then x′n ∧ x′m = 0 for n 6= m, sup
n
‖ x′n ‖≤ 1

λ and x′n(xm) = δnm, where

δnm = 1, n = m and δnm = 0, n 6= m. The operator P : E→ F is defined by

Pz = (o)
∞

∑
n=1

x′n(z)xn

for every z ∈ E. Clearly, P is a projection from E onto F. Now, define the lattice isomorphism
S : F → l∞ by Su = (tn) for every u = (o)∑∞

n=1 tnxn ∈ F. Suppose that T = SP. Clearly, T
is σ-order continuous. Note that

Txn = SPxn = S(
xn

‖ xn ‖
) =

en

‖ xn ‖
;

hence, {Txn} does not converge to 0 in norm. This proves that the operator T is σ-order
continuous but σ-order-to-norm continuous.

Suppose that (Ω, Σ, µ) is a measure space and L0(µ) is the Riesz space of all real valued
µ-measurable functions f on Ω. Now, our aim comes down to studying the relationship
between σ-order-to-norm continuous operators and order-to-norm continuous operators
on the subspaces of L0(µ). Recall that a Riesz subspace Z of X is called a regular sublattice
of X if xα

o−→ 0 in Z implies xα
o−→ 0 in X.

Lemma 6. Let E be a Dedekind σ-complete Banach lattice which is lattice isomorphic to a regular
sublattice of L0(µ). If (Ω, Σ, µ) is a finite measure space i.e., µ(Ω) < +∞, then for every x0 ∈ E+

and every {yα} ⊂ E+ satisfying yα ↓ and Pyα x0 ↓ 0, there exists a subsequence {Pyαn x0} of
{Pyα x0}, such that Pyαn x0 ↓ 0.

Proof. Let x0 ∈ E+. Suppose {yα} is a net in E+ satisfying yα ↓ and Pyα x0 ↓ 0. Identi-
fying E with its copy in L0(µ), put A = {ω ∈ Ω : x0(ω) > 0}. Evidently, x0 = x0χA,
where χA is the characteristic function of A. Fixed α, it follows that x0 ∧ nyα ↑ Pyα x0 in
E and x0χA ∧ nyα = x0 ∧ nyα ↑ x0χAα∩A in L0(µ), where Aα = {ω ∈ Ω : yα(ω) > 0}.
Since E is a regular sublattice of L0(µ), for every α, we have Pyα x0 = x0χAα

= x0χAα∩A.
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Therefore, x0χAα∩A = Pyα x0 ↓ 0 in E. Then, χAα∩A ↓ 0 in L0(µ); hence, χAα∩A ↓ 0 in
L1(µ), where L1(µ) represents real absolutely integrable functions on a measure space
Ω. By the continuity of norm on L1(µ), limα ‖ χAα∩A ‖1= limα

∫
Ω χAα∩Adµ = 0. There-

fore, there exists an increasing subsequence {αn} of {α}, such that ‖ χAαn
‖1↓ 0. It

follows that χAαn∩A ↓ 0 in L1(µ). This implies that x0χAαn∩A ↓ 0 in L0(µ). We obtain that
Pyαn x0 = x0χAαn∩A ↓ 0 in E.

Theorem 5. Let E be a Dedekind σ-complete Banach lattice and F a Dedekind complete Banach
lattice. T : E→ F is an order-bounded operator. If one of the following conditions holds:

(H1) (Ω, Σ, µ) is a finite measure space and E is lattice isomorphic to a regular sublattice of L0(µ);
(H2) (Ω, Σ, µ) is a σ-finite measure space and E is lattice isomorphic to an ideal of L0(µ);

then the following statements hold.

(1) If T is a σ-order-to-norm continuous operator, then the following assertions hold.

(1a) E/N(T) is an ideal in GT .
(1b) QT is order continuous and N(T) is a band in E.
(1c) T is order continuous.

(2) T is σ-order-to-norm continuous if and only if T is order weakly compact and order continuous.
(3) T is σ-order-to-norm continuous if and only if T is order-to-norm continuous.
(4) Every σ-order continuous functional on E is order continuous.

Proof. (1a) If v = QTx ∈ E/N(T), then |v| = QT |x| ∈ E/N(T). Put v ∈ GT and 0 ≤ v ≤
QTx (where x ≥ 0). Note that QTxn

‖·‖−→ v for some sequence {xn} in E+. Passing to a
subsequence, we can assume that QTxn

ru−→ v in GT . It follows that
∨∞

k=n QTxk ↓ v in GT .
According to Remark 2, QT is σ-order continuous. We have

∞∨
k=n

(QTx ∧QTxk) =
∞∨

k=n

QT(x ∧ xk) = QT(
∞∨

k=n

(x ∧ xk)) ↓ QT(
∞∧

n=1

∞∨
k=n

(x ∧ xk)).

At the same time,

∞∨
k=n

(QTx ∧QTxk) = QTx ∧
∞∨

k=n

QTxk ↓ QTx ∧ v = v.

This implies that v = QT(
∧∞

n=1
∨∞

k=n(x ∧ xk)) ∈ E/N(T).
(1b) Firstly, in two cases, we will prove that QT is order continuous. To see this, it is

sufficient to prove that
∧

α |QTxα| = 0 for every xα ↓ 0 in E. Let xα ↓ 0 in E. For a fixed α0
and given any ε > 0, by Lemma 4, there exists a decreasing net xα, such that Pxα xα0 ≤ 1

ε xα

and 0 ≤ xα ≤ Pxα xα0 + εxα0 for every α ≥ α0.

Case 1. The assertion (H2) is true.

According to Lemma 6, there exists a subsequence {αn} of {α}, such that Pxαn
xα0 ↓ 0.

Therefore, based on the statements (2) and (3) of Theorem 3, QT Pxαn
xα0

‖·‖−→ 0. For every
ε > 0,

lim sup
n→∞

‖ QTxαn ‖≤ lim sup
n→∞

‖ QT Pxαn
xα0 + εQTxα0 ‖≤ ε ‖ QTxα0 ‖

It follows that limn→∞ ‖ QTxαn ‖= 0. Hence,

‖
∧
α

|QTxα| ‖≤‖
∞∧

n=1

|QTxαn | ‖≤‖ QTxαn ‖→ 0.
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We have
∧

α |QTxα| = 0. This implies that
∧

α |QTxα| = 0 for every xα ↓ 0 in E.
According to [6] (Theorem 1.56), QT is order continuous.

Case 2. The assertion (H1) is true.

Since (Ω, Σ, µ) is a σ-finite measure space, there is a disjoint sequence {Bm} of sub-
sets of Ω, such that

⋃∞
m=1 Bm = Ω and µ(Bm) < +∞ for all m. Identifying E with its

copy in L0(µ), since E is an ideal in L0(µ), we have xα0 χBm ∈ E for every m. Then,
xα0 =

∨∞
m=1 xα0 χBm . For every α, put Aα = {ω ∈ Ω : xα(ω) > 0}. Hence,

Pxα xα0 = xα0 χAα
=

∞∨
m=1

xα0 χAα∩Bm

for every α. Fixed m ∈ N, xα0 χAα∩Bm ↓ 0 in L0(Bm, µ) since xα0 χAα∩Bm ≤ Pxα xα0 ↓ 0 in
L0(µ) for every m. Note that the band generated [xα0 χBm ] by xα0 χBm in E is contained in
L0(Bm, µ). Then, xα0 χAα∩Bm ↓ 0 in [xα0 χBm ]. In the view of Case 1, QTxα0 χAα∩Bm ↓ 0. Let
v =

∧
α
∨∞

m=1 QTxα0 χAα∩Bm . Without loss of generality, assume that α ≥ α0 for every α.

v ∧QTxα0 χAα0∩Bm ≤ QTxα0 χAα0∩Bm ∧
∞∨

m=1

QTxα0 χAα∩Bm = QTxα0 χAα∩Bm ↓ 0.

We have v ∧QTxα0 χAα0∩Bm = 0 for all m hence v =
∨∞

m=1 v ∧QTxα0 χAα0∩Bm = 0 i.e.,∨∞
m=1 QTxα0 χAα∩Bm ↓ 0. Note that QT is σ-order continuous. We obtain

QT Pxα xα0 = QT

∞∨
m=1

xα0 χAα∩Bm =
∞∨

m=1

QTxα0 χAα∩Bm ↓ 0.

By the order continuity of norm on GT , limα ‖ QT Pxα xα0 ‖= 0. For every ε > 0,

lim sup
α

‖ QTxα ‖≤ lim sup
α

‖ QT Pxα xα0 + εQTxα0 ‖≤ ε ‖ QTxα0 ‖ .

Hence, limα ‖ QTxα ‖= 0. And ‖ ∧
α |QTxα| ‖≤‖ QTxα ‖ implies that

∧
α |QTxα| = 0. We

also obtain
∧

α |QTxα| = 0 for every xα ↓ 0 in E. According to [6] (Theorem 1.56), QT is
order continuous.

Next, we prove that N(T) is a band in E. Since qT(·) is a Riesz seminorm on E, N(T)
is an ideal in E. If 0 ≤ zα ↑ z in E with zα ∈ N(T), then QTzα ↑ QTz. Note that GT has
an order continuous norm. 0 = qT(xα) =‖ QTzα ‖→‖ QTz ‖= qT(z). We have qT(z) = 0
hence z ∈ NT . This implies taht N(T) is a band in E.

(1c) According to the proof of (1b), QT is order continuous; hence, it is also order-

to-norm continuous. If xα ↓ 0 in E, then QTxα
‖·‖−→ 0 in GT . We have ‖ ∧

α |Txα| ‖≤
‖ Txα ‖=‖ STQTxα ‖→ 0. Hence,

∧
α |Txα| = 0. According to [6] (Theorem 1.56), T is order

continuous.
(2) and (3) are obtained by (1) and Theorem 3. (4) is a simple indirect argument

of (3).

Recall that a net {xα} in E is said to be unbounded order convergent to 0 (or uo-
converges to 0), written as xα

uo−→ 0, if |xα| ∧ u o−→ 0 for every u ∈ E+. The details on
unbounded order convergence can be found in [16,17]. As an application of σ-order-to-
norm continuous operators, we give a characterization of σ-order continuous M-weakly
compact operators.

Theorem 6. Let E be Dedekind σ-complete Banach lattice and F Dedekind complete. If T : E→ F
is an order-bounded operator, then the following statements are equivalent.

(1) Txn
‖·‖−→ 0 for every norm-bounded xn

uo−→ 0 in E.
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(2) T is M-weakly compact and T is σ-order continuous.

Proof. (1)⇒ (2) is obvious in Proposition 2.
(2)⇒ (1) This is similar to the proof of (1)⇒ (2) in Theorem 3 (replace “0 ≤ xn

o−→ 0
in E” with “disjoint {xn} in BE”) in which QT is M-weakly compact. Note that every M-
weakly compact operator is order weakly compact. In view of Theorem 3 and Theorem 5,
QT is order-to-norm continuous. According to [6] (Theorem 5.60), for every ε > 0, there
exists z ∈ E+ such that ‖ QT(|x| − z)+ ‖< ε for every x ∈ BE. Given any {xn} ⊂ BE with
xn

uo−→ 0, we have |xn| ∧ z o−→ 0; hence,

lim sup
n→∞

‖ QTxn ‖ = lim sup
n→∞

‖ QT((|xn| − z)+ + |xn| ∧ z) ‖

≤ ε + lim sup
n→∞

‖ QT(|xn| ∧ z) ‖= ε

for every ε > 0. This implies that QTxn
‖·‖−→ 0. We obtain that Txn = STQTxn

‖·‖−→ 0. The
proof is complete.

Recall that T : E→ F is said to be L-weakly compact if every disjoint sequence in the
solid hull sol(TBE) of TBE converges to zero. Meyer-Nieberg prove in [6] (Theorem 5.64)
that the notions of L- and M-weakly compact operators are in duality to each other. By [6]
(Theorem 1.73), every order-bounded operator has an order-continuous adjoint. Note that
the norm dual of a Banach lattice is a Dedekind complete Banach lattice. We are now in the
position to give a new characterization of L-weakly compact operators.

Corollary 2. Let E, F be Banach lattices and T : E → F be an order-bounded operator. The
following statements are equivalent.

(1) T′x′n
‖·‖−→ 0 for every norm-bounded x′n

uo−→ 0 in E′.
(2) T is L-weakly compact.

In [17] (Theorem 5), A.W. Wickstead gave a characterization of the order continuity
of norms on E and E′ in terms of unbounded order convergent nets. To be precise, E
and E′ have order continuous norms if and only if every norm-bounded net in E which
uo-converges to zero must converge weakly to zero. It does not suffice to consider only
sequences in this equivalence, as is shown by the space of all continuous real-valued
functions on the one point compactification of an uncountable discrete space. A norm-
bounded uo-convergent sequence there must converge in norm, so certainly weakly ([18],
Example 33.1).

Theorem 7. Let E be a Banach lattice. The following statements are equivalent.
(1) E is Dedekind σ-complete and xn

w−→ 0 for every norm-bounded xn
uo−→ 0 in E.

(2) E and E′ have order-continuous norms.

Proof. (2) ⇒ (1) is by [17] (Theorem 5). (1) ⇒ (2) Based on the assumption of (2), for
every x′ ∈ E′, x′(xn) → 0 for every norm-bounded xn

uo−→ 0. According to Theorem 6,
for every x′ ∈ E′, x′ is M-weakly compact and σ-order continuous. In the view of [11]
(Theorem 39.5), E has a σ-order continuous norm if and only if for each x′ ∈ (E′)+,
x′(xn) ↓ 0 whenever xn ↓ 0 in E. We find that E has a σ-order continuous norm. Note that
E is Dedekind σ-complete. According to [14] (Theorem 1.1), E has an order-continuous
norm. It is proved in [10] (Theorem 116.1) that E′ has an order-continuous norm if and only
if xn

w−→ 0 for every norm-bounded disjoint sequence {xn} in E. Note that every disjoint
sequence must uo-converge to zero. Again, based on the assumption of (2), E′ has an
order-continuous norm.
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4. Conclusions and Recommendation

This paper under review aims to further explore σ-order-to-norm continuous and
order-to-norm continuous operators. To prove that the σ-order-to-norm continuous op-
erator can be defined using the order relation, we introduce a basic property of Banach
lattices, namely the property (h). Theorem 3 plays an important role in this paper, in which
we present a number of nice characterizations for a σ-order-to-norm continuous operator.
This result is also the basis for our extension on Wickstead’s results on the order continuity
of norms on E and E′.

This research can be categorized under the topic “Operators Acting on Banach Lattices
and Related Applications”. Our future work is to extend these results to more general
spaces (e.g., topological Riesz spaces) as well as applying them to the field of non-linear
analysis. In [19], Çevik and Altun introduce and investigate a class of spaces equipped
with vetor metrics, mainly vector metric spaces. One of the research components could be
the application of relative uniform convergence to the fixed point theory on vector metric
spaces. Based on [20–22], we could consider replacing order convergence, in the definition
of vectorial convergence (see [19], Definition 2.4), with relative uniform convergence to
obtain more of the properties of vectorially continuous functions (see [20], Definition 3).
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