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Abstract: This paper studies the uniqueness of the bounded solution to a new Cauchy problem of
the fractional nonlinear partial integro-differential equation based on the multivariate Mittag—Leffler
function as well as Banach’s contractive principle in a complete function space. Applying Babenko’s
approach, we convert the fractional nonlinear equation with variable coefficients to an implicit integral
equation, which is a powerful method of studying the uniqueness of solutions. Furthermore, we
construct algorithms for finding analytic and approximate solutions using Adomian’s decomposition
method and recurrence relation with the order convergence analysis. Finally, an illustrative example
is presented to demonstrate constructions for the numerical solution using MATHEMATICA.

Keywords: adomian’s decomposition method; banach’s contractive principle; multivariate Mittag—
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1. Introduction and Preliminaries

The operator Ig is the partial Riemann-Liouville fractional integral of order g > 0
with respect to 6 with the initial point zero [1],

AW)0.0) = 5 | "0 0P W 0)g, 0> 0,

r(p

124

A . . I .
and gﬁ is the partial Caputo fractional derivative of order a with respect to

0% 1 0 N
- — <1.
(agww>(9,a) m_“)/o(e §)YW.(s,0)ds, 0<a<1
It follows from [2] that, for 0 < a <1,

I (aZw) (6,0) = W(8,0) — W(0,0).

We define the Banach space C([0,1] x [0,b]) with the norm for b > 0 as

W= sup |W(0,0) for We C([0,1] x [0,1]).
0€[0,1], c€l0,b]
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In this work, we consider the uniqueness of the bounded solution to the following
fractional nonlinear partial integro-differential equation with the initial condition in the
Caputo sense for 0 < ay < a1 < 11in the space C([0,1] x [0, b]):

o 4
1 c 2

-0 0
5om W(0’0)+C89a2

= f(8,0) +8(W(b,0)),
W(0,0) = ¢(c), (8,0) €[0,1] x [0,0],

W(6,0) + f M) IIPW (6, o)
= (1)

where A;(0), f(60,0), g, ¢(0) are functions satisfying certain conditions and C is a constant.
In addition, we avoid computational difficulties in the series and construct the algorithm
used to find analytic and approximate solutions to (1) using Adomian’s decomposition
method. To the best of the authors” knowledge, Equation (1) is new and has never been
studied before. Furthermore, any existing integral transform seems hard to deal with using
this equation due to the variable coefficients and double integral operators involved.

A function W is said to be a solution of Equation (1) if it satisfies the equation over
C([0,1] x [0,b]) and its initial condition.

Definition 1. The two-parameter Mittag—Leffler function is represented by the following series

o9 Zl
Ece(z) = —_—,
ce(?) lg) T'(gl+e¢)

where g, e > 0and z € C (the complex plane).
The multivariate Mittag—Leffler function [3] is defined as follows

1 1
¢S] l Zl . Z’er
E Z1,0 " ,2 1 7
G ,gm),s( ! m) E) 11+...Z+1m:l (llz' o /lm> F(G111 +---+ lem + 8)

[ 20, l;n=0

where g;, e >0,z € Cfori=1,2,--- ,mand

! o
[

Babenko’s approach [4] is an efficient tool used to solve differential equations (includ-
ing partial differential equations) with initial conditions or boundary value problems, as
well as integral equations [5,6]. In the following, to show the details of this technique, we
will deduce the solution to the following fractional integro-differential equation with the
initial condition in the space C|[0, b] for a constant A:

{CDSy(x) +AIPy(x) = F(x), FeClob, 0<a<1, >0,

y(0) =0,
where
DY) = Frray o (1= 9) W (S)ds,
and
By = g7 [ (=9 My(o)de.
Clearly,
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Applying the operator Ijj to both sides of equation, we obtain
(1+ A1) y(x) = BF(x).

Treating the operator (1 + /\Ig P ) as a variable, we informally derive that, using

Babenko’s approach
0 I
y(x) = (1+ M‘”ﬁ) 2 (A5 *F) IE(x)
= Y ()AL P B E(x) = Y (=) R (x).
1=0 1=0
Obviously,
H Ié(oc+ﬁ>+w sup ‘ I(l)(zx+ﬁ)+,x p
xe[0,b], lp[l<1
_ sup ; /X(x_s)l(oc+,5)+a—l¢(s) ds
velo), o<1 L@+ pB) +a)|Jo
i
< su
xe[O,b],ﬁq;Hgl ¢ IF(l(a+p)+a+1)
plla+p)+a

s F(l(a+p)+a+1)
due to the fact that
T(l(a+B)+a+1)=T{(a+B) +a)(l(a+ )+ a).

These imply that

M‘ bszrﬁ)l

|\P||<b“uF||Z Hmm)

- b“||FHEa+ﬁ,a+1(W b*F) < oo,

Iyl < 2 AL [P

which infers that the series solution
°° la+B)+
y(x) = Y (DA P R (),

is uniformly convergent in C[0, b], and thus well defined.
In particular, for F(x) = x,
— xoc+1 Z Z(M_ﬁ)
T(l(a+pB)+a+2)

Nonlinear partial differential equations have been used to describe a wide range
of phenomena and dynamical processes in many scientific areas, such as physics, fluid
mechanics, geophysics, plasma physics and optical fibres [7]. Atangana [8] introduced new
fractal-fractional differential and integral operators to work on more non-local problems
using analytic and numerical methods. Researchers have made a great deal of effort to find
approximate, stable numerical and analytical methods to solve fractional partial differential
equations of physical interest, which include the finite difference method [9], Adomian’s
decomposition method [10], variational iteration method [11], and homotopy perturbation
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method [12]. On the other hand, the uniqueness and existence of solutions are among
the most important and interesting topics for fractional nonlinear partial differential or
integral equations with initial value or boundary conditions [13]. Very recently, Li et al. [6]
applied Babenko’s approach, the multivariate Mittag-Leffler function, and Krasnoselskii’s
fixed point theorem, and investigated the existence of solutions to a Liouville-Caputo
nonlinear integro-differential equations with variable coefficients and initial conditions in a
Banach space.

The rest of this paper is organized as follows. Section 2 deals with the uniqueness of
the bounded solution to Equation (1) using the multivariate Mittag—Leffler function and
Banach’s contractive principle. Section 3 finds the recurrence algorithms for analytic and
approximate solutions based on Adomian’s decomposition method with an order analysis.
We further demonstrate the applications of the main results with an example in Section 4.
In Section 5, we provide a summary of the work.

2. Uniqueness of Bounded Solution

Theorem 1. Let ¢(c), Ai(0) € C[0,b] foralli=1,2,--- ,m, f(6,0) € C([0,1] x [0,b]) and g
be a continuous and bounded function on R (the set of all real numbers). In addition, we assume
that 0 < ap < way <1, 7;, B;i > 0foralli=1,2,--- ,mand C is a constant in R. Then W(6,0)
is a solution of Equation (1) if and only if it is bounded and satisfies the following implicit integral
equation in the space C([0,1] x [0, b]):

W(e,o)

=Y (1)
1=0

! ) Clm+1 111 (g +y1) 4+l (@1 +Ym ) +lpr1 (01 —a2) +ag
0

L+l =1 (Zlf b
1120,"'/lm+120

(@) (o))" (0,0)

. !

! ! I (ar+71)+- g1 (a1 —ag) +ag
+Y (1) ( l )cmﬂ% \

1=0 Bt hyaq =1 N7 bmtd

1120, L4120

(@) (hulo)tf) g0, + T

Z ( i ) Clm+1 gh(er+71)+-+Hmi1 (a1 —az)
R D VAP ) (1 ey Eere eI YRS By

1120, L4120

I Im ad
(M@ (Mm@ E") "g(o) + C Y (<)
120
Z ( i ) Clns1 gh (e +71)+ g (0 —a2) +a —az
bt i=t N b)) T+ 7)) - D (0 —a2) + a1 —ap 1)

11 ZO, o Ilm+1 ZO

l m

(M) 151)“ SEWETAN )
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furthermore,
[lW]| S2E (4 g e by — ), g +1 (Bbﬁl/. .. BbPm, |C|)

) ( max |f(0,a)|+sup|g(x)>

(9,0’) € [0/1] X [Orb] xeR

+ 2B gy -1 (B BUP[CT) max [9()

F 2E (4 oy, g oty — ), 0 —ap+ 1 (Bbﬁll. -+, BbPn, |C|) < +o0,
where B is a positive constant satisfying

max |[Aj(0)| < B, fori=1,2,---,m.
c€0,b]

Proof. Applying the operator Iy! to both sides of Equation (1), we obtain

a; 0 a1~z oy 92 & ay+7; 7B
o' 5gu W(0,0) + ClyT g aeazw(9/0)+2m(0)19 15'w(8,0)
1=
= Ig'f(6,0) + Ig'g(W(60,0)).
This implies that

W(6,0) — ¢(0) + CIt "2 (W(6,0) — ¢(0)) + im(a) I 1w, o)

= I§1£(6,0) + I§'g(W(6,0)).
Hence,
mn .
<1 +CIT2 4+ Y Ni(o) I 1{31) W(b,0)
i=1

= I (0,0) + I g(W(6,0)) + ¢(0) (1 + c%) .

Using Babenko’s approach and the multinomial theorem,
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W(b,0)
-1
<1+CI“1 "‘2+ZA “1”11/3’)
90{1 2%}
0¢1
( f(90')+19 g(W (1+C ocl—ucz—i-l)))
=y (-1 (CI”‘1 24 Y Ai(e) I ﬁz)
& ZZ
90{1 \%)
o1 5t
(1 £(0,0) + 1M g(W (1+c ocl—ucz—i—l)))

[7e

(_1)1 Z (l ) (Al 061+71Il31)
0 Lttly=l N7 !

20, L4120

: (/\m 0(1+'Ym Iﬁ”’) (Clglf”‘Z) L

.(1”‘1f90 + Iy g(W(6, ))+4’(‘7)(1+CF(9M>>

N — &y + 1)
i( 1 ! >Cl"’+1 & (@1 +y1) 4+l (@1 +m )+ (01 —a2) +ag

1=0 Bty g1 =1 (llf' ol
>0, Ly 110

(@) (Anl)) " F(0,0)

- ! I I (aq4+91)+-Hlyp1 (01 —ap) +a
_ m+1 7K1 T m41(&1—&2 1
i Z;O( (lll lm+1> c 19

—

I+l =l
l] >0, /lm+l >0

1 L ©
(@) () ) g (W(8,0)) + Y (-
1=0
Clmt1 gh (@ +y1) 4+l (i —az)

o)
11+...+21m+]:l <ll’ T ilm+1 F(ll("‘l + '71) +ee+ lm+1 (“1 - "‘2) + 1)
1120, L4120

()" (o) "gt) + € L~

Z ( i > Clm+1 gh(er+71)+ -+l ( —a2) +ar —ap
bt mt N b ) T(h(a +71) - A D (1 — a2) + oy —ap +1)
ll 20!"'/lm+1 >0

(@) (o)

Clearly, all the above steps are reversible. It remains to be shown that W € C([0, 1] x
[0,b]). Let B be a positive constant such that

max [Ai(0)| < B, fori=12,---,m
oel0,b]



Mathematics 2023, 11, 2752 7 of 13

then,

W]l
l |C|lm+1 Bll . Blm
<
- I;O 11+"'+21m+1:l <l1,- - ,lm+1> T(h(ay+91)+ -+l (eg —ap) a7 +1)

1120, 14120
bllﬁl +"'+lm/3m

TR+ + Inm + 1) (000201 %[04

£ (8,0)]

i 1 |C|lm+1 Bll . Blm
) L <l . )F(l(a—l— )+ (g —ap) g+ 1)
120 I+t hypq =1 N7 77 s bmtl 1&1 ™71 m+1(%1 2 1
[ 20, Iy 4120
bl1,31+“'+lmﬁm

ad l
- sup ()| + ( )
r(llﬁ1++lmﬁm+l) x€R l;O ll+"'+zlm+1:l ll’ ’lm+1
20, Ly 0
|C|lm+1 Bll e Blm bllﬁ1+"'+lmﬁm

max
F(ll (061 + ’)/1) + -+ lm+1(061 — 062) + 1) F(llﬁl + -+ lm,Bm + 1) o€[0,b]

d l
+|C
| |IZ L (llf"'/lm+1>

A
1120, 14120

9()]

' |C|lm+1 (Bb/gl)ll e (Bbﬁm)lm
F(ll(oq +’)/1) + - +lm+1(¢x1 —062) + a1 —an +1) r(llﬁl + -+ LB+ 1)'

Clearly,

Therefore,
W <2E (4491, i +ymis —a), a1 +1 (Bb,BI’ ..., BbPm, |C|)

< max . |f(6,0)|+sup Ig(x)|>

(6,0)€[0,1]x[0,b] x€R

+ 2E(“1+71r~,oc1+7m,zx1—acz),1 (Bb/gll- .., BbPm, |C|) Urél[%é] lp(0)]

+ 2E(“1+’YII"‘r“l+7mr“1_a2)’“1_a2+l (Bbﬁl, o Bbﬁm’ |C|) < +oo
This completes the proof of Theorem 1. [

Theorem 2. Let ¢(0), Aj(0) € C[0,b] foralli =1,2,---,m, f(0,0) € C([0,1] x [0,b]) and
g be a continuous and bounded function on R, satisfying the following Lipschitz condition for a
positive constant L:

lg(x) —g(y)| < Llx—y|, xyeR

In addition, we assume that 0 < ay < a1 <1, v;, B; > 0foralli=1,2,--- ,m, Cis a constant
in R and

g = Z‘CE(MJF’YV“,041+’an,061*0¢2),“1+1 (Bbﬁl/ ... BbPm, ‘CD <1,

where B is defined in Theorem 1. Then Equation (1) has a unique solution in the space C ([0, 1] x [0, b]).
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Proof. We define a nonlinear mapping 7 over the space C([0,1] x [0,b]) by

(TW)(0,0)

el
=0

! > Clut1 & (g +y1) 4l (g +ym) 1 (0 —a2) +ag
0

ll+"'+lm+1:l (lll T ’lm+1
1120, 1y 41>0

(@) (@) " F(6,0)
£y (-1)
1=0

! ) Clw1fh (@1 +71) 4+l (e —az) +aq
0

11+""Hm+l:l (ll/ o /lm+1
1120, 11120

(M (0)1!31)11 e (Am(a)ff"')l’"g(ww, 7)) + li‘)(—nl

Clm+1 gh (e +71) -+l (a1 —a2)

I
11+~~+21m+1:l <11/ X /lm+1> C(h(ar+91) + -+ Ly (g —a2) +1)
1120, Ly 41>0

(M) (nte2E7) "9l + T (-

Z ( 1 > Clm+1 gh(er+71)+ -+ (1 —a2) +ar —az
bt mt N b ) T(h(a +71) -+ D (1 — a2) + g —ap + 1)
1120/"'11m+1 ZO

(M@B)" - (Ao f)"

It follows from Theorem 1 that 7W € C([0,1] x [0, b]). We are going to show that 7T is
contractive. Indeed, for Wy, W, € C([0,1] x [0, b]), we come to

TWy —TW,
=Y (-
=0

! )Clmﬂ Ill (@1 +71) 4+l (e —az) +aq
0

I+t =1 <ll’ RN VRS
1120, Ly11>0

()" (Ane) ) " s(Wi(0,0)

— —1)! E ! 1 Iy (ag+y1) 4+l (e —an)+a
1(ag+y1) 4+ (g —an A
Z( 1) ( ] >( mHIG m+
1=0 | 1, sbm+1

1120, 11120

m

(@) (o)) s Wae,0),
and

[TW1 = TW,||

SZ[:E( ),“1+1<Bbﬁ1,'--,Bbﬁm,|C|)HW1—W2||

L e S U5 e .5 5
= q|lW1 — Wal|,
from the proof of Theorem 1 and noting that

Ig(W1) —g(Wa)| < LW — Wa|.

Since ¢ < 1, Equation (1) has a unique solution in the space C([0,1] x [0,b]) by
Banach'’s contractive principle. This completes the proof of Theorem 2. [
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3. Analytic and Approximate Solutions

We begin to derive analytic and approximate solutions to Equation (1) from the implicit
integral Equation (2) obtained in Section 2 using an initial value Wy = 0 and the following
recurrence (iterative method):

Wl’lJrl (6/ U)
= i(—l)l Z ( l )Cl"’H Iél(4x1+'h)+...+lm(a1+7m)+1m+1(a1_a2)+a1
1=0 Lttt M1 I

1120, L1120

1

(M@E)" - (A1) " F(6,0)
I NE
1=0

! ) Clsr fr(@1F71) ol (a1 —a2) o
0

Ity =1 (lll T /Zm+1
11>0,+ ly41>0

(M) () s a0 + D1

Z < i > Clm+1 gh (e +71)++lia (a1 —a2)
bt et N b)) T(h(a +71) 4o A D (a1 = a2) +1)

1120, lyy120
(M) () 8) ") € D1

2 < i ) Clm+1 gl (1 +71)+++Hlga (1 —az) +ag —ap
I+ g =l Ly byt ) T (e + 1) + -+ hpga (@ —a2) +ag —ap +1)

1120, 1y 41>0

. (/\1(0')151)11 . ()Lm(a)lf"’)lm,

forn=0,1,---.
Let W,xact be an exact solution to Equation (1). Then, it follows from Theorem 2 that

||Wn+1 - Wexact” < qIIWn - Wexact” < q2HWn—1 - Wexact” <--- < q"||W1 - Wexact”
< zan(“l+'er"'/“1+7W1,N1*062)r0l1+1 (Bbﬁlr' oy Bb'Bml |C|) ”g(WO) - g(WEXﬂCt) ”

S A9 E (g oy, gyt —2), a1 1 (Bbﬁl" -, BbPr, |C|) s1€1}£ 8()l,
X

which is the absolute error between W,, 11 and Wiyt

We can apply Adomian’s decomposition method to construct an algorithm for finding
analytic and approximate solutions to Equation (1).

It follows from the proof of Theorem 1 that

com x1—a2 . X1 1T7Yi 7Pi
W(,0) = ¢(o) (1 + F(M—wﬁl)) — CIy "W (6,0) — ;/\i(U)IG Hifiw(e, o)
+ 1" f(0,0) + Iy g(W(6,0)). (3)
let
W(6,0) = Wyi(0,0) + Wy(0,0) + Ws3(0,0) + - -, 4)

by noting that Wy = 0, and the nonlinear term

g(W(0,0)) = A1(W1) + Aa(Wy, Wa) + -+ - . ®)
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Substituting (4) and (5) into (3), we have
Wi +Wo+ Wz 4 -

— ¢(0) (1 n o CHM—x2

- - “ —_C[h*
) I (6,0) — IR W Wa Wyt )

m
— Y MO Wy 4 Wo + Wa )+ IS (A + Ag+ Az +-- ),
i=1
which implies, using Adomian’s decomposition method, that

com—
ap —oap+1

Wi = ¢(0) (1 + ) + 1" f(6,0),
I'( )
m (6)
Wi 1 = —CIN ™ 2W, — Y A (0) I B W, + 191 A,
i=1

fork=1,2,---.

Here, a couple of examples to establish Ay from a given nonlinear function g(W) are
presented. First, we assume that g¢(W) = WW = |W/|?2. Then,

(Wi +Wot - )Wy +Wo - ) = Ay + Ap -,
n—1

= Wi 2+ 2WiWo + -+ Y Wi Wy - -
=0

1
which derives that

Ay =W,
Ay = W1W2 + W2W1 = 2W1W2,

n—1
Ay = Z Wi+1Wn7i/
i=0

1=

forn=1,2,--- from [14].
Secondly, we consider g(W) = sin W. Using Taylor’s series, we obtain

. w3 W°
g(W):smW%W—?—l-ﬁ.
Thus,
Wi+ Wot---)P Wi+ Wpt--)°
(w1+wz+~-~)—( 3 L = )
:A1+A2+...'
This infers that
AL
Ar=Wi= 55+ 55

W2W, Wi,
2! 41

A2:W2—
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In summary, we are able to find analytic and approximate solutions to Equation (1) as
W=W; + W +W5+---+ Wy,
from (6) and the recurrence of A, for certain nonlinear functions g(W).

4. Example

Example 1. Consider the following fractional nonlinear partial integro-differential equation with
the initial condition:

0 0" 2 05
BHW(G’ o) +2890-51W(9’U) + (0" 4+ 1) II;°W(6,0)
0+ 75716010 cos(W(6,0)),

W(0,0) =0, (0,0)€]0,1] x[0,1].

Then Equation (7) has a unique solution in the space C([0,1] x [0,1]).

1
Proof. Clearly, g(W) = 3516010 cos(W(6,0)) is a continuous and bounded function

satisfying the following Lipschitz condition for W € C([0,1] x [0, 1]):

1
- < |x— )
Ig(x) —g(y)| < 22216010|x y, xyeR

Furthermore,
max [0 +1|<B=2, C=2,
ce(0,1]
and
q = 2£E(“1+71,“',061+')/m,9(1—062)/“1+1 (Bl’)ﬁl, cee, BblB"l/ |C|)

__ 2 . (2,2) = 2 i 3 ! 2h2h
T 22216010 (% 05214/ 7 53316010 \l, b)) T(2l +05,+2)

1=0 ll+lz—
ll lZ ) ’

(211 + 0.5, +2) = T(1.5; +0.5] +2) > T(0.5] 4 2),

Using

we deduce that

o 4! 2 %1.1108 % 10°
< ~ =~ 0.
1= 22216010 EO (0.5 +2) 22216010 0.1<1,

using online calculators from the site https://www.wolframalpha.com/ (accessed on
2 March 2023). By Theorem 2, Equation (7) has a unique solution in the space C([0, 1] x
[0,1]). O

Finally, we are going to find an analytic and approximate solution to (7) using Recur-
rence (6). Let

+

cos W~ TR

wy— 1 1w
8 22216010 22216010

and
W=Wi+Wr+---.


https://www.wolframalpha.com/
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WIZPP?‘O

This infers that

1 wi Wi
A= s (1= 5L+ L),
22216010 20 g
e — 1 Wi, W3W,
27 22216010 1! T

Moreover,

2605 460N 62
Wi=c(1+ -0 )V rpe=c(1+ )42
1 ‘T< +r(0.5+1))Jr 0 U( * ﬁ)+2z’

and
Wy = —2I0°W; — (0 + 1) IZI° Wy + LhA;.

Using MATHEMATICA and manual simplification, we finally obtain

~Wi; + W,
. 6(24 — 21327369600 — 1202 + ¢*) N 263/202(—6 + 0?)
- 533184240 99972045+/1
L6 1 n aA(=2+0%) 203/2(1 + 0?)
2 ' 111080057 31
Y S G 320* _ 640°2(1407)
15/t 16662007573/2 457
s 1604 n o(—6+0?) 07/20(—2 +0?)
9997204572 ' 799776360 77756035+/70
" o Jo(l+0?) 1667/203 0°(—2+0?)
222160107 12/ 29991613573/2 1777280800
911/20.2 960.2 970. 915/20. 99

* 244376110/7 * 1332960607t + 7464579360 + 1999440900/ 7t + 76778530560

which is an approximation in a separate form of § and ¢, arranged in an increasing power
of 6 from 0 to 9. Clearly,
Wappro(O/ (7) =0,

which demonstrates that the initial condition is satisfied.
Clearly, the absolute error is

1.1168 % 10°

||Wuppro - Wexact“ <4x0.1=* 2216010~ 0.02. 8)

Remark 1. Since the exact solution to Equation (7) is unknown, we were unable to set up a table
showing absolute errors between the approximate and exact solutions at particular values. In
addition, there is no existing available research for comparison as the equation is new. However,
Inequality (8) has plainly indicated the efficiency of our proposed method for the first two-term
approximation only.
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5. Conclusions

We obtained sufficient conditions for the uniqueness of the bounded solution to the
new Cauchy problem of the fractional nonlinear partial integro-differential Equation (1)
using the multivariate Mittag—Leffler function as well as Banach’s contractive principle.
In addition, we constructed the algorithm for finding analytic and approximate solutions
based on Adomian’s decomposition method and presented an approximation order analy-
sis, with one example showing the applications of the main results. Clearly, the technique
used in this work can be applied to other nonlinear differential equations with initial or
boundary conditions as well as integral equations with variable coefficients.
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