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Abstract: This paper delves into a rapid and accurate numerical solution for the inverse problem of
the nonlinear diffusion equation in the context of multiphase porous media flow. For the realization
of this, the combination of the multigrid method with constraint data is utilized and investigated.
Additionally, to address the ill-posedness of the inverse problem, the Tikhonov regularization is
incorporated. Numerical results demonstrate the computational performance of this method. The
proposed combination strategy displays remarkable capabilities in reducing noise, avoiding local
minima, and accelerating convergence. Moreover, this combination method performs better than any
one method used alone.
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1. Introduction

In the sense of Hadamard [1], a problem is deemed well-posed when the solution
(1) exists, (2) is unique, and (3) is stable (the solution depends continuously on the given
data). If one or more of these conditions are not fulfilled then the problem is called ill-posed,
while the violations of existence and uniqueness can, to some extent, be decreased by using
a minor reformulation of the problem. Violations of stability are much more daunting to
handle since they entail that a small disturbance in the data (e.g., noise) may turn out a
significant disturbance in the solution to be estimated [2–5].

In general, the inverse problems of diffusion equations are ill-posed, that is, their
solution does not fulfill the requirement of the aforementioned conditions in the presence
of a tiny disturbance to the input data. To overcome such difficulties, a variety of methods
have been proposed [6–12]. To date, considerable efforts have been devoted to formulating
accurate and efficient methods of inverse diffusion problems. For example, Rodrigues et
al. [13] employed a conjugate gradient method coupled with an adjoint problem formu-
lation to simultaneously determine the source term distribution and diffusion coefficient
for a one-dimensional nonlinear diffusion problem. Rashedi [14] tackled an inverse dif-
fusion problem by using operational matrices of orthonormal polynomials. Lukyanenko
et al. [15] used an asymptotic-numerical method and location of moving front data to
identify the coefficients of the inverse problem for a nonlinear singularly perturbed two-
dimensional reaction-diffusion equation. Note that the success of these methods critically
hinges on two factors: (1) understanding the specific challenges posed by the inverse
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problems, and (2) solving the mathematical problems that characterize the properties of
these inverse problems.

Based on a nonlinear diffusion equation as the forward problem, one can formulate
the inverse problem of determining the unknown parameter from indirect measured data
as a nonlinear operator equation. The iteration methods, such as Landweber [16,17],
Levenberg–Marquardt [18,19], and Gauss–Newton [20,21], are a natural manner to solve
such equations. However, iteration methods were hindered by issues such as initial guess,
complexity, and convergence. Theoretical convergence analyses and numerical experiments
have demonstrated that these methods have a slow convergence rate and are susceptible to
becoming trapped in a local minimum. Additionally, direct implementations suffer from
prohibitive memory and computational costs, rendering them unsuitable for large-scale
problems. The multigrid method, developed from efforts to overcome these difficulties,
has been proven to be effective to enhance convergence rates and avoid local minimum
traps when used in conjunction with relaxation or iteration methods for solving nonlinear
inverse problems.

The multigrid method is a potent multiscale strategy for conquering a range of calcu-
lation difficulties, including slow convergence in iteration and smooth error components.
Any large-scale nonlinear problem can be discretized into multiple scales. The multigrid
method recursively constructs a series of grids with increasingly coarser scales, combining
individual iterations at each grid with diverse inter-grid interactions. Due to interactions
between coarse and fine grids, the iteration of the original fine grid problem can rapidly
converge to the solution. The multigrid method has been a dynamic approach for solving
forward problems of partial differential equations [22–25]. More recently, this method has
been utilized to address inverse problems in various fields such as heat transfer [26,27],
optical imaging [28–31], biomedical science [32–34], fluids in porous media [35], and eco-
nomics [36,37].

Nevertheless, achieving preferable application in large complex inverse problems
remains a challenge. Under most circumstances, the extremely low signal-to-noise ratio in
the measured data can cause enormous errors in the inversion results. To avoid amplifying
noises attributable to the ill-posedness of the inverse problems, the constraint condition is
introduced. Including constraint data results in a unique and stable solution for the inverse
problem pertaining to the data, thereby transforming the initially ill-posed problem into
a well-posed one [38]. In addition, the constraint data have lower noise since they were
obtained from the interior of the actual model, which can reduce the disturbance of noise
and improve inversion quality. Many applications related to the constraint condition have
been developed in the area of inverse problems [39–42].

The present study puts forth a fresh methodology that employs multigrid iteration
and constraint data to surmount the inverse problem of the nonlinear diffusion equation.
This methodology can enhance the convergence rate and improve the robustness to noise.
We consider the following permeability identification model of the nonlinear diffusion
equation in the multiphase porous media flow:

ut −∇ · (θ(x)Φ(u,∇u)∇u) = η(x, t), (x, t) ∈ Ω× (0, T), (1)

with the boundary and the initial conditions

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T), (2)

u(x, 0) = ξ(x), x ∈ Ω, (3)

subject to the additional condition

u(xh, t) = λ(xh, t), h = 1, 2, . . . , H, t ∈ (0, T), (4)
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where θ is the unknown permeability, Φ is the positive nonlinear diffusion function of u
or ∇u, η is the source function, and λ is the measured data. For brevity, the domain Ω is
assumed to be a unit square. Equations (1)–(4) can be simplified into a nonlinear operator
equation using the finite-difference method. The permeability and measured data can then
be placed into the vectors Θ and Λ, yielding:

Ψ(Θ) = Λ. (5)

Moreover, we impose the constraints, and hence Equation (5) can be reformulated as a
nonlinear constrained optimization problem

min
Θ
‖Ψ(Θ)−Λ‖2, subject to AΘ =

−→
Θ i′ , (6)

where A is a large information matrix indicating where the constraints exist,
−→
Θ i′ is the

constraint data such as well logs, and the vector Λ represents known error-included
measured data, which can be denoted as the following:

Λ = Λ + ε,

where ε represents the error in Λ that may come from measurement and/or discretiza-
tion process.

In the following theorem, the existence conditions of exact solution for direct problem (1)–(3)
are provided. For more details about the solution existence of both the direct and inverse
problems, the interested readers may refer to [43–49].

Theorem 1. Assume that θ(x)Φ(u,∇u)∇u is a Carathéodory function satisfying the classical
Leray–Lions structure conditions [43]. Let 2N+1

N+1 < p < N and ρ be such that

1 < ρ < ρ̄ = (p∗)′ =
Np

Np−N + p
,

where N is the dimension of Ω, and p∗ is the Sobolev conjugate exponent of p (p∗ = Np
N−p ). Then,

there exists a constant σ̄ = σ̄(ρ) satisfying

ρ < σ̄ <
p(ρ + N)− ρN
p(ρ + N)− 2N

,

such that the following holds: if

1 ≤ σ < σ̄, κ = ρ + (σ− 1)
(

ρ + N
N

p− 2
)

and
η ∈ Lσ(0, T; Lρ(Ω)), ξ ∈ Lκ(Ω),

then there exists a solution u of direct problem (1)–(3) such that

u ∈ Lq(0, T; W1,q
0 (Ω)),

where q = σp + (ρ−2σ)N
ρ+N .

Equation (6) can be transformed into an unconstrained optimization problem by
constructing penalty terms, where the constraints are converted into the form of penalty
functions. The proposed method in this study is the use of the multigrid method, with an
iterative method as the relaxation factor for grid correction and smoothing, to obtain an
accurate and fast solution for Equation (5).
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The remainder of the paper is structured as follows: In the next section, we adopt
the finite-difference method to solve the forward problem; describe the inverse problem
with constraints under a discrete setting; and give the iterative method. Section 3 describes
and illustrates in detail the V-cycle multigrid method. Numerical results demonstrating
the performance of the method are presented in Section 4, followed by the conclusions in
Section 5.

2. Inversion Framework and Iterative Method

Given the forward problem defined in Equations (1)–(3), we define ∆t as the discretiza-
tion interval in the temporal dimension, while ∆x and ∆y represent the discretization
intervals of the rectangular grid along the horizontal and vertical directions in the spatial
dimension, respectively. The problem can be discretized with the finite-difference method:

un
i,j−un−1

i,j
∆t −∇ ·

(
θi,jΦn

i,j∇un
i,j

)
= ηn

i,j,
i = 1, 2, . . . , K1 − 1; j = 1, 2, . . . , K2 − 1; n = 1, 2, . . . , K3,
un

i,0 = un
i,K2

= 0, i = 0, 1, . . . , K1,
un

0,j = un
K1,j = 0, j = 0, 1, . . . , K2,

u0
i,j = ξi,j, i = 0, 1, . . . , K1; j = 0, 1, . . . , K2,

un
xh

= λn
xh

, h = 1, 2, . . . , H; n = 1, 2, . . . , K3,

(7)

where
un

i,j = u(i∆x, j∆y, n∆t), ηn
i,j = η(i∆x, j∆y, n∆t),

θi,j = θ(i∆x, j∆y), ξi,j = ξ(i∆x, j∆y), λn
xh

= λ(xh, n∆t),

K1 = 1/∆x, K2 = 1/∆y, K3 = T/∆t,

∇ ·
(

θi,jΦn
i,j∇un

i,j

)
is the discrete form of the nonlinear diffusion term, which can be found in

reference [50]. Subsequently, Equation (7) can construct the nonlinear operator Equation (5),
and

Θ> =
(
θ1,1, θ1,2, . . . , θ1,K2 , θ2,1, θ2,2, . . . , θ2,K2 , . . . , θK1,1, θK1,2, . . . , θK1,K2

)
,

Λ> =
(

λ1
x1

, λ1
x2

, . . . , λ1
xH

, λ2
x1

, λ2
x2

, . . . , λ2
xH

, . . . , λK3
x1 , λK3

x2 , . . . , λK3
xH

)
.

The objective of the considered inverse problem is to infer the unknown parameter
θ(x) using the noisy measured data λ

n
xh

, which can be placed into the vector Λ with the
same sequence as Λ. Consequently, the inverse problem can be reformulated into an
optimization problem represented by

min
Θ
‖Ψ(Θ)−Λ‖2. (8)

To enhance the quality of parameter identification for the inverse problem with an
extremely low signal-to-noise ratio, it may prove advantageous to employ constraint data,
such as internal data with a high signal-to-noise ratio. As such, in the aforementioned
Equation (8), the parameter Θ can be constrained with some known permeability

−→
Θ i′ de-

rived from the well logs of a well situated at point i′ in the horizontal direction. Specifically,
we have −→

Θ>i′ =
(−→

θ i′ ,1,
−→
θ i′ ,2, . . . ,

−→
θ i′ ,K2

)
.

Let A be the matrix

A =


0 0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0
...

...
...

...
...

. . .
...

...
...

...
0 0 · · · 0 0 0 · · · 1 0 0 · · · 0


K2×(K1×K2)
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such that AΘ =
(
θi′ ,1, θi′ ,2, . . . , θi′ ,K2

)>, and Θ satisfy the constraint set containing the
known permeability

Ξ =
{

Θ : θi′ ,j =
−→
θ i′ ,j, j = 1, 2, . . . , K2

}
,

Equation (8) then turns into the following constrained optimization problem:

min
Θ∈Ξ
‖Ψ(Θ)−Λ‖2, (9)

where Θ ∈ Ξ implies that AΘ−−→Θ i′ = 0. So, the constraint condition can be replaced
by a penalty term, and Equation (9) can be further rewritten as an optimization problem
without constraints

min
Θ

{
‖Ψ(Θ)−Λ‖2 + ν‖AΘ−−→Θ i′‖2

}
, (10)

where ν is the penalty parameter. To ensure that the solution of Equation (10) closely
approximates the one of Equation (9), a sufficiently large penalty parameter ν needs to
be selected.

To address the intrinsic ill-posed nature of the inverse problem, some regularization
methods must be included. We introduce Tikhonov regularization, which involves the
addition of second-order smoothing matrices B1 and B2 in the horizontal and vertical direc-
tions, each with corresponding regularized parameters µ1 and µ2. With these regularization
terms in place, the inverse problem is converted to

min
Θ

{
‖Ψ(Θ)−Λ‖2 + ν‖AΘ−−→Θ i′‖2 + µ1‖B1Θ‖2 + µ2‖B2Θ‖2

}
. (11)

By the derivation process of the regularized Gauss–Newton method, an iterative method,
which can be utilized to obtain the solution of Equation (11), is given as follows:

Θk+1 = Θk −
[
Ψ′(Θk)>Ψ′(Θk) + νA>A + µ1B>1 B1 + µ2B>2 B2

]−1
×[

Ψ′(Θk)>(Ψ(Θk)−Λ) + νA>(AΘk −−→Θ i′)+

(µ1B>1 B1 + µ2B>2 B2)Θ
k
]
, k = 0, 1, 2, . . .

(12)

3. Multigrid Method with Constraints

This section describes in detail how the multigrid method is combined with constraint
data to solve the inverse problem of the nonlinear diffusion equation. Let Σ0 denote the
finest grid, and let Σq be a coarse resolution representation of Σ0 with a discretization
interval that is 2q times larger than the finest grid. In order to transfer information between
coarse and fine grids, we define the restriction operators

Hq+1
q : Σq → Σq+1, q = 0, 1, . . . , Q− 1,

and corresponding prolongation operators

Hq
q+1 : Σq+1 → Σq, q = 0, 1, . . . , Q− 1.

By discretizing the inverse problem on the grid Σq, we have the corresponding objec-
tive functional with a form similar to that of Equation (11)

F(q)(Θ(q)) = ‖Ψ(q)(Θ(q))−Λ
(q)‖2 + ν(q)‖A(q)Θ(q) −−→Θ (q)

i′ ‖
2+

µ
(q)
1 ‖B

(q)
1 Θ(q)‖2 + µ

(q)
2 ‖B

(q)
2 Θ(q)‖2.

(13)
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Note that coarsening the grid accelerates the convergence speed, but it does not come
at the expense of reduced discretization accuracy. To illustrate this, take the example of the
two-grid method (see Figure 1).

Iteration

Iteration

Restrict Prolongate

Correction

Figure 1. Schematic illustration of the two-grid method.

The initial approximation Θ
(q)
ini is first iterated by the relaxation operator to obtain a

new approximation Θ(q)

Θ(q) ←− Rq(Θ
(q)
ini , F(q)), (14)

where Rq corresponds to the iterative Equation (12), Θ
(q)
ini is the initial guess, and F(q) is the

objective functional. Then, the new approximation Θ(q) is transferred from the fine grid Σq

to the coarse grid Σq+1 using the restriction operator, obtaining a coarse grid approximation

Θ(q+1) = Hq+1
q Θ(q). (15)

Next, the relaxation operator performs iterations on the coarse gird Σq+1 to obtain the
corrected coarse grid approximation

Θ̃(q+1) ←− Rq+1(Θ
(q+1), F(q+1)). (16)

Finally, use the approximation error e(q+1) on the coarse gird to correct the approximation
on the fine grid, resulting in

Θ̃(q) = Θ(q) +Hq
q+1(Θ̃

(q+1) −Hq+1
q Θ(q)). (17)

Ideally, the updated approximation Θ̃(q) is expected to be better than the previous
approximation Θ(q), that is, F(q)(Θ̃(q)) ≤ F(q)(Θ(q)). However, this may not be true in the
case of inconsistent objective functionals. Figure 2 highlights that the coarse grid correction,
in some cases, could cause the approximation to deviate from the optimal solution.
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Figure 2. Coarse grid correction causes the approximation to deviate from the optimal solution in
general cases.

To this end, we begin by adding a correction term β(q)Θ(q) to the objective functional

F(q)
β (Θ(q)) = F(q)(Θ(q))− β(q)Θ(q)

= ‖Ψ(q)(Θ(q))−Λ
(q)‖2 + ν(q)‖A(q)Θ(q) −−→Θ (q)

i′ ‖
2+

µ
(q)
1 ‖B

(q)
1 Θ(q)‖2 + µ

(q)
2 ‖B

(q)
2 Θ(q)‖2 − β(q)Θ(q),

(18)

where β(q) is aimed at adjusting the functional’s gradient, and in the finest grid case, define
that β(0) = 0. Then, the following additional conditions are imposed to ensure the objective
functionals matching, which leads to the monotonous convergence of the multigrid method.

C1. The initial errors between the model data and measured data are equal on the
coarse and fine grids

Ψ(q+1)(Hq+1
q Θ(q))−Λ

(q+1)
= Ψ(q)(Θ(q))−Λ

(q), (19)

then Λ
(q+1) is given by

Λ
(q+1)

= Λ
(q) −

[
Ψ(q)(Θ(q))−Ψ(q+1)(Hq+1

q Θ(q))
]
. (20)

C2. The equal conditions are also valid on the constraint and regularization terms

ν(q+1)‖A(q+1)Hq+1
q Θ(q) −−→Θ (q+1)

i′ ‖2 = ν(q)‖A(q)Θ(q) −−→Θ (q)
i′ ‖

2,

µ
(q+1)
1 ‖B(q+1)

1 Hq+1
q Θ(q)‖2 = µ

(q)
1 ‖B

(q)
1 Θ(q)‖2,

µ
(q+1)
2 ‖B(q+1)

2 Hq+1
q Θ(q)‖2 = µ

(q)
2 ‖B

(q)
2 Θ(q)‖2,

(21)

ν(q+1), µ
(q+1)
1 , µ

(q+1)
2 can then be written as

ν(q+1) =
‖A(q)Θ(q) −−→Θ (q)

i′ ‖
2

‖A(q+1)Hq+1
q Θ(q) −−→Θ (q+1)

i′ ‖2
ν(q),

µ
(q+1)
1 =

‖B(q)
1 Θ(q)‖2

‖B(q+1)
1 Hq+1

q Θ(q)‖2
µ
(q)
1 ,

µ
(q+1)
2 =

‖B(q)
2 Θ(q)‖2

‖B(q+1)
2 Hq+1

q Θ(q)‖2
µ
(q)
2 .

(22)
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C3. The gradients of the coarse and fine objective functionals ought to be equal, that is,

∇F(q+1)
β (Hq+1

q Θ(q)) = ∇F(q)
β (Θ(q))Hq

q+1, (23)

which makes sure that the optimal solution is a fixed point of the multigrid method (see
Figure 3). Then, applying Equation (23), we have

β(q+1) = ∇F(q+1)(Hq+1
q Θ(q))−∇F(q)

β (Θ(q))Hq
q+1. (24)

Figure 3. Coarse grid correction causes the approximation to converge to the optimal solution after
condition C3 is satisfied.

Ultimately, a stable and convergent V-cycle multigrid method can be constructed by
recursively embedding the two-grid method into itself and enforcing conditions C1, C2,
and C3 (see Figure 4).

Figure 4. Schematic illustration of the V-cycle multigrid method.

4. Numerical Results

In this section, the results obtained by the proposed method are studied. The in-
verse problem, modeled by Equations (1)–(4), is solved by assuming η(x, t) = 0, ξ(x) =
sin(πx) sin(πy), and T = 0.06. The discretization parameters are chosen as ∆x = ∆y = 1

28
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and ∆t = 0.002. We choose for the method parameters i′ = 14
28 , ν = 104, µ1 = µ2 = 10−6,

and Θ
(q)
ini ≡ 5.

4.1. Example 1

As the first example, consider the nonlinear diffusion function Φ(u) = 1 + 1
2 u + u2,

and the true model in Figure 5. The numerical experiments are performed by using the
multigrid method with constraints (MGMC), multigrid method without constraints (MGM),
and fixed-grid method with constraints (FGMC) with 5%, 10%, 15%, and 20% Gaussian
noise measured data, respectively. The inversion results generated by the application of
MGMC are visually presented in Figures 6–9. Obviously, the proposed method is stable
under different levels of noise.
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(a) 3D model.
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(b) 2D profile.

Figure 5. The 2D and 3D views of the true permeability model in Example 1. The color depicts values
of permeability.
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Figure 6. The 2D and 3D views of MGMC inversion result under 5% noise level in Example 1.
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(b) 2D profile.

Figure 7. The 2D and 3D views of MGMC inversion result under 10% noise level in Example 1.
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Figure 8. The 2D and 3D views of MGMC inversion result under 15% noise level in Example 1.
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Figure 9. The 2D and 3D views of MGMC inversion result under 20% noise level in Example 1.

The numerical results of Example 1 are listed in Table 1, which serves as further
evidence of the stability of the proposed method. Even as the noise is increased, there is no
considerable difference in terms of relative error. When the noise is increased to 15%, MGM
leads to divergent solutions, and when the noise reaches 20%, both MGM and FGMC result
in divergent solutions. Additionally, Table 1 presents that the computation time of MGMC
is substantially lower than that of the other two methods. It is apparent that MGCS has
good abilities to suppress noise, avoid local minima, and speed up convergence.
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Table 1. Numerical results of Example 1.

Noise Level MGMC MGM FGMC

Computation times 5% 259.7277 290.8756 499.3136
(seconds) 10% 260.1248 292.8695 504.0138

15% 264.4826 × 510.7545
20% 268.3424 × ×

Relative errors 5% 6.64% 8.17% 6.81%
10% 6.75% 9.11% 7.54%
15% 7.18% × 8.67%
20% 8.31% × ×

4.2. Example 2

The nonlinear diffusion function Φ(∇u) = 1 + 0.1|∇u|2 is considered in this example.
To investigate the sensitivity of method to anomalous bodies, we use the true model
in Figure 10, which has two anomalous bodies. As demonstrated in Figures 11–14, the
inversion results of MGMC are quite satisfactory.
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Figure 10. The 2D and 3D views of the true permeability model in Example 2. The color depicts
values of permeability.
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Figure 11. The 2D and 3D views of MGMC inversion result under 5% noise level in Example 2.
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Figure 12. The 2D and 3D views of MGMC inversion result under 10% noise level in Example 2.
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Figure 13. The 2D and 3D views of MGMC inversion result under 15% noise level in Example 2.
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Figure 14. The 2D and 3D views of MGMC inversion result under 20% noise level in Example 2.

Once again, we conduct a comparison among the aforementioned three methods
in terms of computational efficiency and accuracy. The numerical results of Example 2
are listed in Table 2, which shows that MGMC performs best in all cases, has fast com-
putational speed, and has good noise robustness. Given that the method proposed in
this study effectively combines the features of multigrid techniques in reducing the in-
fluence of local minima with the advantages associated with high signal-to-noise ratio
constraint data, it comes as no surprise that this method reduces the disturbance of noise,
improves the inversion quality, and remains viable in addressing the challenges posed by
anomalous bodies.
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Table 2. Numerical results of Example 2.

Noise Level MGMC MGM FGMC

Computation times 5% 331.7824 360.3283 644.5451
(seconds) 10% 334.5813 366.3703 651.8835

15% 350.5091 × ×
20% 393.5369 × ×

Relative errors 5% 4.97% 7.39% 5.16%
10% 5.13% 8.59% 7.15%
15% 5.39% × ×
20% 6.10% × ×

5. Conclusions

A combination method using the multigrid technique and constraint data has been
employed to solve the inverse problem of the nonlinear diffusion equation in the realm
of multiphase porous media flow. Our method provides several notable advantages.
Firstly, it uses the high signal-to-noise ratio constraint data and Tikhonov regularization
for the associated optimization problem, which greatly overcomes the noise interference
and ill-posed property. Secondly, in the presence of multigrid, our method provides fast
convergence and good accuracy to find the numerical solution. To evaluate the performance
of the proposed method, we consider two illustrative test examples. The numerical results
indicate that combining the multigrid with constraint data serves as a stable and efficient
tool for accurately identifying the permeability model in multiphase porous media flow.
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