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Abstract: In this paper, a thermomechanical problem involving a viscoelastic Timoshenko beam is
analyzed from a numerical point of view. The so-called thermodiffusion effects are also included
in the model. The problem is written as a linear system composed of two second-order-in-time
partial differential equations for the transverse displacement and the rotational movement, and two
first-order-in-time partial differential equations for the temperature and the chemical potential. The
corresponding variational formulation leads to a coupled system of first-order linear variational
equations written in terms of the transverse velocity, the rotation speed, the temperature and the
chemical potential. The existence and uniqueness of solutions, as well as the energy decay property,
are stated. Then, we focus on the numerical approximation of this weak problem by using the
implicit Euler scheme to discretize the time derivatives and the classical finite element method to
approximate the spatial variable. A discrete stability property and some a priori error estimates are
shown, from which we can conclude the linear convergence of the approximations under suitable
additional regularity conditions. Finally, some numerical simulations are performed to demonstrate
the accuracy of the scheme, the behavior of the discrete energy decay and the dependence of the
solution with respect to some parameters.

Keywords: thermodiffusion; viscoelastic Timoshenko beam; finite elements; a priori error estimates;
discrete stability; numerical experiments
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1. Introduction

The Timoshenko system, introduced by S. P. Timoshenko in 1921 [1], is a well-known
mathematical framework that analyzes shear deformation and rotational bending effects
on a beam. In this model, the two main unknowns are the transverse displacement and
the neutral axis rotation caused by bending. Since this pioneering work, the asymptotic
behavior of this type of problem has deserved much attention. In this way, in [2,3] the
energy decay rates were analyzed when the past history was assumed; in [4], the so-
called Kelvin–Voigt dissipation was considered; in [5], a new dynamic thermoviscoelastic
contact problem was studied including a frictional contact; in [6], the uniform stability of a
partially dissipative viscoelastic Timoshenko system was obtained; in [7], the energy decay
was proved for a Timoshenko system with a memory type; the second sound effect was
included in [8,9]. The nonexponential and polynomial energy decay was shown in [10,11]
for a Kelvin–Voigt damping with heat conduction; the well-posedness and the energy decay
(polynomial or exponential, depending on the speeds of wave propagation) was studied
in [12] for a thermoelastic laminated Timoshenko beam; type III thermoelasticity was
included in [13,14]; the long-time dynamics of a Timoshenko system modeling vibrations
of beams with nonlinear localized damping mechanisms was derived in [15]; the global
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stability of Timoshenko systems was considered in [16]; and the well-posedness and
regularity of the viscoelastic Timoshenko beam model, including a comparison with the
widely used Euler–Bernoulli model, is provided in [17].

The second main aspect of the problem studied in this paper is the so-called ther-
modiffusion effect. It started being considered after the Second World War, and it refers
to the coupling among the fields of strain, temperature and mass diffusion, leading to a
random walk of a set of particles from regions of high concentrations to regions of lower
concentrations. It is worth noting that there are many engineering applications, such as
satellite problems, aircraft landing on water, the manufacturing of integrated circuits or
oil extraction. This new diffusion theory was introduced by Nowacki (see [18]) in the
1970s and developed later by Sherief et al. [19]. Recently, this kind of problem has been
considered by other authors. For instance, in [20], a thermodiffusive problem with voids
was analyzed from the analytical point of view; a thermodiffusive model of elasticity was
studied analytically and numerically in [21]; a contact problem with a thermodiffusive
material (not beam) was considered in [22]; a thermodiffusive problem with two time
delays was analyzed in [23]; and the exponential stability of a thermodiffusive Timoshenko
beam was proved in [24].

In this paper, we continue the research started by Ramos et al. [25], where the asymp-
totic behavior of a viscoelastic Timoshenko system was considered, including some numer-
ical simulations performed with a spectral discretization method. Here, we focus on the
theoretical numerical analysis of this problem: a finite element approximation is introduced
and an a priori error analysis is provided, including a discrete stability property. This leads
us to obtain the convergence order or the scheme under some additional regularity assump-
tions. Some numerical simulations are also shown to demonstrate the linear convergence in
an academical example with a known exact solution, and the decay of the discrete energy is
compared for cases with different dissipative mechanisms in the viscoelasticity , following
the examples depicted in [25]. To our knowledge, this is the first time where this type of
thermodiffusive viscoelastic problem is considered from the numerical point of view.

This paper is organized in four sections. In Section 2, the mathematical model is
described, including the conditions on the constitutive coefficients, and the analytical results
provided in [25] are recalled and the variational formulation of the thermomechanical
problem is derived. Then, its fully discrete approximation is introduced in Section 3
by discretizing the time derivatives using the implicit Euler scheme and approximating the
spatial variable by the classical finite element method. The stability of the discrete solutions
and a priori error estimates are proved, from which a convergence order can be shown
under adequate regularity conditions. Finally, the numerical results are shown in Section 4.

2. The Mathematical Model: Analytical Results

In this section, we present the model and state the main analytical results, including
the existence and uniqueness of solutions and an energy decay property (see [25] for
further details).

Let us denote the spatial variable by x, which lies in the interval [0, `]; and t is the time,
which goes from 0 to T, where T > 0 represents the final time. Additionally, the subscripts
x and t indicate the spatial and time derivatives, respectively.

Denoting by ϕ the transverse displacement, ψ the rotation of the neutral axis due
to bending, P the chemical potential and θ the temperature field, the thermomechanical
problem involving a viscoelastic beam with thermodiffusion effects is written as follows:

Find the transverse displacement ϕ : [0, `]× [0, T]→ R, the rotation field ψ : [0, `]×
[0, T] → R, the chemical potential P : [0, `] × [0, T] → R and the temperature field θ :
[0, `]× [0, T]→ R, such that
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ρ1 ϕtt − κ(ϕx + ψ)x − µ1(ϕx + ψ)xt = 0 in (0, `)× (0, T), (1)

ρ2ψtt − αψxx + κ(ϕx + ψ)− γ1θx − γ2Px + µ1(ϕx + ψ)t

−µ2ψxxt = 0 in (0, `)× (0, T), (2)

cθt + dPt − Kθxx − γ1ψxt = 0 in (0, `)× (0, T), (3)

dθt + rPt − HPxx − γ2ψxt = 0 in (0, `)× (0, T), (4)

ϕ(0, t) = ϕ(`, t) = ψ(0, t) = ψ(`, t) = 0 for a.e. t ∈ (0, T), (5)

θ(0, t) = θ(`, t) = P(0, t) = P(`, t) = 0 for a.e. t ∈ (0, T), (6)

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ξ0(x), ψ(x, 0) = ψ0(x) for a.e. x ∈ (0, `), (7)

ψt(x, 0) = ζ0(x), P(x, 0) = P0(x), θ(x, 0) = θ0(x) for a.e. x ∈ (0, `), (8)

where ρ1 = ρA and ρ2 = ρI, with ρ > 0 being the material density, A the cross-sectional
area and I the second moment of the cross-sectional area; κ is related to the modulus of
rigidity and the transverse shear factor; K > 0 is the heat coefficient; H > 0 is the mass
diffusion coefficient; α is related to the Young’s modulus; µ1 ≥ 0 and µ2 ≥ 0 are viscosity
coefficients; and coefficients c, r and d satisfy the condition cr− d2 > 0. Moreover, ϕ0, ξ0,
ψ0, ζ0, P0 and θ0 are given initial conditions.

In the rest of this section, the weak form of the thermomechanical problem (1)–(8) is
obtained. Denote by Y = L2(0, `), and (·, ·) the space and its scalar product, with the usual
norm ‖ · ‖Y. Moreover, let us define the variational space V = H1

0(0, `) with norm ‖ · ‖V .
Let us denote by ξ = ϕt the transverse velocity, and ζ = ψt the rotation speed. There-

fore, integrating Equations (1)–(4) by parts leads to the following variational formulation
of problem (1)–(8).

Find the transverse velocity ξ : [0, T]→ V, the rotation speed ζ : [0, T]→ V, the chem-
ical potential P : [0, T] → V and the temperature θ : [0, T] → V, such that ξ(0) = ξ0,
ζ(0) = ζ0, θ(0) = θ0 and P(0) = P0, and for a.e., t ∈ (0, T) and w, r, s, m ∈ V:

ρ1(ξt(t), w) + κ(ϕx(t), wx)− κ(ψx(t), w) + µ1(ξx(t), wx)− µ1(ζx(t), w) = 0, (9)

ρ2(ζt(t), r) + α(ψx(t), rx) + κ(ϕx(t) + ψ(t), r)− (γ1θx(t) + γ2Px(t), r)

+µ1(ξx(t) + ζ(t), r) + µ2(ζx(t), rx) = 0, (10)

c(θt(t), s) + d(Pt(t), s) + K(θx(t), sx)− γ1(ζx(t), s) = 0, (11)

d(θt(t), m) + r(Pt(t), m) + H(Px(t), mx)− γ2(ζx(t), m) = 0, (12)

where the transverse displacement and the rotation ϕ and ψ are recovered from the
equations:

ϕ(t) =
∫ t

0
ξ(s) ds + ϕ0, ψ(t) =

∫ t

0
ζ(s) ds + ψ0. (13)

Recently, in [25], the following existence and uniqueness result was proved.

Theorem 1. If the initial conditions have the regularity

ϕ0, ψ0, ξ0, ζ0, P0, θ0 ∈ H2(0, `) ∩ H1
0(0, `),

then problem (9)–(13) admits a unique solution with the regularity

ϕ, ψ, P, θ ∈ C([0, T]; H2(0, `)) ∩ C1([0, T]; V).

Moreover, if µ1 > 0, then the solutions to problem (9)–(13) decay exponentially, and if µ1 = 0 and
µ2 > 0, the solutions decay polynomially.

3. An a Priori Error Analysis

In this section, we present the variational problem (9)–(13), introduced in the previous
section, from the numerical point of view. We will carry this out in two steps. First, in order



Mathematics 2023, 11, 2900 4 of 15

to obtain its spatial approximation, we consider a uniform partition of the interval [0, `]
into M subintervals a0 = 0 < a1 < . . . < aM = `, considering a uniform length h =
ai+1 − ai = `/M. Thus, the variational space V is approximated by the finite-dimensional
space Vh ⊂ V, defined as

Vh = {wh ∈ C([0, `]) ; wh
|[ai ,ai+1 ]

∈ P1([ai, ai+1]) i = 0, . . . , M− 1, wh(0) = wh(`) = 0}.

Here, the space P1([ai, ai+1]) denotes the space of polynomials of a degree less or equal
to one in the subinterval [ai, ai+1], i.e., the finite element space Vh is made of continuous
and piecewise affine functions, and h > 0 is the spatial discretization parameter. Moreover,
we define the corresponding discrete initial conditions ϕh

0, ξh
0 , ψh

0 , ζh
0 , Ph

0 and θh
0 in the

following form:

ϕh
0 = Ph ϕ0, ξh

0 = Phξ0, ψh
0 = Phψ0, ζh

0 = Phζ0, Ph
0 = PhP0, θh

0 = Phθ0,

where Ph is the classical finite element interpolation operator over Vh (see [26]).
As a second step, we will discretize the time derivatives. Thus, the time interval [0, T]

is split into N subintervals, denoted by 0 = t0 < t1 < . . . < tN = T, with a uniform time
step size k = T/N and nodes tn = n k for n = 0, 1, . . . , N. As a notation, for a continuous
function z(t), let zn = z(tn), and for a sequence {zn}N

n=0, let δzn = (zn − zn−1)/k be its
divided differences.

Therefore, using the well-known implicit Euler scheme, the fully discrete approxima-
tions of variational problem (9)–(13) are the following:

Find the discrete transverse velocity {ξhk
n }N

n=0 ⊂ Vh, the discrete rotation speed
{ζhk

n }N
n=0 ⊂ Vh, the discrete chemical potential {Phk

n }N
n=0 ⊂ Vh and the discrete temperature

{θhk
n }N

n=0 ⊂ Vh, such that ξhk
0 = ξh

0 , ζhk
0 = ζh

0 , Phk
0 = Ph

0 and θhk
0 = θh

0 , and for n = 1, . . . , N
and wh, rh, sh, mh ∈ Vh,

ρ1(δξhk
n , wh) + κ(ϕhk

nx, wh
x)− κ(ψhk

nx, wh) + µ1(ξ
hk
nx, wh

x)− µ1(ζ
hk
nx, wh) = 0, (14)

ρ2(δζhk
n , rh) + α(ψhk

nx, rh
x) + κ(ϕhk

nx + ψhk
n , rh)− (γ1θhk

nx + γ2Phk
nx, rh)

+µ1(ξ
hk
nx + ζhk

n , rh) + µ2(ζ
hk
nx, rh

x) = 0, (15)

c(δθhk
n , sh) + d(δPhk

n , sh) + K(θhk
nx, sh

x)− γ1(ζ
hk
nx, sh) = 0, (16)

d(δθhk
n , mh) + r(δPhk

n , mh) + H(Phk
nx, mh

x)− γ2(ζ
hk
nx, mh) = 0, (17)

where the discrete transverse displacement and the discrete rotation, ϕhk
n and ψhk

n , are
recovered from the equations:

ϕhk
n = k

n

∑
j=1

ξhk
j + ϕh

0, ψhk
n = k

n

∑
j=1

ζhk
j + ψh

0 . (18)

By using the well-known Lax–Milgram lemma and the assumptions imposed on the
constitutive parameters, it is easy to obtain that the fully discrete problem (14)–(18) has a
unique solution.

We will now prove a discrete stability property for problem (14)–(18).

Lemma 1. Let the assumptions of Theorem 1 hold. It follows that the sequences {ϕhk
n , ξhk

n , ψhk
n , ζhk

n , θhk,
Phk

n }, generated by discrete problem (14)–(18), satisfy the stability estimate

‖ϕhk
n ‖V + ‖ψhk

n ‖V + ‖ξhk
n ‖Y + ‖ζhk

n ‖Y + ‖Phk
n ‖Y + ‖θhk

n ‖Y ≤ C,

where C is a positive constant, which is independent of the discretization parameters h and k.

Proof. Here, we assume that µ1 > 0, for the sake of generality in the estimates obtained
below. Otherwise, some of the calculations would be even easier.
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Taking ξhk
n as a test function in discrete variational Equation (14), we find that

ρ1(δξhk
n , ξhk

n ) + κ(ϕhk
nx, ξhk

nx)− κ(ψhk
nx, ξhk

n ) + µ1(ξ
hk
nx, ξhk

nx)− µ1(ζ
hk
nx, ξhk

n ) = 0.

Using Cauchy’s inequality,

ab ≤ εa2 +
1
4ε

b2, a, b, ε ∈ R, ε > 0, (19)

keeping in mind that

ρ1(δξhk
n , ξhk

n ) ≥ ρ1

2k

{
‖ξhk

n ‖2
Y − ‖ξhk

n−1‖2
Y

}
,

κ(ϕhk
nx, ξhk

nx) ≥
κ

2k

{
‖ϕhk

nx‖2
Y − ‖ϕhk

n−1x‖2
Y

}
,

|µ1(ζ
hk
nx, ξhk

n )| = |µ1(ζ
hk
n , ξhk

nx)| ≤ C‖ζhk
n ‖2

Y + ε‖ξhk
nx‖2

Y,

where ε > 0 is assumed small enough, and the well-known Cauchy–Schwarz inequality,
we obtain the following estimates for the transverse velocity:

ρ1

2k

{
‖ξhk

n ‖2
Y − ‖ξhk

n−1‖2
Y

}
+

κ

2k

{
‖ϕhk

nx‖2
Y − ‖ϕhk

n−1x‖2
Y

}
+ C‖ξhk

nx‖2
Y

≤ C
(
‖ζhk

n ‖2
Y + ‖ψhk

nx‖2
Y + ‖ξhk

n ‖2
Y

)
.

(20)

Now, we obtain the estimates for the rotation speed. Thus, taking ζhk
n as a test function

in discrete variational Equation (15), we have

ρ2(δζhk
n , ζhk

n ) + α(ψhk
nx, ζhk

nx) + κ(ϕhk
nx + ψhk

n , ζhk
n )− (γ1θhk

nx + γ2Phk
nx, ζhk

n )
+µ1(ξ

hk
nx + ζhk

n , ζhk
n ) + µ2(ζ

hk
nx, ζhk

nx) = 0.

Taking into account that

ρ2(δζhk
n , ζhk

n ) ≥ ρ2

2k

{
‖ζhk

n ‖2
Y − ‖ζhk

n−1‖2
Y

}
,

α(ψhk
nx, ζhk

nx) ≥
α

2k

{
‖ψhk

nx‖2
Y − ‖ψhk

n−1x‖2
Y

}
,

κ(ψhk
n , ζhk

n ) ≥ κ

2k

{
‖ψhk

n ‖2
Y − ‖ψhk

n−1‖2
Y

}
,

µ2(ζ
hk
nx, ζhk

nx) ≥ 0,

and using again inequality (19) and the Cauchy–Schwarz inequality, after several simple
calculations, it leads to the following estimates:

ρ2

2k

{
‖ζhk

n ‖2
Y − ‖ζhk

n−1‖2
Y

}
+

α

2k

{
‖ψhk

nx‖2
Y − ‖ψhk

n−1x‖2
Y

}
− (γ1θhk

nx + γ2Phk
nx, ζhk

n )

+
κ

2k

{
‖ψhk

n ‖2
Y − ‖ψhk

n−1‖2
Y

}
≤ C

(
‖ϕhk

nx‖2
Y + ε‖ξhk

nx‖2
Y + ‖ζhk

n ‖2
Y

)
,

(21)

where ε > 0 is assumed small enough.
Thirdly, we provide the estimates on the discrete temperature. Therefore, taking θhk

n as
a test function in variational Equation (16), we obtain

c(δθhk
n , θhk

n ) + d(δPhk
n , θhk

n ) + K(θhk
nx, θhk

nx)− γ1(ζ
hk
nx, θhk

n ) = 0.

By using inequality (19) several times, and keeping in mind that

c(δθhk
n , θhk

n ) ≥ c
2k

{
‖θhk

n ‖2
Y − ‖θhk

n−1‖2
Y + ‖θhk

n − θhk
n−1‖2

Y

}
,

K(θhk
nx, θhk

nx) ≥ 0,
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we find the following estimates:

c
2k

{
‖θhk

n ‖2
Y − ‖θhk

n−1‖2
Y + ‖θhk

n − θhk
n−1‖2

Y

}
− γ1(ζ

hk
nx, θhk

n ) + d(δPhk
n , θhk

n ) ≤ 0. (22)

Finally, we provide the estimates on the discrete chemical potential. Therefore, taking
now as a test function mh = Phk

n in discrete variational Equation (17), we have

d(δθhk
n , Phk

n ) + r(δPhk
n , Phk

n ) + H(Phk
nx, Phk

nx)− γ2(ζ
hk
nx, Phk

n ) = 0.

By again using inequality (19) several times, and keeping in mind that

r(δPhk
n , Phk

n ) ≥ r
2k

{
‖Phk

n ‖2
Y − ‖Phk

n−1‖2
Y + ‖Phk

n − Phk
n−1‖2

Y

}
,

H(Phk
nx, Phk

nx) ≥ 0,

we find the following estimates:

r
2k

{
‖Phk

n ‖2
Y − ‖Phk

n−1‖2
Y + ‖Phk

n − Phk
n−1‖2

Y

}
− γ2(ζ

hk
nx, Phk

n ) + d(δθhk
n , Phk

n ) ≤ 0. (23)

Combining estimates (22) and (23), observing that

d(δθhk
n , Phk

n ) + d(δPhk
n , θhk

n ) =
d
k

{
(θhk

n , Phk
n )− (θhk

n−1, Phk
n−1) + (θhk

n − θhk
n−1, Phk

n − Phk
n−1)

}
,

we find that

c
2k

{
‖θhk

n ‖2
Y − ‖θhk

n−1‖2
Y

}
− γ1(ζ

hk
nx, θhk

n ) +
r

2k

{
‖Phk

n ‖2
Y − ‖Phk

n−1‖2
Y

}
− γ2(ζ

hk
nx, Phk

n )

+
d
k

{
(θhk

n , Phk
n )− (θhk

n−1, Phk
n−1)

}
,

where we have used the constitutive condition cr− d2 > 0.
Combining the previous estimates with (20) and (21), keeping in mind that

−γ1(ζ
hk
nx, θhk

n )− γ2(ζ
hk
nx, Phk

n ) = γ1(ζ
hk
n , θhk

nx) + γ2(ζ
hk
n , Phk

nx),

we obtain

c
2k

{
‖θhk

n ‖2
Y − ‖θhk

n−1‖2
Y

}
+

ρ1

2k

{
‖ξhk

n ‖2
Y − ‖ξhk

n−1‖2
Y

}
+

r
2k

{
‖Phk

n ‖2
Y − ‖Phk

n−1‖2
Y

}
+

κ

2k

{
‖ϕhk

nx‖2
Y − ‖ϕhk

n−1x‖2
Y

}
+

ρ2

2k

{
‖ζhk

n ‖2
Y − ‖ζhk

n−1‖2
Y

}
+

α

2k

{
‖ψhk

nx‖2
Y − ‖ψhk

n−1x‖2
Y

}
+

d
k

{
(θhk

n , Phk
n )− (θhk

n−1, Phk
n−1)

}
≤ C

(
‖ψhk

n ‖2
Y + ‖ϕhk

nx‖2
Y + ‖ζhk

n ‖2
Y + ‖ψhk

nx‖2
Y + ‖ξhk

n ‖2
Y

)
.

Multiplying the above estimates by k and summing up to n, we have

c‖θhk
n ‖2

Y + ρ1‖ξhk
n ‖2

Y + r‖Phk
n ‖2

Y + κ‖ϕhk
nx‖2

Y + ρ2‖ζhk
n ‖2

Y + α‖ψhk
nx‖2

Y + 2d(θhk
n , Phk

n )

≤ Ck
n

∑
j=1

(
‖ψhk

j ‖2
Y + ‖ϕhk

jx ‖2
Y + ‖ζhk

j ‖2
Y + ‖ψhk

jx ‖2
Y + ‖ξhk

j ‖2
Y

)
+ C

(
‖θh

0‖2
Y + ‖ξh

0‖2
Y

+‖Ph
0 ‖2

Y + ‖ϕh
0‖2

V + ‖ζh
0‖2

Y + ‖ψh
0‖2

V

)
.

Finally, since by using condition cr− d2 > 0 again, it follows that

r‖Phk
n ‖2

Y + c‖θhk
n ‖2

Y + 2d(θhk
n , Phk

n ) ≥ C(‖Phk
n ‖2

Y + ‖θhk
n ‖2

Y),

applying a discrete version of Gronwall’s inequality (see, e.g., [27]), we conclude the desired
stability property.
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In the remainder of this section, we will derive some a priori error estimates on the
numerical errors given by ξn − ξhk

n , ζn − ζhk
n , Pn − Phk

n and θn − θhk
n .

Theorem 2. Let the assumptions of Theorem 1 still hold. If we denote by (ϕ, ξ, ψ, ζ, P, θ) the solu-
tion to problem (9)–(13) and by {ϕhk

n , ξhk
n , ψhk

n , ζhk
n , Phk

n , θhk
n }N

n=0 the solution to problem (14)–(18),
then we have the following a priori error estimates, for all wh = {wh

j }N
j=0, rh = {rh

j }N
j=0,

sh = {sh
j }N

j=0, mh = {mh
j }N

j=0 ⊂ Vh,

max
0≤n≤N

{
‖ξn − ξhk

n ‖2
Y + ‖ϕnx − ϕhk

nx‖2
Y + ‖ζn − ζhk

n ‖2
Y + ‖ψnx − ψhk

nx‖2
Y + ‖ψn − ψhk

n ‖2
Y

+‖θn − θhk
n ‖2

Y + ‖Pn − Phk
n ‖2

Y

}
≤ Ck

N

∑
j=1

(
‖ξtj − δξ j‖2

Y + ‖ϕtj − δϕj‖2
V + ‖ξ j − wh

j ‖2
V + ‖ζtj − δζ j‖2

Y

+‖ψtj − δψj‖2
V + ‖ζ j − rh

j ‖2
V + ‖θtj − δθj‖2

Y + ‖θj − sh
j ‖2

V

+‖Ptj − δPj‖2
Y + ‖Pj −mh

j ‖2
V

)
+ C max

0≤n≤N
‖ξn − wh

n‖2
Y + C max

0≤n≤N
‖ζn − rh

n‖2
Y

+C max
0≤n≤N

‖Pn −mh
n‖2

Y + C max
0≤n≤N

‖θn − sh
n‖2

Y

+
C
k

N−1

∑
j=1

(
‖ξ j − wh

j − (ξ j+1 − wh
j+1)‖2

Y + ‖ζ j − rh
j − (ζ j+1 − rh

j+1)‖2
Y

+‖θj − sh
j − (θj+1 − sh

j+1)‖2
Y + ‖Pj −mh

j − (Pj+1 −mh
j+1)‖2

Y

)
+ C

(
‖ξ0 − ξh

0‖2
Y

+‖ϕ0 − ϕh
0‖2

V + ‖ζ0 − ζh
0‖2

Y + ‖ψ0 − ψh
0‖2

V + ‖P0 − Ph
0 ‖2

Y + ‖θ0 − θh
0‖2

Y

)
,

where C is again a positive constant, which does not depend on parameters h and k.

Proof. Again, for the sake of generality in the calculations presented below, we will assume
that µ1 > 0.

As a first step, we obtain some error estimates for the transverse velocity. So, we
subtract variational Equation (9) at time t = tn for a test function w = wh ∈ Vh ⊂ V and
discrete variational Equation (14) to obtain, for all wh ∈ Vh,

ρ1(ξtn − δξhk
n , wh) + κ(ϕnx − ϕhk

nx, wh
x)− κ(ψnx − ψhk

nx, wh)
+µ1(ξnx − ξhk

nx, wh
x)− µ1(ζnx − ζhk

nx, wh) = 0.

Therefore, it follows that for all wh ∈ Vh,

ρ1(ξtn − δξhk
n , ξn − ξhk

n ) + κ(ϕnx − ϕhk
nx, ξnx − ξhk

nx)− κ(ψnx − ψhk
nx, ξn − ξhk

n )
+µ1(ξnx − ξhk

nx, ξnx − ξhk
nx)− µ1(ζnx − ζhk

nx, ξn − ξhk
n )

= ρ1(ξtn − δξhk
n , ξn − wh) + κ(ϕnx − ϕhk

nx, ξnx − wh
x)− κ(ψnx − ψhk

nx, ξn − wh)
+µ1(ξnx − ξhk

nx, ξnx − wh
x)− µ1(ζnx − ζhk

nx, ξn − wh).

Keeping in mind that

ρ1(ξtn − δξhk
n , ξn − ξhk

n ) = ρ1(ξtn − δξn, ξn − ξhk
n ) + ρ1(δξtn − δξhk

n , ξn − ξhk
n ),

ρ1(δξtn − δξhk
n , ξn − ξhk

n ) ≥ ρ1

2k

{
‖ξn − ξhk

n ‖2
Y − ‖ξn−1 − ξhk

n−1‖2
Y

}
,

κ(ϕnx − ϕhk
nx, ξnx − ξhk

nx) = κ(ϕnx − ϕhk
nx, ϕtnx − δϕnx) + κ(ϕnx − ϕhk

nx, δϕnx − δϕhk
nx),

κ(ϕnx − ϕhk
nx, δϕnx − δϕhk

nx) ≥
κ

2k

{
‖ϕnx − ϕhk

nx‖2
Y − ‖ϕn−1x − ϕhk

n−1x‖2
Y

}
,

|µ1(ζnx − ζhk
nx, ξn − ξhk

n )| ≤ C‖ζn − ζhk
n ‖2

Y + ε‖ξnx − ξhk
nx‖2

Y,
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where ε > 0 is assumed small enough, using several time inequalities (19), we obtain the
following estimates for the transverse velocity field, for all wh ∈ Vh,

ρ1

2k

{
‖ξn − ξhk

n ‖2
Y − ‖ξn−1 − ξhk

n−1‖2
Y

}
+

κ

2k

{
‖ϕnx − ϕhk

nx‖2
Y − ‖ϕn−1x − ϕhk

n−1x‖2
Y

}
≤ C

(
‖ξtn − δξn‖2

Y + ‖ϕtn − δϕn‖2
V + ‖ξn − wh‖2

V + ‖ψnx − ψhk
nx)‖2

Y + ‖ξn − ξhk
n ‖2

Y

+‖ϕnx − ϕhk
nx‖2

Y + (δξn − δξhk
n , ξn − wh)

)
. (24)

Now, we obtain the error estimates for the rotation speed. Thus, subtracting variational
Equation (10) at time t = tn for a test function r = rh ∈ Vh ⊂ V and discrete variational
Equation (15), we obtain, for all rh ∈ Vh,

ρ2(ζtn − δζhk
n , rh) + α(ψnx − ψhk

nx, rh
x)− (γ1(θnx − θhk

nx) + γ2(Pnx − Phk
nx), rh)

+κ(ϕnx − ϕhk
nx + ψn − ψhk

n , rh) + µ1(ξnx − ξhk
nx + ζn − ζhk

n , rh) + µ2(ζnx − ζhk
nx, rh

x) = 0,

and so, for all rh ∈ Vh, we have

ρ2(ζtn − δζhk
n , ζn − ζhk

n ) + α(ψnx − ψhk
nx, ζnx − ζhk

nx) + κ(ϕnx − ϕhk
nx + ψn − ψhk

n , ζn − ζhk
n )

−(γ1(θnx − θhk
nx) + γ2(Pnx − Phk

nx), ζn − ζhk
n )

+µ1(ξnx − ξhk
nx + ζn − ζhk

n , ζn − ζhk
n ) + µ2(ζnx − ζhk

nx, ζnx − ζhk
nx)

= ρ2(ζtn − δζhk
n , ζn − rh) + α(ψnx − ψhk

nx, ζnx − rh
x) + κ(ϕnx − ϕhk

nx + ψn − ψhk
n , ζn − rh)

−(γ1(θnx − θhk
nx) + γ2(Pnx − Phk

nx), ζn − rh)
+µ1(ξnx − ξhk

nx + ζn − ζhk
n , ζn − rh) + µ2(ζnx − ζhk

nx, ζnx − rh
x).

Keeping in mind that

ρ2(ζtn − δζhk
n , ζn − ζhk

n ) = ρ2(ζtn − δζn, ζn − ζhk
n ) + ρ2(δζtn − δζhk

n , ζn − ζhk
n ),

ρ2(δζtn − δζhk
n , ζn − ζhk

n ) ≥ ρ2

2k

{
‖ζn − ζhk

n ‖2
Y − ‖ζn−1 − ζhk

n−1‖2
Y

}
,

α(ψnx − ψhk
nx, ζnx − ζhk

nx) = α(ψnx − ψhk
nx, ψtnx − δψnx) + α(ψnx − ψhk

nx, δψnx − δψhk
nx),

α(ψnx − ψhk
nx, δψnx − δψhk

nx) ≥
α

2k

{
‖ψnx − ψhk

nx‖2
Y − ‖ψn−1x − ψhk

n−1x‖2
Y

}
,

κ(ψn − ψhk
n , δψn − δψhk

n ) ≥ κ

2k

{
‖ψn − ψhk

n ‖2
Y − ‖ψn−1 − ψhk

n−1‖2
Y

}
,

using inequality (19) and the Cauchy–Schwarz inequality again, we obtain the following
estimates for all rh ∈ Vh:

ρ2
2k

{
‖ζn − ζhk

n ‖2
Y − ‖ζn−1 − ζhk

n−1‖2
Y

}
+

α

2k

{
‖ψnx − ψhk

nx‖2
Y − ‖ψn−1x − ψhk

n−1x‖2
Y

}
+

κ

2k

{
‖ψnx − ψhk

nx‖2
Y − ‖ψn−1x − ψhk

n−1x‖2
Y

}
−(γ1(θnx − θhk

nx) + γ2(Pnx − Phk
nx), ζn − ζhk

n )

≤ C
(
‖ζtn − δζn‖2

Y + ‖ψtn − δψn‖2
V + ‖ζn − rh‖2

V + ‖ϕnx − ϕhk
nx‖2

Y + ‖ζn − ζhk
n ‖2

Y

+‖ψnx − ψhk
nx‖2

Y + ‖ψn − ψhk
n ‖2

Y + (δζn − δζhk
n , ζn − rh)

)
. (25)

Thirdly, we derive some estimates for the temperature field. Then, we subtract vari-
ational Equation (11) at time t = tn for a test function s = sh ∈ Vh ⊂ V and discrete
variational Equation (16), and we obtain, for all sh ∈ Vh,

c(θtn − δθhk
n , sh) + d(Ptn − δPhk

n , sh) + K(θnx − θhk
nx, sh

x)− γ1(ζnx − ζhk
nx, sh) = 0,

and so, we find that for all sh ∈ Vh,
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c(θtn − δθhk
n , θn − θhk

n ) + d(Ptn − δPhk
n , θn − θhk

n ) + K(θnx − θhk
nx, θnx − θhk

nx)
−γ1(ζnx − ζhk

nx, θn − θhk
n )

= c(θtn − δθhk
n , θn − sh) + d(Ptn − δPhk

n , θn − sh) + K(θnx − θhk
nx, θnx − sh

x)
−γ1(ζnx − ζhk

nx, θn − sh).

Taking into account that

c(θtn − δθhk
n , θn − θhk

n ) = c(θtn − δθn, θn − θhk
n ) + c(δθn − δθhk

n , θn − θhk
n ),

c(δθn − δθhk
n , θn − θhk

n ) ≥ ρ2

2k

{
‖θn − θhk

n ‖2
Y − ‖θn−1 − θhk

n−1‖2
Y

+‖θn − θhk
n − (θn−1 − θhk

n−1)‖2
Y

}
,

−γ1(ζnx − ζhk
nx, θn − sh) = γ1(ζn − ζhk

n , θnx − sh
x),

we have, for all sh ∈ Vh,

c
2k

{
‖θn − θhk

n ‖2
Y − ‖θn−1 − θhk

n−1‖2
Y + ‖θn − θhk

n − (θn−1 − θhk
n−1)‖2

Y

}
+d(δPn − δPhk

n , θn − θhk
n )− γ1(ζnx − ζhk

nx, θn − θhk
n )

≤ C
(
‖θtn − δθn‖2

Y + ‖θn − sh‖2
V + ‖ζn − ζhk

n ‖2
Y + ‖Ptn − δPn‖2

Y + ‖θn − θhk
n ‖2

Y

+(δθn − δθhk
n , θn − sh) + (δPn − δPhk

n , θn − sh)
)

. (26)

Finally, we obtain the estimates for the chemical potential. Thus, subtracting vari-
ational Equation (12) at time t = tn for a test function m = mh ∈ Vh ⊂ V and discrete
variational Equation (17), we find that for all mh ∈ Vh,

d(θtn − δθhk
n , mh) + r(Ptn − δPhk

n , mh) + H(Pnx − Phk
nx, mh

x)− γ2(ζnx − ζhk
nx, mh) = 0,

and so, we have, for all mh ∈ Vh,

d(θtn − δθhk
n , Pn − Phk

n ) + r(Ptn − δPhk
n , Pn − Phk

n ) + H(Pnx − Phk
nx, Pnx − Phk

nx)
−γ2(ζnx − ζhk

nx, Pn − Phk
n )

= d(θtn − δθhk
n , Pn −mh) + r(Ptn − δPhk

n , Pn −mh) + H(Pnx − Phk
nx, Pnx −mh

x)
−γ2(ζnx − ζhk

nx, Pn −mh).

Taking into account that

r(Ptn − δPhk
n , Pn − Phk

n ) = r(Ptn − δPn, Pn − Phk
n ) + r(δPn − δPhk

n , Pn − Phk
n ),

r(δPn − δPhk
n , Pn − Phk

n ) ≥ r
2k

{
‖Pn − Phk

n ‖2
Y − ‖Pn−1 − Phk

n−1‖2
Y

+‖Pn − Phk
n − (Pn−1 − Phk

n−1)‖2
Y

}
,

γ2(ζnx − ζhk
nx, Pn −mh) = γ2(ζn − ζhk

n , Pnx −mh
x),

we have, for all mh ∈ Vh,

r
2k

{
‖Pn − Phk

n ‖2
Y − ‖Pn−1 − Phk

n−1‖2
Y + ‖Pn − Phk

n − (Pn−1 − Phk
n−1)‖2

Y

}
+d(δθn − δθhk

n , Pn − Phk
n )− γ2(ζnx − ζhk

nx, Pn − Phk
n )

≤ C
(
‖Ptn − δPn‖2

Y + ‖Pn −mh‖2
V + ‖ζn − ζhk

n ‖2
Y + ‖θtn − δθn‖2

Y

+‖Pn − Phk
n ‖2

Y + (δθn − δθhk
n , Pn −mh) + (δPn − δPhk

n , Pn −mh)
)

. (27)
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Observing that

d(δθn − δθhk
n , Pn − Phk

n ) + d(δPn − δPhk
n , θn − θhk

n )

=
d
k

{
(θn − θhk

n , Pn − Phk
n )− (θn−1 − θhk

n−1, Pn−1 − Phk
n−1)

+(θn − θhk
n − (θn−1 − θhk

n−1), Pn − Phk
n − (Pn−1 − Phk

n−1))
}

,

c‖θn − θhk
n − (θn−1 − θhk

n−1)‖2
Y + r‖Pn − Phk

n − (Pn−1 − Phk
n−1)‖2

Y
+2d(θn − θhk

n − (θn−1 − θhk
n−1), Pn − Phk

n − (Pn−1 − Phk
n−1)) ≥ 0,

thanks to condition cr > d2, and combining estimates (26) and (27), we obtain

c
2k

{
‖θn − θhk

n ‖2
Y − ‖θn−1 − θhk

n−1‖2
Y

}
+

r
2k

{
‖Pn − Phk

n ‖2
Y − ‖Pn−1 − Phk

n−1‖2
Y

}
+

d
k

{
(Pn − Phk

n , θn − θhk
n )− (Pn−1 − Phk

n−1, θn−1 − θhk
n−1)

}
−γ1(ζnx − ζhk

nx, θn − θhk
n )− γ2(ζnx − ζhk

nx, Pn − Phk
n )

≤ C
(
‖θtn − δθn‖2

Y + ‖θn − sh‖2
V + ‖ζn − ζhk

n ‖2
Y + ‖Ptn − δPn‖2

Y + ‖θn − θhk
n ‖2

Y

+‖Pn −mh‖2
V + (δθn − δθhk

n , θn − sh) + (δPn − δPhk
n , θn − sh) + ‖Pn − Phk

n ‖2
Y

+(δPn − δPhk
n , Pn −mh) + (δθn − δθhk

n , Pn −mh)
)

.

Combining the above estimates with (24) and (25), keeping in mind that

−γ1(ζnx − ζhk
nx, θn − θhk

n )− γ2(ζnx − ζhk
nx, Pn − Phk

n )
= γ1(ζn − ζhk

n , θnx − θhk
nx) + γ2(ζn − ζhk

n , Pnx − Phk
nx),

multiplying the resulting estimates by k and summing up to n, it follows that, for all
{wh

j }n
j=0, {rh

j }n
j=0, {sh

j }n
j=0, {mh

j }n
j=0 ⊂ Vh,

ρ1‖ξn − ξhk
n ‖2

Y + κ‖ϕnx − ϕhk
nx‖2

Y + ρ2‖ζn − ζhk
n ‖2

Y + α‖ψnx − ψhk
nx‖2

Y + κ‖ψn − ψhk
n ‖2

Y
+c‖θn − θhk

n ‖2
Y + r‖Pn − Phk

n ‖2
Y + 2d(Pn − Phk

n , θn − θhk
n )

≤ Ck
n

∑
j=1

(
‖ξtj − δξ j‖2

Y + ‖ϕtj − δϕj‖2
V + ‖ξ j − wh

j ‖2
V + ‖ψjx − ψhk

jx ‖2
Y + ‖θj − θhk

j ‖2
Y

+‖ξ j − ξhk
j ‖2

Y + ‖ϕjx − ϕhk
jx ‖2

Y + (δξ j − δξhk
j , ξ j − wh

j ) + ‖ζtj − δζ j‖2
Y + ‖Pj − Phk

j ‖2
Y

+‖ψtj − δψj‖2
V + ‖ζ j − rh

j ‖2
V + (δζ j − δζhk

j , ζ j − rh
j ) + ‖θtj − δθj‖2

Y + ‖θj − sh
j ‖2

V
+‖Ptj − δPj‖2

Y + ‖Pj −mh
j ‖2

V + (δθj − δθhk
j , θj − sh

j ) + (δPj − δPhk
j , θj − sh

j )

+(δθj − δθhk
j , Pj −mh

j ) + (δPj − δPhk
j , Pj −mh

j )
)
+ C

(
‖ξ0 − ξh

0‖2
Y + ‖ϕ0 − ϕh

0‖2
V

+‖ζ0 − ζh
0‖2

Y + ‖ψ0 − ψh
0‖2

V + ‖P0 − Ph
0 ‖2

Y + ‖θ0 − θh
0‖2

Y

)
.

Now, again using condition cr > d2, we easily find that

c‖θn − θhk
n ‖2

Y + r‖Pn − Phk
n ‖2

Y + 2d(Pn − Phk
n , θn − θhk

n ) ≥ C(‖θn − θhk
n ‖2

Y + ‖Pn − Phk
n ‖2

Y).



Mathematics 2023, 11, 2900 11 of 15

Finally, keeping in mind that

k
n

∑
j=1

(δξ j − δξhk
j , ξ j − wh

j ) = (ξn − ξhk
n , ξn − wh

n) + (ξh
0 − ξ0, ξ1 − wh

1)

+
n−1

∑
j=1

(ξ j − ξhk
j , ξ j − wh

j − (ξ j+1 − wh
j+1)),

k
n

∑
j=1

(δζ j − δζhk
j , ζ j − rh

j ) = (ζn − ζhk
n , ζn − rh

n) + (ζh
0 − ζ0, ζ1 − rh

1)

+
n−1

∑
j=1

(ζ j − ζhk
j , ζ j − rh

j − (ζ j+1 − rh
j+1)),

k
n

∑
j=1

(δθj − δθhk
j , θj − sh

j ) = (θn − θhk
n , θn − sh

n) + (θh
0 − θ0, θ1 − sh

1)

+
n−1

∑
j=1

(θj − θhk
j , θj − sh

j − (θj+1 − sh
j+1)),

k
n

∑
j=1

(δPj − δPhk
j , Pj −mh

j ) = (Pn − Phk
n , Pn −mh

n) + (Ph
0 − P0, P1 −mh

1)

+
n−1

∑
j=1

(Pj − Phk
j , Pj −mh

j − (Pj+1 −mh
j+1)),

k
n

∑
j=1

(δPj − δPhk
j , θj − sh

j ) = (Pn − Phk
n , θn − sh

n) + (Ph
0 − P0, θ1 − sh

1)

+
n−1

∑
j=1

(Pj − Phk
j , θj − sh

j − (θj+1 − sh
j+1)),

k
n

∑
j=1

(δθj − δθhk
j , Pj −mh

j ) = (θn − θhk
n , Pn −mh

n) + (θh
0 − θ0, P1 −mh

1)

+
n−1

∑
j=1

(θj − θhk
j , Pj −mh

j − (Pj+1 −mh
j+1)),

again using a discrete version of Gronwall’s inequality (see [27]), we obtain the desired a
priori error estimates.

The estimates presented in the theorem above can be utilized to determine the con-
vergence order of the approximations provided by the discrete problem (14)–(18). Hence,
provided we assume the following regularity:

ϕ, ψ ∈ H3(0, T; Y) ∩ H2(0, T; V) ∩ C1([0, T]; H2(0, `)),
θ, P ∈ H2(0, T; Y) ∩ H1(0, T; V) ∩ C([0, T]; H2(0, `)),

(28)

by applying some results on the approximation by finite elements (refer to [26]) and
utilizing previous estimates derived in [27], we can demonstrate the linear convergence
of the algorithm. Specifically, we can establish the existence of a positive constant C > 0,
which remains independent of the discretization parameters h and k, such that

max
0≤n≤N

{
‖ξn − ξhk

n ‖Y + ‖ϕn − ϕhk
n ‖V + ‖ζn − ζhk

n ‖Y + ‖ψn − ψhk
n ‖V

+‖θn − θhk
n ‖Y + ‖Pn − Phk

n ‖Y

}
≤ C(h + k).

4. Numerical Results

In this section, we study some problems solved with the numerical approximation
presented previously. We start by checking numerically that the convergence rate of the
algorithm matches the one obtained theoretically. Then, in order to analyze the energy
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decay, we solve three variants of the model: the fully viscoelastic problem, as well as the
partially viscoelastic I and partially viscoelastic II problems.

We note that the problem solved in [25] is slightly different, since the authors impose
Neumann boundary conditions for ψ. With our definition of the model, their problem
is not compatible with our boundary conditions. However, by taking into account their
boundary conditions, we were able to replicate their results.

Finally, it is also worth noting that the numerical resolution of problem (14)–(18) was
implemented in a 4-core 3.40 GHz computer with 16 Gb of RAM by using the well-known
software MATLAB.

4.1. Error Convergence

In order to assess the convergence rate of the implementation (and also to check that it
is correct), we solve a problem with a known analytical solution. We select the following
parameters, which will be kept constant throughout all the numerical experiments unless
specified otherwise:

` = 1; T = 1; ρ1 = 0.1; ρ2 = 1; µ1 = 2; µ2 = 3; γ1 = 2.6; γ2 = 7.5;
κ = 5; K = 9; α = 7; c = 10; d = 2; r = 2; H = 8.

To be able to obtain the analytical solution, we manufacture some artificial sup-
ply terms:

fϕ = −1
10 x et (x5 − 993 x4 + 828 x3 + 1319 x2 − 1485 x + 330

)
,

fψ = −3
2 x et (13 x5 − 3121 x4 + 7144 x3 − 4977 x2 + 821 x + 120

)
,

fθ = 3
5 x et (−500 x5 + 1578 x4 + 2805 x3 − 8344 x2 + 5361 x− 900

)
,

fP = 5
2 x et (−88 x5 + 318 x4 + 9201 x3 − 19004 x2 + 11493 x− 1920

)
.

With these supply terms, the solution for the problem variables are, for all x ∈ (0, 1) and
t ∈ (0, 1),

ϕ(x, t) = x3 et (1− x)3, ψ(x, t) = 3 x3 et (1− x)3,
θ(x, t) = 10 x3 et (1− x)3, P(x, t) = 100 x3 et (1− x)3.

The boundary conditions are homogeneous Dirichlet conditions for all the variables,
and the initial conditions are obtained by substituting t = 0 in the previous expressions.

Under these conditions, we compute the numerical errors for different mesh sizes and
timesteps. The results are compiled in Table 1, and the main diagonal of this table is plotted
in Figure 1. These results agree with Theorem 2, and they show the linear convergence of
the algorithm.

Table 1. Numerical errors for some values of h and k.

h ↓ k→ 5× 10−2 1× 10−2 5× 10−3 1× 10−3 5× 10−4 1× 10−4 5× 10−5 1× 10−5

1× 10−1 0.156721 0.157573 0.157723 0.157851 0.157867 0.157887 0.157882 0.157883

5× 10−2 0.057486 0.056802 0.056903 0.057011 0.057026 0.057038 0.057040 0.057041

2× 10−2 0.021111 0.018167 0.017962 0.017963 0.017974 0.017985 0.017987 0.017988

1× 10−2 0.012934 0.008800 0.008431 0.008225 0.008225 0.008233 0.008234 0.008235

5× 10−3 0.009643 0.004798 0.004291 0.003966 0.003938 0.003931 0.003931 0.003932

2× 10−3 0.008115 0.002616 0.002032 0.001604 0.001559 0.001531 0.001529 0.001529

1× 10−3 0.007801 0.001953 0.001311 0.000853 0.000801 0.000763 0.000759 0.000757

2× 10−4 0.007684 0.001578 0.000822 0.000262 0.000203 0.000160 0.000155 0.000151

1× 10−4 0.007680 0.001560 0.000790 0.000195 0.000131 8.55× 10−5 8.02× 10−5 7.60× 10−5
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Figure 1. Linear convergence of the algorithm.

4.2. Energy Decay

To numerically check the decay rates for the energy, we performed some experiments
with the parameters, boundary conditions and initial conditions listed in the previous
section. However, in this case, we did not have any supply term. In all the cases, we refined
the mesh and the timestep until the solution stopped changing. This resulted in 51 elements
(h = 0.02) and a timestep of k = 10−4 (except in the partially viscoelastic I case; see below).

The results for the fully viscoelastic case (µ1 = 2, µ2 = 3) are plotted in Figure 2, both
in natural (left) and semilogarithmic (right) axes. The straight line in the semilogarithmic
plot (after a brief initial transient) shows that the energy decay is exponential.
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Figure 2. Energy decay for the fully viscoelastic case.

When µ1 = 0 and µ2 = 3, the problem becomes partially viscoelastic (of type I). In
this case, much finer timesteps are required to obtain the solution. This effect is clearly
seen in Figure 3, where we represent the solution obtained for different timesteps (again
in natural and semilogarithmic axes). A timestep of k = 10−6 is required to obtain a
converged solution. Also, as the theoretical results predict, the decay rate of the energy is
not exponential (it is polynomial).
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Figure 3. Energy decay for the partially viscoelastic I model.
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Finally, in the partially viscoelastic II problem (µ2 = 0 and µ1 = 2) shown in Figure 4,
we can see that we recover the exponential decay; however, since the dissipation mechanism
is weaker, some oscillations remain the whole time.
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Figure 4. Energy decay for the partially viscoelastic II model.

5. Conclusions

In this work, a viscoelastic Timoshenko beam problem is analyzed from the numerical
point of view. The thermodiffusion effects were included into the model, continuing the
recently published paper [25], where the existence and uniqueness of solution and the
energy decay were studied from the analytical point of view, and some numerical results
were described by using an spectral method.

A finite element approximation was also derived by using the implicit Euler scheme
to discretize the time derivatives,

and a discrete stability property and an a priori error analysis were proved. From these
results, the linear convergence of the approximation was concluded under some additional
regularity conditions.

Finally, some numerical simulations were performed to demonstrate the predicted
theoretical convergence in an academical example, and the discrete energy behavior de-
pending on the dissipative mechanisms (the viscosity terms) was studied. As a conclusion,
it was shown numerically that if the model was fully viscoelastic or partially viscoelastic of
type II, then the decay was exponential, but if it was partially viscoelastic of type I (µ1 = 0
and µ2 6= 0), then the decay was polynomial. These results are compared directly with
those shown in [25].

As a possible future work, we could consider the extension to the multidimensional set-
ting. From our opinion, the theoretical analysis would be rather similar, but the numerical
implementation could lead to some problems of CPU time, because the case corresponding
to partial type I viscoelasticity needs very refined timesteps.
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