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Abstract: Domain adaptation is a learning strategy that aims to improve the performance of models
in the current field by leveraging similar domain information. In order to analyze the effects of
feature disentangling on domain adaptation and evaluate a model’s suitability in the original scene,
we present a method called feature disentangling and domain shifting (FDDS) for domain adaptation.
FDDS utilizes sample information from both the source and target domains, employing a non-
linear disentangling approach and incorporating learnable weights to dynamically separate content
and style features. Additionally, we introduce a lightweight component known as the domain
shifter into the network architecture. This component allows for classification performance to
be maintained in both the source and target domains while consuming moderate overhead. The
domain shifter uses the attention mechanism to enhance the ability to extract network features.
Extensive experiments demonstrated that FDDS can effectively disentangle features with clear feature
separation boundaries while maintaining the classification ability of the model in the source domain.
Under the same conditions, we evaluated FDDS and advanced algorithms on digital and road
scene datasets. In the 19 classification tasks for road scenes, FDDS outperformed the competition in
11 categories, particularly showcasing a remarkable 2.7% enhancement in the accuracy of the bicycle
label. These comparative results highlight the advantages of FDDS in achieving high accuracy in the
target domain.

Keywords: feature disentangling; domain adaptation; attention mechanism; adaptation separation;
domain shifting

MSC: 68T05

1. Introduction

Compared with traditional machine learning methods, deep learning has powerful
feature-extraction and feature-processing capabilities for solving big data problems and
has achieved remarkable results [1,2]. Nevertheless, when neural networks attempt to
generalize across domains, domain shifting will lead to decreases in performance. It is
challenging to solve this problem [3]. Researchers have made extensive efforts in domain
adaptation, exploring various approaches to facilitate cross-domain generalization [4,5].
Among these strategies, the feature domain adaptation and pixel-level domain adaptation
methods are two of the most prominent.

Feature domain adaptation methods [6,7] learn domain-invariant features by applying
a feature-extraction model in a feature space [8] or a generative adversarial network
model [9]. However, the training process of these methods is difficult to visualize, and
there may be difficulties in capturing domain shifting at the pixel level and some edge
information. In addition, pixel-level domain adaptation methods [10,11] utilize generative
adversarial networks (GANs) [12] to adjust the source domain image in the original pixel
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space, making it resemble an image drawn from the target domain. Both feature- and
pixel-level domain adaptation methods have advantages, and they operate in different
ways [13]. As a result, some methods [14,15] combine feature domain adaptation with
pixel-level domain adaptation to enhance the performance of domain adaptation from
different aspects and achieve significant results.

In recent years, some methods [16,17] have attempted to separate image features into
a potential feature space and extract shared and private components from source and
target domain image samples. The results have shown that feature disentangling has a
positive effect on extracting domain-shared features to a certain extent, thereby improving
the classification accuracy of the target domain’s model [16]. However, these methods
often focus on the shared features of the two domains while overlooking the private
features that may limit performance improvement to some degree [15]. In this context,
one method [18] introduced a state-of-the-art separation methodology that linearly divided
features into content and style components, albeit with a fixed 1:1 ratio for disentangling
content and style features. This fixed ratio may reduce the adaptability of models across
diverse scenes. Oppositely, another model proposed in method [15] incorporated a non-
linear disentangling manifold allowing for flexible determination of the proportion of
content and style features during model training. Therefore, it is crucial to study feature
disentanglement comprehensively.

In a specific scenario, one model needs to fulfill the requirements of the target domain
while maintaining a relatively accurate recognition ability in the source domain. For
instance, when a network model operates on a server, it should use its functions from
the source domain while serving clients in the target domain. To tackle this challenge,
a traditional approach is to train the network model exclusively for the target domain
and then transfer it back to the source domain when necessary. However, this iterative
process results in a significant waste of training resources and fails to meet the needs of
both domains adequately. It remains challenging for a compressed or service-providing
model to simultaneously address the services of both domains [14].

To address the aforementioned issues, we propose a Feature Disentangling and Do-
main Shifting (FDDS) method for domain adaptation. This approach utilizes a non-linear
disentangling technique to separate features from two domains into content and style com-
ponents. The proportion of content features in different domains is determined by learnable
weights, allowing for more accurate feature separation based on the specified proportion.
Furthermore, in addition to providing additional information for feature disentangling, our
method incorporates a domain shifter that enhances the performance of the target domain
while ensuring the performance of the source domain to the maximum extent possible. Un-
like the data calibrator proposed in previous methods [14], our domain shifter incorporates
a dual-attention mechanism, involving both spatial and channel attention [19]. This mech-
anism enables the model to focus on key points within the scene, capture more valuable
image information, and disregard irrelevant details, thereby improving the efficiency of
image-processing.

The contributions of our approach are summarized as follows:

1. We proposed a new non-linear feature disentangling method, which determines the
proportion of content features and style features in source and target domains through
learnable weights. This approach enables the precise separation of content and style
features based on their corresponding proportions;

2. We integrated a dual-attention mechanism involving both spatial and channel at-
tention into the domain shifter network, which preserves the performance of the
source domain after domain shifting. As a result, our model can seamlessly transition
between serving the source and target domains;

3. To evaluate our approach, we conducted experiments in the digit classification and
semantic segmentation tasks. Our method exhibited superior performance compared
to competing approaches, particularly in the semantic segmentation tasks. Specifically,
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our FDDS method outperformed the competition in 11 out of 19 classification labels
and achieves optimal or suboptimal results in 16 categories.

This paper is structured as follows. In Section 1, we introduce the background of the
research, which led to our work. And in Section 2, we introduce the related work in the
field. Section 3 presents the method details of FDDS. Moving on to Sections 4 and 5, we
demonstrate and analyze the numerical results of FDDS on public datasets and discussed
ablation experiments. Finally, we conclude by summarizing the text in full.

2. Related Work
2.1. Deep Domain Adaptation

Transfer learning is a methodology that utilizes known information to learn new
knowledge in unknown fields. Domain adaptation is a type of transfer learning and serves
as a prevalent technique for addressing the transferability of diverse datasets. After Yosinski
et al. [20] explored how to transfer features in neural networks, many feature domain
adaptation methods have emerged. Tzeng et al. [21] built upon this by incorporating an
adaptation layer into the AlexNet, proposing the deep domain confusion (DDC) method.
Long et al. [22] expanded upon DDC, arguing that multi-layer adaptation was superior to
single-layer adaptation, and created the deep adaptation network (DAN). Sun et al. [23]
used the feature scale factor to express the relative importance of features, and captured
the internal manifold structure of data in the low-dimensional manifold subspace, thus
reducing the probability distribution between different domains. Recently, GANs [12] has
become more and more popular. Ganin et al. [24] first combined domain adaptation with
GANs, proposing the domain-adversary neural network (DANN) which leverages GANs
to improve the network’s feature extraction capability. Akada et al. [25] used GANs to learn
the domain invariant features of the network by self-supervised learning, and complete the
transfer from synthetic images to real images.

In order to enhance the interpretability of neural networks, scholars have conducted a
series of studies on pixel-level domain adaptation. Bousmalis et al. [26] utilized a generative
adversarial network to align the distribution of the source domain with the target domain in
pixel space. Pixel-level domain adaptation is beneficial for both assigning labels to images
and improving feature-level domain adaptation. Hence, researchers have attempted to
integrate these two methods. Hoffman et al. [13] were the first to incorporate feature and
pixel-level domain adaptation, introducing cycle-consistent loss to augment the model’s
semantic consistency. Ye et al. [14] further improved the network’s accuracy in the target
domain by introducing a data calibrator, while at the same time ensuring that the classifier
retains its ability to accurately classify the source domain. In this paper, we sought to
improve upon the data calibration mechanism by embedding an attention mechanism
into the network. The attention mechanism [27] enables the network to focus on key
features in the scene, thereby further enhancing the model’s classification accuracy in the
source domain.

2.2. Attention Mechanism in Image Generation

The attention mechanism (AM) was initially applied in the domain of machine trans-
lation. With the development of AM in recent years, AM has emerged as an important
solution for addressing the issue of information overload in the field of image generation.
Chen et al. [28] proposed attention-GAN, which leverages the AM to transform the specific
position of an image while leaving the background unaffected, thus demonstrating the
feasibility of cooperative functioning between the AM and the GAN. Emami et al. [29] intro-
duced self-attention generative adversarial networks (SAGAN) that capture long-distance
dependencies via the AM, enabling the generated image to represent global features, result-
ing in significant success in the field of image generation. Daras et al. [30] proposed the
design of a two-dimensional local attention mechanism to generate the model. By reducing
the attention feature map, operation efficiency was accelerated, and the model became
lightweight. Woo et al. [31] proposed CBAM, which combined the channel and spatial
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attention mechanisms on features, and achieved better results than the single attention
mechanism. Following this, many methods [32] incorporated the attention mechanism into
the network as a component to improve image generation performance. In this paper, we
incorporate the AM into the domain shifter network, effectively rendering it lightweight
and better-equipped to extract key features from the scene.

2.3. Feature Disentangling

In the field of domain adaptation, the research on feature separation methods has
recently aroused people’s interest. Bousmalis et al. [16] learned to divided features into
two components: private and shared features, and demonstrated that the modeling of
private features is helpful to extract domain-invariant features. Gonzalez-Garcia et al. [33]
attempted to separate the private factors in both fields from those that were shared across
fields. Liu et al. [17] proposed a cross-domain feature disentangling, which can connect
information and transmit attributes across data domains. Zou et al. [34] proposed a
joint learning framework to separate identity-related/irrelevant features for personnel
re-identification tasks.

Feature disentangling can also decompose features into style features and content
features. This disentangling method was initially employed in the domain of style transfer
and was extensively investigated in the context of artistic styles. Tenebaum et al. [35]
demonstrated how perceptual systems separate content and style and proposed a bilinear
model to address these two factors. Elgammal et al. [36] introduced a method for separat-
ing style and content on the manifold that represents dynamic objects. Gatys et al. [37]
presented a way to manipulate the content and style of natural images by leveraging
the universal feature representation of convolutional neural networks (CNN) learning.
Zhang et al. [18] linearly separated features into content components and style components.
However, Lee et al. [15] argued that features are not necessarily linearly separable in real-
life scenarios and proposed a non-linear disentangling method to isolate potential variables
on non-linear manifolds. In this paper, we also employ a non-linear disentangling method
to determine the proportion of content features in different fields using learnable weights,
leading to more accurate feature separation based on the content proportion.

3. Materials and Methods
3.1. Model Description

The network architecture of our method is shown in Figure 1. The FDDS network
consists of a domain shifter DS, an encoder E, a feature separator S, a generator G,
two discriminators of source and target domains DA, DB and a perceptual network P.

In the FDDS network, source and target images IA, IB are fed into the model and
initially processed by the domain shifter DS, which is processed IA, IB into IDSA, IDSB and
captures and stores critical information necessary to preserve the model’s classification
ability for the source domain. The images are then passed through the encoder E to
extract their features FA, FB, FDSA, FDSB, respectively. The feature separator utilizes feature
merging factors λ1, λ2 to merge features and decompose the merged features FA

′
, FB

′
into

content and style components, where content features are represented by CA, CB and style
features are represented by SA, SB. The generator G maps the original features FA, FB and
transfers features FA→B, FB→A into the image space. In addition, a pre-trained perceptual
network P is employed to extract perceptual features and enforce constraints on content
and style similarities. In the training phase, two discriminators DA, DB are utilized to
impose adversarial loss constraints on both source and target domains.
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Figure 1. The network architecture of FDDS: (up) The network is composed of a domain shifter, an
encoder, a feature separator, a generator, and the input and output of the model; and (down) the
adversarial loss and perceptual loss of the network.

3.2. Domain Shifter Network

The first step of our method involves utilizing the domain shifter to process the input
image. The network structure of domain shifter is composed of U-Net [38], with the dual
attention mechanism of spatial and channel added during each up-sampling to capture the
inter-channel dependencies and intra-pixel spatial relationships, respectively. This design
enables more effective feature extraction and ultimately leads to superior performance
results [19]. The network architecture of the domain shifter is shown in Figure 2.



Mathematics 2023, 11, 2995 6 of 19

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 20 
 

 

3.2. Domain Shifter Network 

The first step of our method involves utilizing the domain shifter to process the input 

image. The network structure of domain shifter is composed of U-Net [38], with the dual 

attention mechanism of spatial and channel added during each up-sampling to capture 

the inter-channel dependencies and intra-pixel spatial relationships, respectively. This de-

sign enables more effective feature extraction and ultimately leads to superior perfor-

mance results [19].The network architecture of the domain shifter is shown in Figure 2. 

 

Figure 2. Domain shifter network architecture. (The two purple boxes in the figure represent two 

network structures in first layer, and the number of channels and step sizes of other modules not 

shown may be slightly different, which can be inferred by using the feature numbers of different 

dimensions of the results). 

As shown in Figure 2, our domain shifter adopts the U-Net with an attention mech-

anism and two features to extract the network and uses ReLU as the activation function. 

The right three and the corresponding feature map are shown on the left. The features on 

the left require attention-mechanism processing and fusion. 

The structure of the attention mechanism is shown in Figure 3. 

 

Figure 3. The structure of the attention mechanism (  represents matrix multiplication element 

by element, while   represents feature fusion). 

Figure 2. Domain shifter network architecture. (The two purple boxes in the figure represent
two network structures in first layer, and the number of channels and step sizes of other modules
not shown may be slightly different, which can be inferred by using the feature numbers of different
dimensions of the results).

As shown in Figure 2, our domain shifter adopts the U-Net with an attention mech-
anism and two features to extract the network and uses ReLU as the activation function.
The right three and the corresponding feature map are shown on the left. The features on
the left require attention-mechanism processing and fusion.

The structure of the attention mechanism is shown in Figure 3.
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As shown in Figure 3, we adopted a dual-attention mechanism with channel and
spatial concatenation to complete feature extraction and fusion. In Figure 3, the solution of
the channel and spatial attention mechanism is as follows.

F′ = Mc(Fin)⊗ Fin,
F
′′
= Ms(F′)⊗ F′,

Fout = F′ ⊕ F
′′

(1)

where Fin is the input feature, F′ is the feature after channel attention processing, F
′′

is the
image after spatial attention processing, and Fout is the output feature; ⊗ represents the
matrix multiplication element by element, and ⊕ represents feature fusion.

The primary aim of introducing the domain shifter into the network is to ensure the
accuracy of the target domain while preserving the classification accuracy of the source
domain. Specifically, the domain shifter tries to produce analogous results for both the
processed target domain image and the unprocessed source domain image when fed into
the final classifier. This approach effectively preserves the classifier’s classification ability
for the source domain, thereby ensuring its accuracy. To achieve this outcome, the domain
shift must satisfy certain conditions, including but not limited to,

Y(IDSB) ∼ Y(IA), Y(IDSA) ∼ Y(IA) (2)

where Y(IA) represents the classification result obtained by the final classifier when the
input IA, and the same is true for others.

In order to make the classification result better, the domain shifter’s constraints
are as follows,

IDSA ∼ IA, IDSB ∼ IA (3)

The domain shifter deceives the discriminator Dd in the model by the following
loss function,

Ld
DS = E[yalog(D(xa)) + yblog(D(xb))] (4)

where xa, xb represent the sample of the source and the target domain, respectively, and
ya, yb represent the label of the source and the target domain, respectively. E represents
mathematical expectation.

The domain shifter component in the network is trained to adhere to Equation (3).
During the training process, the domain shifter captures and stores specific perturbations
between source and target domain images, while disregarding other irrelevant information.
When training with the source domain, the loss brought by the domain shifter is minimal,
resulting in an almost identical mapping. Conversely, when training with the target domain,
the domain shifter is required to facilitate a transformation that makes the target domain
image more closely resemble the source domain image to deceive the discriminator and
achieve optimal performance.

IDSB = IB + j (5)

where j represents the perturbation learned by the domain shifter in the target domain.

3.3. Feature Disentangling Module

The generalization ability of deep adaptation domain network model largely depends
on the quality of feature disentangling. Therefore, we enhanced the functionality of the
feature disentangling module.

Subsequent to the domain shifter processing the image, the input images IA, IB of both
the source and target domains, along with the image IDSA, IDSB that has been processed
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by the domain shifter, are fed into the encoder E for encoding. This conversion process
translates image information into feature information,

FA = E(IA), FDSA = E(IDSA)
FB = E(IB), FDSB = E(IDSB)

(6)

where E(IA) represents features of encoding the image IA with the encoder E, and the same
is true for others. FA, FB represented the features of source and target domains, respectively.

Subsequent to obtaining the features FA, FB, FDSA, FDSB through the encoder, the fea-
ture separator S will partition these features into two distinct categories, namely content
features CA, CB and style features SA, SB. Content features CA, CB are achieved via pro-
cessing features by S and multiplying ωA, ωB separately. In contrast, style features SA, SB
are generated by subtracting content features CA, CB from two-domain features FA, FB.
This non-linear method of disentangling serves to completely separate content and style
features. In separator S, non-linear mapping is also used to ensure the accuracy of con-
tent features [36]. As a result, Equation (7) accurately represents the methods used for
processing image samples in both the source and target domains,

CA = ωAS(λ1FA + λ2FDSA), SA = FA − CA, where λ1 + λ2 = 1.
CB = ωBS(λ3FB + λ4FDSB), SB = FB − CB, where λ3 + λ4 = 1.

(7)

where ωA, ωB represent the weight parameters for the distribution of the source and target
domains in the content space that has been standardized. The purpose of these parameters
is to minimize feature deviation. λ1, λ2 are balance coefficients for source features FA
and features FDSA, respectively. These coefficients play a critical role in proportionately
integrating features FA, FDSA. Meanwhile, λ3, λ4 serve as balance coefficients for the target
features FB and features FDSB. During training, the value of these coefficients is determined.
The content feature is attained by applying a non-linear function and the learnable feature-
scale parameter ωA, ωB. On the other hand, the style feature is calculated by subtracting
content components from the entire feature.

Feature disentangling is used to transfer features across domains [18], and the specific
combination method is as follows,

FA→B = ωA→BCA + SB, FB→A = ωB→ACB + SA,
where ωA→B = ωB

ωA
, ωB→A = ωA

ωB

(8)

where ωA→B, ωB→A are the weight parameters for the distribution of domain-transfer
images IA→B, IB→A in the standardized content space, and the transfer domain features
FA→B, FB→A are synthesized using learnable scale parameters ωA→B, ωB→A.

During the processing of FDDS, the model can learn all the parameters of Equation
(8). Upon undergoing S processing, content features CA, CB and style features SA, SB are
recombined to produce novel domain transfer features FA→B, FB→A. Then, these transferred
features FA→B, FB→A, along with the features FA, FB in Equation (6) are projected into image
space through the generator G. This leads to the creation of new images IA→B, IB→A, I

′
A, I

′
B

that offer greater value when utilized with a loss function [15]. The image generation
method is as follows,

IA→B = G(FA→B), IB→A = G(FB→A),
I
′
A = G(FA), I

′
B = G(FB),

(9)

where IA→B, IB→A is the domain adaptation image and I
′
A, I

′
B is the reconstructed image.



Mathematics 2023, 11, 2995 9 of 19

3.4. Training Loss

FDDS uses domain shifter DS, encoders E, feature separators S and generators G
to train the network by minimizing the overall network’s loss function Ld, while the
discriminator Dd tries to maximize it,

min
DS,E,S,G

( ∑
d∈{A,B}

max
Dd
Ld) (10)

where the domain d is the source domain A or the target domain B.
The overall loss of the model includes reconstruction loss LRec with balance factor αi,

consistency loss LCon, perceptual loss LPer and adversarial loss LGAN and domain shifter
loss Ld

DS,
Ld = α1Ld

Rec + α2Ld
GAN + α3Ld

Con + α4Ld
Per + α5Ld

DS (11)

where Ld
DS has been discussed in Equation (4), and the following are the details of the

remaining losses.
(a) Reconstruction loss: Loss LR is used to represent that the difference between the

input image Id and the reconstructed image I′d is minimized after E and G training,

Ld
Rec = LR(Id, I′d), where I′d = G

i∈{1,3},j∈{2,4}
(E(λi Id + λj IDSd)) (12)

(b) Adversarial loss: Two discriminators Dd∈{A,B} are used to evaluate the counter-
measure loss on the source and the target domain, respectively [13]. The following is the
countermeasure loss of source domain A to target domain adaptation B,

LB
GAN = Exb∼Pdata(Xb)

[logDB(xb)]

+E(xa ,ya)∼Pdata(Xa ,Ya)
[log(1− DB(IA→B(xa, ya)))]

(13)

where xb represents the sample of the target domain, and (xa, ya) represents the sample
and label of the source domain.

For the adaptation from the target domain B to the source domain A, the same
adversarial loss is also imposed. And the standardization is applied to all layers in G and D,
and the discriminator is used for complex scenes, such as road-scene adaptation, together
with adversarial loss.

(c) Consistency loss: Consistency loss [13] attempts to preserve content and style modules
after re-projecting the domain-transfer image into a representation space represented by,

LA
Con = LR(CA, CA→B) + LR(SA, SB→A) (14)

where LR means to minimize the difference between the input image Id and the recon-
structed image I′d after training in E and G, and the content factor CA→B and style factor
SB→A are extracted from the domain-transfer image IA→B, IB→A through the same encoder
E and separator S, respectively. This loss function serves as a clear incentive to maintain
consistency in scene structure during the process of domain adaptation.

(d) Perceptual loss: In traditional semi-supervised training, the class labels are utilized
as semantic indicators that guide feature disentangling. Conversely, frame training is
capable of disentangling features without the requirement of labeled data. To facilitate
the unsupervised learning of feature disentanglement, we implemented a perceptual
loss [39] in the network, which is a widely employed framework in style transfer. This is
defined as follows,

LA
Per = LA

Content + λLA
Style

LB
Per = LB

Content + λLB
Style

(15)
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where LA
Content,LB

Content are content loss and style loss LA
Style,LB

Style [15]. Defined as follows,

LB
Content = ∑

l∈Lc

‖Pl(IA)− Pl(IA→B)‖2

2
LB

Style = ∑
l∈LS

‖G1(Pl(IB))− G1(Pl(IA→B))‖2

F

(16)

where the set of layers Lc, Ls is a subset of the perceptual network P. The weight parameter
λ balances two losses, and G1 is a function of the matrix, given each layer’s feature l. We
also applied batch normalization to better-stylize the process.

4. Results
4.1. Digit Classification
4.1.1. Dataset

The MNIST dataset [40] is widely employed for handwritten digit recognition, in-
cluding 60,000 training images and 10,000 test images. The SVHN dataset [41] consists
of a vast collection of house number images that have been extracted from Google Street
View. Given that the images in SVHN are real-world images of house numbers taken
from street-level, they present greater difficulty with varying styles and backgrounds.
With 73,257 training images and 26,032 testing images, SVHN is a sizeable dataset. Yet
another typical handwritten digit recognition dataset is the USPS dataset [42], featuring
over 20,000 pictures.

4.1.2. Baselines and Implementation Details

• Source Only: The classifier trained in the source domain is directly used in the target domain;
• DANN [24]: GAN is used to improve the feature extraction ability of the network;
• DSN [16]: Decouple features from private features and common features, and identify
the target domain through common features;
• ADDA [9]: GAN method based on discriminative model;
• CyCADA [13]: Combine features from features and pixels, and introduce cyclic loss
into domain adaptive learning;
• GTA [43]: Using the ideas of generation and discrimination, learning similar features
by using GAN;
• LC [14]: It is equally important to put forward the lightweight calibrator component
and start to pay attention to the performance of the source domain;
• DRANet [15]: Decouple features into style and content features, and propose
nonlinear decoupling;
• CDA [44]: Using two-stage comparison to learn good feature separation boundary;
• Target Only: Training directly in the target domain and testing in the target domain is
equivalent to supervised learning.

In the digit classification task, our initial network adopted LeNet; used the training
set of the source domain to train the network under supervision; and used the task loss to
make it a classifier of the source domain. In order to evaluate the above model, we used
the source code provided by the author and some experimental data provided by LC [14].
The FDDS model was implemented in Pytorch. All the models in this paper were trained
on a single NVIDIA GTX 2080 GPU using CUDA11.7. The running time of our method is
about 4~6 h.

FDDS sets hyper-parameters as follows. In order to train the source domain classifier,
we added adversarial loss and perceptual loss to the network. During the source domain
classifier’s training, we set the learning rate to 1 × 10−4 and the batch size to 128, then
trained 200 epochs to add to the network. In the process of domain shifting, we refer to the
training parameter setting of LC [14], and set the learning rate to 1 × 10−5, the batch size
to 128, and trained 200 epochs. The reason why the learning rate decreases in the domain
shifting process is that we do not want to update the generator parameters too early, which
would result in a poor training effect.
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4.1.3. Experimental Process

We evaluated the performance of the FDDS model on three prevalent digit datasets:
MNIST [40], SVHN [41], and USPS [42]. The network training used the identical data-
processing and LeNet architecture as [13], and performed three unsupervised domain
adaptation tasks: MNIST to USPS, USPS to MNIST and SVHN to MNIST.

We set up two experimental groups: MNIST to USPS and USPS to MNIST. We wanted
to train a classification model that performed well on both USPS and MNIST tasks. In this
context, MNIST and USPS are each other’s source and target domains, and the experiments
aimed to investigate the effect of domain exchange between the two domains.

In the SVHN to MNIST task, while the SVHN samples differed significantly in back-
ground and scale from those of the MNIST, the digital shape of the primary content
remained relatively unchanged. In contrast, the digital shape of handwritten digits in
the MNIST was subject to significant variability due to handwriting, thereby presenting
a well-defined yet challenging domain adaptation scene. Lastly, the model was assessed
using 1000 MNIST samples to gauge its performance.

Therefore, we conducted three groups of experiments, MNIST to USPS, USPS to
MNIST and SVHN to MNIST, and compared FDDS with other competitive methods, in
which the source only and target only were used as the control group, which, respectively,
represented the results of training only using the source/target domain; DANN [24],
DSN [16], ADDA [9] and GTA [43] use traditional feature separation methods to separate
features into private and shared parts; CyCADA [13] and DRANet [15] separate features
into style and content; and LC [14] and CDA [44] both use lightweight components and
confrontation generation networks to realize domain adaptation. The numerical results of
these methods are shown in Table 1.

Table 1. Accuracy comparison of FDDS to state-of-the-art methods on domain adaptation for digit
classification (%).

Method MNIST to USPS USPS to MNIST SVHN to MNIST

Source Only 80.2 44.9 67.1
DANN (2014) [24] 85.1 73.0 70.7

DSN (2016) [16] 85.1 - 82.7
ADDA (2017) [9] 90.1 95.2 80.1

CyCADA (2018) [13] 95.6 96.5 90.4
GTA (2018) [43] 93.4 91.9 93.5
LC (2020) [14] 95.6 97.1 97.1

DRANet (2021) [15] 97.6 96.9 -
CDA (2023) [44] 96.6 97.4 96.8

Ours 98.1 97.6 96.9

Target Only 97.8 99.1 99.5
The optimal performance is bold, and the suboptimal performance is underlined.

As shown in Table 1, FDDS, as an unsupervised learning algorithm, achieved the same
performance as directly applying labeled target domain training in the MNIST to USPS
task. This is due to the network structure’s ability to increase the number of source domain
images to match the quantity of target domain samples. By comparing results from MNIST
to USPS and USPS to MNIST, it becomes clear that FDDS maintains its efficacy even when
the source and target domains are interchanged. The adaptation learning data augmenta-
tion in depth domain, which is based on feature disentangling, brings the classifier closer
to target-only model training. Additionally, the attention mechanism incorporated into the
network aids in generating images during training and helps to differentiate features into
content and style components. The results reveal that the model effectively separates the
representation of content and style while preserving key features of each domain, thereby
achieving outstanding results in digital classification that surpass those of most competing
methods. Notably, in the MNIST to USPS task, FDDS’s unsupervised digit recognition
accuracy was 0.3% higher than that of supervised training using only the target domain.
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4.2. Semantic Segmentation Task
4.2.1. Dataset

Compared with digit classification, semantic segmentation tasks are more complex.
In order to compare with baselines and explore FDDS’s domain adaptation performance
in complex scenes, we used GTA5 [45] to Cityscapes [46] to complete the semantic seg-
mentation task. The GTA5 and Cityscapes are 19 classes of classic public datasets, which
have high-quality labeled images at the pixel level. Many methods (such as LC [14] and
DRANet [15]) use GTA5 and Cityscapes as source and target domain, respectively, for
unsupervised domain adaptation tasks. Compared with some methods, such as [47,48]
which completed 13 classes of SYNTHIA [49] to the Cityscapes [46] task, our 19 classes task
was more complex and better reflected the performance of domain adaptation.

The GTA5 [45] dataset is a computer-generated dataset of driving scenes, while
the Cityscapes [46] dataset comprises genuine driving scenes captured in real-world
environments. The GTA5 dataset contains 24,966 labeled RGB image samples sized at
1914 × 1052 pixels, with each image depicting an object or entity that commonly appears
within 19 distinct classes. The Cityscapes dataset consists of 5000 labeled RGB images sized
at 2040 × 1016 pixels, gathered from 50 different cities. Our next experiment used these
two road scene datasets to explore the domain shift from synthetic images to real images.

4.2.2. Baselines and Implementation Details

• Source Only: The classifier trained in the source domain is directly used in the target domain;
• FCNs [50]: A classical pixel-level method for semantic segmentation using full
convolution networks;
• CyCADA [13]: Combine features from features and pixels, and introduce cyclic loss
into domain adaptive learning;
• SIBAN [51]: Classify by extracting shared features;
• LC [14]: It is equally important to put forward the lightweight calibrator component
and start to pay attention to the performance of the source domain;
• DRANet [15]: Decouple features into style and content features, and propose
nonlinear decoupling;
• Target Only: Training directly in the target domain and testing in the target domain is
equivalent to supervised learning.

In the task of semantic segmentation, the initial network of FCN uses VVG-16-FCNS,
and the rest of the methods use DRN-26 [52]. The training set of the source domain was
used to train the network under supervision, and the task loss was used to make it a
classifier of the source domain. In order to evaluate the above model, we used the source
code provided by the author and some experimental data provided by SIBAN [51]. Our
model, FDDS, was implemented in Pytorch. All the models in this paper were trained on
an NVIDIA GTX 2080 GPU using CUDA11.7.

During the source domain classifier’s training, we set the learning rate to 1 × 10−3,
SGD momentum to 0.9, and the batch size to 8. Under these conditions, 120 iterations
were trained. Because semantic segmentation requires higher-quality images, we prepro-
cessed the images in the dataset, adjusted the image size to 1024 × 1024 pixels, and used
400 * 400 random pixel blocks for training. Due to memory limitations, we could only train
one group of images at a time (a source domain image and a target domain image, the size
of which is the same as the input size of domain shifter, which is 572 × 572). During the
process of domain shifting, due to the large scale of the dataset and the complex task of
semantic segmentation, we only trained 20 epochs in our experiment, and the running time
was 8–10 h.

4.2.3. Experimental Process

In order to demonstrate the practicality of our model in complex real-world scenarios,
we employed the GTA5 and Cityscapes datasets, which contain driving-scene images with
dense annotations, representing a significantly more challenging task than the previous
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digit classification task. Training our model on 24,966 images from the GTA5 dataset and
2975 images from the Cityscapes, we employed 19 common classes to facilitate adaptation
from synthetic to real-world settings. Figure 4 depicts the mutual transformation between
the source and target domains.
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To evaluate the semantic segmentation performance, we used three metrics: mean
intersection-over-union (mIoU), frequency weighted intersection-over-union (fwIoU), and
pixel accuracy (PixelAcc). We used the DRN-26 model [52] in CyCADA [13] as our source
classifier, which was trained in stylized GTA5 images. To achieve adaptation from synthetic
to real-world settings, we trained the DRN-26 model on 19 common classes.

In the task of GTA5 to Cityscape, we identified 19 classes, and compared FDDS with
other competitive methods. Among them, FCN [50] is a classical semantic segmenta-
tion method, SIBAN [51] is a classification method that extracts shared features, and the
linear/non-linear disentangling method was adopted from CyCADA [13], LC [14] and
DRANet [15], which was the closest to our method. Numerical results reflecting the accu-
racy between FDDS and the competing methods under identical conditions are presented
in Table 2.

Table 2 shows that our proposed method achieves superior results across all three
main semantic segmentation metrics: mIoU, fwIoU and pixel accuracy PixelAcc. Among
them, the pixel accuracy improved by 0.8%. There were 19 classes in the dataset, FDDS
achieved optimal performance in 11 classes and optimal or suboptimal performance in
16 classes. Specifically, the accuracy of FDDS for the terrain label was improved by 1.1%,
and that of the bicycle label was improved by 2.7%. In the case of single source domains
and single target domains, our method performed well in the classes with obvious features
(such as roads and buildings). This is because we used non-linear adaptation disentangling
for feature comparison, which effectively reduces the differences between domains and
improves the recognition accuracy of these classes. In contrast, although the domain
shifter increased the number of samples compared with other methods, we also found
the limitations of the FDDS method, which is that for classes with less training data or
relatively changeable appearances, such as poles and trains, the classification performance
lacks advantages.



Mathematics 2023, 11, 2995 14 of 19

Table 2. Accuracy comparison of FDDS to state-of-the-art methods for the semantic segmentation
task on the road scene (%).

Road Sidewalk Building Wall Fence Pole Traffic
Light

Traffic
Sign Vegetation Terrain Sky

Source Only 42.7 26.3 51.7 5.5 6.8 13.8 23.6 6.9 75.5 11.5 36.8

FCNs (2015) [50] 70.5 32.3 62.2 14.8 5.4 10.8 14.3 2.7 79.3 21.2 64.6
CyCADA (2018) [13] 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0

SIBAN (2019) [51] 83.4 13.1 77.8 20.3 17.6 24.5 22.8 9.7 81.4 29.5 77.3
LC (2020) [14] 83.5 35.2 79.9 24.6 16.2 32.8 33.1 31.8 81.7 29.2 66.3

DRANet (2021) [15] 83.5 33.7 80.7 22.7 19.2 25.2 28.6 25.8 84.1 32.8 84.4
Ours 84.1 35.7 80.9 23.5 20.7 26.7 29.0 27.5 84.5 33.9 79.6

Target Only 97.3 79.8 88.6 32.5 48.2 56.3 63.6 73.3 89.0 58.9 93.0

Person Rider Car Truck Bus Train Motorbike Bicycle mIoU fwIoU Pixel
Acc.

Source Only 49.3 0.9 46.7 3.4 5.0 0.0 5.0 1.4 21.7 47.4 62.5

FCNs (2015) [50] 44.1 4.3 70.3 8.0 7.2 0.0 3.6 0.1 27.1 - -
CyCADA (2018) [13] 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5 72.4 82.3

SIBAN (2019) [51] 42.7 10.8 75.8 21.8 18.9 5.7 14.1 2.1 34.2 - -
LC (2020) [14] 63.0 14.3 81.8 21.0 26.5 8.5 16.7 24.0 40.5 75.1 84.0

DRANet (2021) [15] 53.3 13.6 75.7 21.7 30.6 15.8 20.3 19.5 40.6 75.6 84.9
Ours 52.9 15.3 75.8 21.8 31.3 9.7 20.9 26.7 41.1 76.2 85.7

Target only 78.2 55.2 92.2 45.0 67.3 39.6 49.9 73.6 67.4 89.6 94.3

The optimal performance is bold, and the suboptimal performance is underlined.

5. Discussion
5.1. Feature and Pixel-Level Domain Adaptation

Initially, we conducted an evaluation of transfer in both pixel and feature spaces. Our
empirical investigations led us to the conclusion that when migrating USPS and MNIST
datasets—two domains exhibiting a relatively small range of transfer learning in pixel
space— utilizing images translated by CycleGAN proves highly effective. Indeed, this
approach outperforms prior standard domain adaptation methods in terms of both perfor-
mance and accuracy, and it is comparable to state-of-the-art domain adaptation approaches.
Under these circumstances, pixel-level domain adaptation has proven highly advantageous.
Conversely, when migrating from the source domain SVHN to the target domain MNIST,
we found that feature-level domain adaptation significantly outperformed pixel-level do-
main adaptation. Consequently, it becomes beneficial to combine the two approaches,
leveraging their respective strengths to produce a novel model with high performance
across diverse domains.

5.2. Feature Disentangling Method

We propose a new feature separator that is non-linear and distinct from previous
linear disentangling approaches. Our separator leverages the domain normalization factor
to achieve separation. To demonstrate the effectiveness of our approach, we conducted
various combination experiments in the framework, controlling variables and assessing
network structure performance and classification results for domain adaptation tasks. The
experimental results reveal showed that combining non-linear feature disentangling with
the normalization factor yielded superior results than other experiments.

In the process of deep learning, normalization and standardization allow the data to
better respond to the activation function and improve the expressiveness of the data. In our
method, we set the normalization factor to 255, and map the RGB image [0, 255] to the [0, 1]
interval during image preprocessing, so as to complete the normalization. Then, the mean
and standard deviations of the RGB images were used to complete the standardization.
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After this processing, the average value of the sample is 0 and the standard deviation is 1,
which makes the model converge more easily.

In the domain adaptation task involving MNIST and MNIST-M datasets, since both
datasets comprise identical content representations, all models exhibited reasonable perfor-
mance even in the absence of non-linear and normalization factors. It is worth mentioning
that MNIST-M denotes a variant of MNIST utilized for unsupervised domain adapta-
tion, wherein background images are replaced, yet each MNIST number is preserved.
Conversely, for MNIST and USPS adaptation, there is a significant divergence in content
representation. In this case, models without these two components exhibited inadequate
classification performance on one side, indicating that the model can only accommodate
orientation domain adaptation (e.g., MNIST to USPS or USPS to MNIST) in the same
manner as existing approaches. The numerical results are presented in Table 3.

Table 3. The effect of non-linear disentangling and normalization of our method (%).

Non-Linear
Disentangling Normalization USPS to

MNIST
MNIST to

USPS
SVHN to
MNIST

86.2 12.7 70.4√
90.5 91.6 83.5√
91.1 97.3 90.6√ √
97.6 98.1 96.9

As shown in Table 3, our model introduced non-linear disentangling and normal-
ization, which outperformed all the experimental conditions in three tasks. In the three
tasks, nonlinear disentangling and normalization both improved the accuracy of domain
adaptation. Our experiments indicate that non-linear mapping improves feature disen-
tangling, leading to a significant enhancement in performance. As mentioned in [15],
the non-linear mapping of features provides an advantage for clear separation and rep-
resentation to a greater extent. Moreover, our findings showed that the normalization
factor further enhances domain adaptation performance beyond the original experimental
setup. Thus, we conclude that both factors play a crucial role in feature disentangling and
unsupervised adaptation.

5.3. Domain Shifter Component

As previously discussed, one of the primary constraints of existing domain adaptation
approaches is the inability of the same model to serve both the source and target domains.
Typically, when confronted with a new target domain, most current domain adaptation
methods require fine-tuning of the deployed model parameters [53,54]. However, the model
running on the server operates within a specific environment and modifying parameters is
not always feasible. Undoubtedly, adapting the running model to the new domain is a time-
consuming and costly process unsuitable for time-sensitive applications. In comparison,
our proposed method achieves adaptability without updating the running model but
merely by integrating a domain shifter, offering greater flexibility when facing novel fields.

While some existing methods enhance target domain performance, they typically do
so at the expense of source domain performance. In contrast, our approach maintains
strong performance across both domains. To demonstrate the efficacy of our method, we
assessed its performance against that of ADDA [9], CyCADA [13], and LC [14] before and
after domain adaptation in the SVHN to MNIST task, as illustrated in Table 4.
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Table 4. Comparison of some methods in SVHN to MNIST tasks (%).

Method Source Acc.
(Before Adapt)

Source Acc.
(After Adapt)

TargetAcc.
(After Adapt)

ADDA (2017) [9] 90.5 67.1 80.1
CyCADA (2018) [13] 92.3 31.4 90.4

LC (2020) [14] 93.9 90.8 97.1
Ours 94.1 92.6 96.9

Table 4 shows that ADDA [9] and CyCADA [13] fail to account for the source do-
main performance following domain adaptation. In addition, LC [14] utilizes a data
calibrator to significantly enhance the source domain performance post-adaptation. In
contrast, FDDS achieved nearly equivalent source domain performance post-adaptation
relative to its performance prior to adaptation. Thus, FDDS offers clear advantages over
competing methods.

In Section 3.1, we noted that domain adaptation methods face limitations in their ability
to switch flexibly between source and target domains in certain instances. For models
providing services, switching between the two domains demands significant resources,
which may not be sufficient in time-sensitive applications. However, our proposed method
circumvents this issue as it does not necessitate modifications to the model being served.
By incorporating a domain shifter, our approach boasts greater versatility in adapting to
new fields. Notably, our model is capable of operating in both source and target domains,
which is made possible by the inclusion of the domain shifter.

Furthermore, the incorporation of a domain shifter results in moderate overhead. As
a component of the network, the introduction of domain shifter into any neural network
will inevitably increase the overhead. By comparing the number of parameters between
the original network and the domain shifter, we can roughly estimate the overhead of
adding the domain shifter. We tested the number of parameters of the classifier and the
domain shifter. In the case of digit classification, LeNet comprises 3.1 million parameters,
whereas the domain shifter accounts for only 0.19 million parameters, representing a mere
6.12% of the model’s total parameters [14]. The relationship between domain shifters and
the number of parameters in the original network are shown in Table 5.

Table 5. The number of parameters comparison of domain shifter to original network on two tasks.

Original
Network (ON)

Num of Param.
in ON (M)

Num of Param.
in DS (M)

Radio of DS to
ON (%)

Digit
Classification LeNet 3.1 0.19 6.12

Semantic
Segmentation DRN-26 20.6 0.06 0.29

DS represents domain shift, M represents million.

Table 5 shows the radio of the number of parameters of domain shifter in the original
network. Due to different networks, the number of parameters of domain shifter is also
different, but from our experimental results, the overhead of the domain shifter is indeed
moderate compared with today’s large network model. We therefore conclude that, when
compared to the larger model being served, the domain shifter, a lightweight component,
bolsters the model’s ability to identify the source domain without imposing significant
overhead on the network.

6. Conclusions

In this paper, we proposed a method of the feature disentangling and domain shifting
(FDDS) for domain adaptation. We adopted a lightweight domain shifter component which
stored the relevant information of the source domain by adding perturbation to the target
domain and generated an image close to the source domain. We added a dual-attention
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mechanism from the spatial and channel levels in the domain shifter to fuse features. In the
feature disentangling, we used learnable weights to nonlinearly decompose a single feature
into two parts, namely content and style, and recombined the two parts in different domains
to generate domain-transfer images. In the process of domain transfer, FDDS utilized
synthetic images to generate realistic domain-transfer images, and achieved performance
in various visual recognition tasks, such as image classification and semantic segmentation.
The domain shifter with the attention mechanism demonstrated the excellent network
performance in the target domain while preserving the classification ability of the source
domain, which verified the effectiveness of the attention mechanism in feature extraction
in the image-generation field. The results showed that FDDS not only performed well in
the digit classification task, but also had higher accuracy than previous methods in the
complex cityscapes task. As an unsupervised domain adaptation method, the performance
of FDDS was close to that of supervised learning using the target domain. In addition,
FDDS is currently suitable for domain adaptation in both single source and single target
domains; the limitation is that in the case of less training data, there is no advantage in the
transfer effect and classification performance. In the future, this framework can be extended
to domain adaptation across three or more domains and can use data augmentation to
generate more data to achieve multi-directional transfer from the source domain to multiple
target domains. Our work has research significance for domain adaptation methods in
complex scenes, as well as in potential applications such as autonomous driving technology
in automobile industry tasks.
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