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Abstract: To protect our environment, current firms are committed to the circular economy and
process maintenance strategies to reduce the waste of resources. In this way, they can also save costs
and create an enterprise image and value. Therefore, this study explores an imperfect production
system with a circular economy and process maintenance activities, wherein the defective products
can be converted into scrap returns (i.e., secondary raw materials) and products can be manufactured
using mixed materials containing scrap returns. The proposed system considers multiple products
with varying feed rates of scrap returns. According to the scenario of the aforementioned production
system, this paper develops a production–inventory model aimed at cost minimization, in which the
production run time, purchased quantity of material, number of maintenance times, and recovery
rate are decision variables. Furthermore, we also develop a computational algorithm to obtain these
optimal solutions efficiently. Finally, the numerical and sensitivity analyses based on a practical case
are presented to illustrate the applicability of our method and some managerial implications. For
example, both strategies efficiently reduce the total cost per unit time in the proposed numerical
example. The sensitivity results can be used to determine the optimal combination of two strategies
and the execution moment under various changes in cost parameters.

Keywords: inventory; circular economy; imperfect processes; maintenance; scrap returns

MSC: 90B05

1. Introduction

The economic production quantity (EPQ) model is common in research involving
production–inventory problems. The primary objective of EPQ is to identify the optimal
production quantity or production run time, with the aim of minimizing costs or maximiz-
ing profits. Drawing from the EPQ model’s structure, several researchers have incorporated
diverse manufacturing scenarios into their models, enhancing their practicality in real-
world applications. Multiple-stage production is a common system among them. For
instance, products typically undergo arduous processing procedures, including molding,
cutting, grinding, painting, assembling, and more. Inventory-related costs arise from the
temporary storage of work-in-process goods between stations as a consequence of the
varying production speeds at each processing station. Therefore, inventory management in
a multi-stage production system is challenging from a practical and academic perspective.

The traditional linear economy pattern follows the take–make–dispose scheme [1],
which leads to the irrational use of available resources. To protect our environment, current
firms have committed to the circular economy for scrap recycling and low waste during the

Mathematics 2023, 11, 3041. https://doi.org/10.3390/math11143041 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143041
https://doi.org/10.3390/math11143041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1339-7057
https://orcid.org/0000-0001-7234-3107
https://doi.org/10.3390/math11143041
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143041?type=check_update&version=1


Mathematics 2023, 11, 3041 2 of 16

manufacturing process. According to the Ellen MacArthur Foundation [2], the most recent
schematic diagram comparing the linear economy and the circular economy. highlights the
recovery process taking place within the factory, which involves the conversion of defective
products (or waste) into scrap returns. This process represents an inner circular economy
and serves as a manifestation of green manufacturing, with the objective of reducing the
usage of natural resources, pollution, and waste, promoting recycling and material reuse,
and regulating emissions in various processes. Nowadays, numerous green manufacturing
industries have adopted circular economy measures and achieved significant outcomes.
One notable example is the utilization of sulfuric acid as a crucial raw material in the
semiconductor etching process. Over the past few years, semiconductor manufacturers
have dedicated themselves to investing in waste sulfuric acid purification technology
to reduce the reliance on natural sulfur mining. In the manufacturing sectors of metal
and plastic products, defective items can be repurposed into secondary raw materials
by utilizing the melting process. The scrap metal industry is growing in the Sunyani
Municipality, and a similar trend is likely to be observed in other cities in Ghana as well [3].
Paletta et al. [4] proposed accelerating the circularity of plastic-based material systems for
radical innovations in Italy. Considering the principles of the circular economy, it becomes
imperative to address significant aspects of circular systems, including reuse, sharing, repair,
refurbishment, remanufacturing, and recycling. By doing so, a closed-loop system can
be created, thereby effectively reducing the utilization of resources and carbon emissions.
Accordingly, current firms are constantly developing reusable materials and processing
equipment such that defective items and scrap can be converted into scrap returns (i.e.,
secondary raw materials). Not only can this help control costs by reducing waste, but it also
serves as one of the implements of the circular economy, thereby improving the financial
performance of enterprises. On the other hand, process maintenance activity can also be
part of green manufacturing. Process maintenance is a common activity in current firms. It
can avoid more defective products caused by equipment degradation through regular or
irregular maintenance such that material is not wasted.

Based on the above-mentioned strategies involving low waste, this study would de-
velop a multiple-stage and imperfect production–inventory model incorporating scrap
returns and a controllable defective rate. Furthermore, the finished products are manufac-
tured using mixed materials that include scrap returns. To avoid a lack or an unlimited
accumulation of scrap returns, we consider two products with different feed rates of scrap
returns in this production system. The joint economic order quantity (EOQ) model and
the EPQ model are established, wherein the production run time, purchase quantity of
material, number of maintenance times, and recovery rate are decision variables. The
rest of this paper is organized as follows. Section 2 focuses on the review of the related
literature and compares the differences between this study and prior research to highlight
the contributions of our study. In Section 3, the notation and assumptions employed in
the entire paper are established. Section 4 presents the mathematical formulations and
theoretical results. Section 5 provides the solution procedure for this inventory model.
Section 6 presents a numerical example to illustrate a solution procedure, followed by a
sensitivity analysis based on this example in Section 7, which provides managerial insights
and references for decision making. Finally, Section 8 concludes this paper and offers
directions for future research.

2. Literature Review

For the production system regarded as multiple-stage, most studies have considered it
in their production–inventory models. For instance, a two-stage production inventory sys-
tem, considering imperfect production processes, preventive maintenance, and inspection,
was modeled by Darwish and Ben-Daya [5]. Pearn et al. [6] developed a multiple-stage EPQ
with an investment in quality improvement. Then, Chang et al. [7] further considered the
variable assembly rate in the manual process. Sarkar and Shewchuk [8] proposed a produc-
tion system with advanced demand information and early order fulfillment. Paul et al. [9]
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developed a disruption recovery model in a three-stage production inventory system. Wang
and Chan [10] discussed a robust production problem involving inventory inaccuracies
and time delays. The innovative maintenance problem of complement replacement in a
multiple-stage production system with imperfect processes was presented by Su et al. [1].
In a recent study conducted by Su et al. [11], the impact of corporate social responsibility
(CSR) activities in a two-stage assembly production system was investigated. The authors
also presented a conceptual framework that links the appropriate timing and extent of CSR
execution to the outcomes of marketing strategies. Other similar multi-stage production
systems are discussed by Tayyab et al. [12], Wang and Shi [13], and Cui et al. [14].

As far as we know, it is difficult to achieve a perfect process in the actual manufactur-
ing environment. To enhance the practicality of the production–inventory model in the real
world, many scholars have established various assumptions for the imperfect process, such
as constant defective rates, random defective rates, random machine breakdowns, and
random state shifts (i.e., in-control stage to out-of-control stage). Chang et al. [7] considered
a two-stage assembly system (automatic stage and manual stage) with constant defective
rates. Pearn et al. [6] explored a two-stage imperfect production system with completely
backlogged and constant defective rates. Paul et al. [9] proposed a recovery strategy for
maintaining disruptions with random defective rates in a mixed production system. Sarkar
and Shewchuk [8] proposed a new approach for production replenishment and order ful-
fillment in a mixed production system with random defective rates. Öztürk [15] considered
a random machine breakdown in an imperfect production system. In addition, Öztürk [16]
examined an imperfect production inventory system that involved rework, random break-
downs, and inspection costs. To perform an error-free inspection, Dey et al. [17] examined
the effect of random defective rates (that obey a certain distribution) in an imperfect produc-
tion system with random shifts. Dey et al. [18] developed a sustainable imperfect system
with random shifts and selling-price demand. Huang et al. [19] proposed a coordination
supply chain model in which the supplier’s system had random shifts and price-sensitive
demand. Manna et al. [20] addressed important claims regarding the effect of carbon
emission on an imperfect system with random shifts and no advance payment base. For
the disposal of defective products, in addition to discarding or selling at a discount, most
scholars have assumed that the defective products can be completely or partially reworked.
In the real world, there exists another disposal method capable of creating value for de-
fective products, known as scrap returns. Su et al. [21] proposed an imperfect system
where defective products are transformed into scrap returns. However, the issue of scrap
returns is rarely discussed in the literature involving multi-stage production–inventory
systems. For convenience, Table 1 presents a brief comparison of the above-mentioned
literature by types of stages, imperfect process, and disposal. From Table 1, it is easy to
see that there is a research gap involving an imperfect production–inventory model with
multiple stages, scrap returns, and maintenance. Therefore, we take this research gap as
our research direction.

Table 1. Comparison of the major issues of existing EPQ models with the present paper.

References Single/Multiple
Stage

Imperfect
Process

Rework
Process

Scrap
Returns Maintenance

Darwish and
Ben-Daya [5] Multiple RS V

Pearn et al. [6] Multiple CD V

Chang et al. [7] Multiple CD V

Sarker and
Shewchuk [22] Multiple RD V

Paul et al. [9] Multiple RD V
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Table 1. Cont.

References Single/Multiple
Stage

Imperfect
Process

Rework
Process

Scrap
Returns Maintenance

Su et al. [1] Multiple CD V

Su et al. [11] Multiple CD V

Tayyab et al. [12] Multiple RS V

Öztürk [15] Single RB

Öztürk [16] Single RB V V

Dey et al. [17] Single RD/RS V

Dey et al. [18] Single RS

Huang et al. [19] Single RS V

Manna et al. [20] Single RS V

Mahata [23] Single RS V

Su et al. [21] Multiple RS V V

This paper Multiple RS V V V
Note: constant defective rate (CD), random defective rate (RD), random machine breakdowns (RB), random state
shift (RS).

3. Notation and Assumptions

To facilitate the explanation of the research questions and the model establishment
of this paper, the notation and assumptions used throughout this study are summarized
as follows.

3.1. Notation

In order to develop the model, we present the following notation, which includes
parameters and decision variables.

3.2. Assumptions

1. Consider a production line that is not perfect and that produces multiple products,
with the availability of process maintenance. For simplicity, we first establish a
production–inventory model with two products. The production cost and materials
used for the two products are the same, and the materials used are a mixture of
new materials and scrap returns. Figure 1 illustrates a schematic process of the
production line.

2. The defective products can be processed to scrap returns after passing the conversion
stage. The conversion stage is used to process defective products into usable secondary
raw materials through some special equipment, such as a furnace, blender, and
extractor. However, a portion of defective products cannot be processed to scrap
returns due to the imperfect conversion process. This study considers that capital
investment in recovery capacity improvement is available, assuming it increases with
the recovery rate.

3. The process is not always in the in-control stage due to degraded equipment; it
randomly shifts from the in-control stage to the out-of-control stage after a while, t1.
In this study, t1 is assumed to be a random variable with a normal distribution. That
is, t1 ∼ N(µ, σ), where µ and σ are the mean and standard deviation, respectively
(please refer to Su et al. [12]).

4. The defective rate during the in-control stage is constant and lower than or equal to
that during the out-of-control stage, i.e., θ1 ≤ θ2 < 1. In contrast, the defective rate
during the out-of-control stage increases over time, but it can be returned to θ1 after
process maintenance. Note that process maintenance needs to be performed once for
the next cycle after the end of the production system. However, if the maintenance cost
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is affordable, increasing the number of maintenance times during the out-of-control
stage can reduce the waste of resources and indirectly increase production run time to
retard the growth of the production cost. At this time, the number of maintenance
times during the production cycle will be greater than one. Consequently, we will
establish a generalized model for finding the optimal number of maintenance times.
In this study, the defective rate during the out-of-control stage is set as the following
linear function of time (denoted by g(t)):

θ2 = g(t) = θ1 + k
[

t−
(

t1 +
(i− 1)t2

n

)]
< 1,

where t1 + (i − 1)t2/n < t ≤ t1 + it2/n, i = 1, 2, ...., n and k > 0. Note that the
maximum defective rate is θ1 + kt2/n. Because the defective rate must be less than
1, there is a condition for a combination of decision variables, i.e., t2/n < (1− θ1)/k.
Figure 2 shows the change in the defective rate over time during a cycle.

5. It is assumed that the feed rates of scrap returns for two products are different and
that they satisfy the inequality, fr, 1 < fr, 2. Generally, product 1 and product 2 are
arranged for manufacture in the in-control and out-of-control stages, respectively.
In the in-control stage, the feed rate of scrap returns must be less than the recovery
rate to avoid a lack of scrap returns, i.e., fr,1 < p f θ1r. On the contrary, the feed rate
of scrap returns should exceed the recovery rate to avoid an unrestricted accumula-
tion of scrap returns in the out-of-control stage, i.e., fr,2 > p f θ2r. Consequently, the
inequality, fr,1 < p f θ1r ≤ p f θ2r < fr, 2, is held, which implies the recovery rate,
r ∈ ( fr,1/p f θ1, fr, 2/p f θ2).

6. To avoid shortages in sales, the production rate of the finished product is assumed to
exceed the demand rate, i.e., p f (1− θ1) > d1 and p f (1− θ2) > d2.
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4. Model Formulation

Based on the notation and assumptions listed in the previous section, an EPQ model
describing the imperfect production–inventory system with recovery and maintenance
activities can be established. The main objective is to find the optimal production run time,
the number of maintenance times, the purchasing quantity of new material per cycle, and
the recovery rate, while minimizing the total cost per unit time. First, Figure 3 presents the
inventory levels of scrap returns, new material, and finished products throughout a cycle.
As for the inventory level of scrap returns, it increases during the in-control stage (i.e.,
p f θ1r− fr,1 > 0) while it decreases during the out-of-control stage (i.e., p f θ2r− fr,2 < 0)
based on Assumption (4). For the inventory level of new materials, the amount of Qn is
purchased from the supplier at the beginning of the cycle, and then it gradually depletes
to zero over time with the rate − fn < 0. For the inventory level of finished products,
according to Assumption (5), the inventory level of product 1 increases during the in-
control stage with the rate p f (1− θ1)− d1 > 0, and then it depletes to zero over time with
the rate d1. The inventory level of product 2 increases during the out-of-control stage with
the rate p f (1− θ2)− d2 > 0, and then it depletes to zero over time with the rate d2. Now,
we can obtain the following relationships by observing Figure 3:

1. During the in-control stage, the maximum stock of scrap returns can be obtained
by multiplying growth rate and time length, i.e., Qrt = (p f θ1r− fr,1)t1. During the
out-of-control stage, the inventory level of scrap returns (denoted by ISi(t)) can be
governed by the following differential equations:

dISi(t)
dt = Pf θ2r− fr,2

= Pf r
{

θ1 + k
[
t−
(

t1 +
(i−1)t2

n

)]}
− fr,2, t1 +

(i−1)t2
n ≤ t ≤ t1 +

it2
n ,

(1)

with boundary conditions IS1(t1) = Qrt and ISi(t1 + it2/n) = ISi+1(t1 + it2/n),
where i = 1, 2....., n. Solving these differential equations, a general formulation for
ISi(t) can be obtained as follows:

ISi(t) = (p f θ1r− fr,2)t + ( fr,2 − fr,1)t1 + p f kr
{

t2
1+t2

2 −
[
t1 +

(i−1)t2
n

]
t

+ (i−1)t2
n

(
t1 +

it2
2n

)}
, t1 +

(i−1)
n t2 ≤ t ≤ t1 +

i
n t2.

(2)

Based on ISn(t1 + t2) = 0, a closed form of t2 can be derived as follows:

t2 =
fr,2 − p f θ1r +

√
( fr,2 − p f θ1r)2 + 2p f kr( fr,1 − p f θ1r)t1/n

p f kr/n
. (3)

2. The maximum purchasing quantity for new material can be obtained by multiplying
feed rate and total production run time, i.e., Qn = fn(t1 + t2);

3. The maximum stock of product 1 can be obtained by multiplying the growth rate
and time length during the in-control stage. Furthermore, it can also be obtained by
multiplying the demand rate and the period during which the stock depletes, i.e.,

Q f ,1 =
[

p f (1− θ1)− d1

]
t1 = d1t1,d. (4)

After rearranging Equation (4), we can formulate the period during which the stock of
product 1 depletes; that is:

t1,d =

[
p f (1− θ1)− d1

]
t1

d1
. (5)
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4. The following differential equations can govern the inventory level of product 2
during the out-of-control stage (denoted by IPi(t)):

dIPi(t)
dt = Pf (1− θ2)− d2

= Pf

{
1− θ1 − k

[
t−
(

t1 +
(i−1)t2

n

)]}
− d2, t1 +

(i−1)t2
n ≤ t ≤ t1 +

it2
n .

(6)

with boundary conditions IP1(t1) = 0 and IPi(t1 + it2/n) = IPi+1(t1 + it2/n), where
i = 1, 2....., n. Similarly, by solving these differential equations, IPi(t) can be obtained as follows:

IPi(t) = (p f − p f θ1 − d2)(t− t1) +
p f k
2

[
(t2

1 − t2) + 2(i− 1) (t−t1)t2
n − i(i− 1) t2

2
n2

]
,

t1 +
(i−1)

n t2 ≤ t ≤ t1 +
i
n t2.

(7)

5. Because the maximum stock of product 2 is IPn(t1 + t2), it can be obtained by multiplying the
demand rate and the period during which the stock depletes, i.e.,

Q f ,2 = IPn(t1 + t2) = (p f − p f θ1 − d2)t2 +
p f k
2

(
−2t1 −

t2
n

)
t2 = d2t2,d. (8)

After rearranging Equation (8), we can formulate the period during which the stock of
product 2 depletes; that is:

t2,d =
(p f − p f θ1 − d2)t2 +

p f k
2

(
−2t1 − t2

n

)
t2

d2
. (9)

In this paper, we consider the total cost, including purchasing, setup, production, holding,
recovery, maintenance, and opportunity costs. Next, we establish the following elements of
the total cost per cycle:
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(a) Ordering and set-up costs (denoted by OSC): Both ordering and set-up costs are fixed
costs, which implies that OSC = Kc. These costs are associated with the delivery,
layout, inspection, adjustment, and preparation.

(b) Holding cost: The holding cost includes the storage space and preservation for three
stock types: material, scrap returns, and finished products. By examining the pattern
in Figure 3, we have separately compiled the holding cost per cycle for the three types,
as shown below:

(b-1) Cost of holding material (denoted by HCm):

HCm = Sn

{
1
2

Qn(t1 + t2)

}
=

1
2

Sn fn(t1 + t2)
2.

(b-2) Cost of holding scrap returns (denoted by HCr):

HCr = Sr

{
1
2

(
Pf θ1r− fr,1

)
t1

2 +
n
∑

i=1

∫ t1+
i
n t2

t1+
i−1

n t2
ISi(t)dt

}
= Sr

{
1
2

(
Pf θ1r− fr,1

)
t1

2 − p f krt2
2(n+1)(2n+1)

12n2

+ 1
2

(
p f θ1r− fr,2 − p f krt1 +

p f kr
n

)
(t1 + t2) +

p f kr(n+1)(2nt1t2−t2
2)

4n2

+( fr,2 − fr,1)t1 +
p f krt1

2

2 − p f krt1t2
n +

p f kr(3n2t1
2−3nt1t2−2t2

2)

6n2

}
.

(b-3) Cost of holding product 1 (denoted by HC f1):

HC f1 = S f ,1

{
1
2 Q f 1(t1 + t1,d)

}
= 1

2 S f ,1

[
Pf (1− θ1)− d1

]
t1(t1 + t1,d).

(b-4) Cost of holding product 2 (denoted by HC f2):

HC f2 = S f ,2

{
1
2 Q f 2t2,d +

n
∑

i=1

∫ t1+
i
n t2

t1+
i−1

n t2
IPi(t)dt

}
= S f ,2

{
1
2 d2t2,d

2 +
p f kt3

2(n+1)(2n+1)
12n2 +

(n+1)t2
2

2n

(
p f − p f θ1 − d2 −

p f kt2+2p f knt1
2n

)
+

p f k(t2
1t2n2+t3

2)

2n2 +
(p f−p f θ1−d2)(4nt1t2−t2

2)
2n − p f kt2(3n2t2

1−3nt1t2−2t2
2)

6n2

}
.

(c) Production cost (denoted by PC f ): Because the total yield in a cycle is Pf (t1 + t2), the
production cost per cycle is obtained by multiplying the unit production cost by the
total yield; that is: PC f = CPf (t1 + t2).

(d) Recovery cost (denoted by RC): The total quantity of the defective products in a cycle
is p f θ1t1 + p f θ2t2. After multiplying it by the unit processing cost, the recovery cost
per cycle can be obtained as follows:

RC = Cr

{
p f θ1t1 + p f θ2t2

}
= Cr

{
p f θ1t1 +

[
p f t2 − (t2 + t2,d)d2

]}
,

wherein the term of p f t2 − (t2 + t2,d)d2 is the difference between the total yield and
the demand of product 2 in a cycle. It can also be presented as the total quantity of
defective items for product 2, i.e., p f θ2t2 = p f t2 − (t2 + t2,d)d2.

(e) The opportunity cost for recovery loss (denoted by OC): Because the total unrecovered
quantity of defective products is p f θ1t1(1− r) + p f θ2t2(1− r), the opportunity cost
for recovery loss per cycle can be obtained as follows:
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OC = Cl,1

{
p f θ1t1(1− r)

}
+ Cl,2

{
p f θ2t2(1− r)

}
= Cl,1

{
p f θ1t1(1− r)

}
+ Cl,2

{[
p f t2 − (t2 + t2,d)d2

]
(1− r)

}
.

(f) Purchasing cost (denoted by PC): The purchasing cost is the result of multiplying the
unit purchasing cost by the ordering quantity of material, i.e.,

PC = CpQn = Cp fn(t1 + t2)

(g) Maintenance cost for production line (denoted by MC): This cost is the maintenance
cost multiplied by the number of maintenance times; that is:

MC = Cmn

(h) Investment cost in the improvement of recovery equipment (denoted by IC): This
cost is usually formulated as an increasing function of the recovery rate. Imitating
the investment function proposed by Priyan et al. [8], we establish an exponential
investment function of recovery rate, which is IC = λ[e(r−r0)/r0 − 1], in which r0 is
an initial rate of recovery and λ represents the percentage increase in r per dollar
increase in IC. Because the recovery rate must fall in r ∈ ( fr,1/p f θ1, fr, 2/p f θ2), this
study considers an initial rate with the worst state of equipment, such that the initial
recovery rate r0 is larger and close to fr,1/p f θ1. Consequently, the feasible solution
interval of the recovery rate is r ∈ [r0, fr, 2/p f θ2).

By calculating the sum of the above elements and dividing by the cycle time, t1 + t2 + t2,d,
we can obtain the following total cost per unit time (denoted by AC(t2, n, r)):

AC(t2, n, r) =
1

t1 + t2 + t2,d
×
{

OSC + HCm + HCr + HC f1 + HC f2
+PC f + RC + OC + PC + MC + IC

}
, (10)

in which t2, n, and r are decision variables.

5. Model Solution

The primary objective of this study is to determine the optimal production, mainte-
nance, and investment strategies to achieve minimal total cost per unit. Equation (3) shows
that the value of the t2 depends on n and r; hence, the total cost function can be reduced
to AC(n, r). Because n is a positive integer, we first explore the objective under the given
number of maintenance times, i.e., Min AC(r|n ). According to the first-derivative test, we
observe the pattern of AC(r|n ) during r ∈ [r0, fr, 2/p f θ2). Under the AC(r|n ) is a convex
function of r; if dAC(r|n )/dr|r=r0 ≥ 0, AC(r|n ) increases during r ∈ [r0, fr, 2/p f θ2). This
implies that the investment of recovery equipment would not be beneficial because the
larger value for r results in a higher value of AC(r|n ). Therefore, the optimal recovery rate
is r∗ = r0. If dAC(r|n )/dr|r=r0 < 0, and the recovery rate can be increased to r∗, which
satisfies dAC(r|n )/dr|r=r∗ = 0. For the number of maintenance times, we can observe
the effect of increasing the times on the value of AC(r∗|n ) to determine the optimal times.
Based on the above results, Figure 4 plots a simple algorithm procedure for finding the
optimal solution (r∗, n∗, t∗2) in which the ε > 0 is an accuracy of solution t∗2 . In summary,
because the proposed model is a nonlinear integer programming problem with the high-
power expression of the polynomial function, it is difficult to provide a theoretical proof to
verify the optimal solution. Instead, this study tries to use numerical analysis to verify the
convexity of the total cost function.
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6. Numerical Example

To exhibit the usability of the proposed model, we quote an application example
proposed by Su et al. [12]. They investigated an imperfect production–inventory system
involving a pulp and paper manufacturing industry with an inner circular economy,
wherein defective products and waste can become scrap returns after passing specific
processing in converted equipment. This system manufactures two products with different
feed rates of scrap returns, and the lower feed rate takes precedence to enter the production
line. Based on Su et al., this study extends their work to survey the maintenance strategy
during the out-of-control stage. The values of the parameters pertaining to the imperfect
production–inventory system are listed as follows:

• Demand parameters: d1 = 400 kg/day and d2 = 300 kg/day;
• Production parameters: fn = 100 kg/day, fr, 1 = 2 kg/day, fr, 2 = 40 kg/day,

p f = 600 kg/day, and t1 = 3.4799 days. Note that the value of t1 adopts the esti-
mated results from Su et al. [12];

• Cost parameters: Kc = $1000, C = $10/kg, Cp = $5/kg, Cr = $2/kg, Cl,1 = $0.15/kg,
Cl,2 = $0.10/kg, Cm = 50/time, Sr = $2 kg/day, Sn = $3 kg/day, S f ,1 = $6 kg/day,
S f ,2 = $4 kg/day, and λ = $100;

• Imperfect parameters: θ1 = 0.1, k = 0.01, and r0 = 0.1;
• Accuracy parameter: ε = 10−4.

After implementing the proposed algorithm, the optimal solutions can be obtained,
i.e., r∗ = 0.1950, n∗ = 2, t∗2 = 1.2081, and AC(t∗2 , n∗, r∗) = 9036.76. Furthermore, the
curves of the total cost function with respect to r under different values of n are plotted
in Figure 5. Note that these curves are plotted in the feasible solution interval of the
recovery rate, r ∈ [r0, fr, 2/p f θ2). Figure 6 also shows the graphical representation of
AC(n|r∗ ). From Figures 5 and 6, it is found that the convexity of the total cost function
can be verified numerically, which implies that the optimal solutions obtained through the
algorithm can ensure the global optimum. In other words, implementing both a circular
economy and process maintenance strategies can promote cost control in this numerical
example. From Figure 5, it is found that the total cost per unit time is 9182.02 when both
circular economy and process maintenance strategies are unimplemented (i.e., our model
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becomes the traditional EPQ model when n = 1 and r = r0 = 0.1). If the capital investment
in recovery capacity improvement is implemented, the total cost per unit time will be
saved by 138.40 (i.e., cost from 9182.02 to 9043.62). However, the total cost per unit time
can be saved by 145.26 (i.e., cost from 9182.02 to 9036.76) if both capital investment and
maintenance activity are implemented. This result is partly similar to that of Darwish and
Ben-Day [5]. The difference is that we further take the rework process and scrap returns
into consideration at the same time.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 5. The curves of the total cost per unit time with r  for 1(1)8n = . 

 

Figure 6. The graphical representation of 
*( )AC n r . 

7. Sensitivity Analysis and Managerial Insights 

To obtain some managerial insights for decision making, this section further per-

forms a sensitivity analysis involving costs based on the above numerical example. That 

is, we investigate the effects of changes to cost parameters, including 
cK , C , 

,1lC , 
,2lC , 

pC  , 
rC  , 

,1fS  , 
,2fS  , 

nS  , 
rS  ,   , and 

mC  , on the values of *n  , *r  , *

2t  , *

nQ  , and 
* * *

2( , , )AC t n r . This type of parameter is directly related to costs, and, logically, the increase 

in each cost directly leads to an increase in the total cost. Therefore, this study aims to 

analyze the impacts of these parameters on the optimal solutions through sensitivity anal-

ysis. The goal is to understand the contribution and influence of these parameters on the 

Figure 5. The curves of the total cost per unit time with r for n = 1(1)8.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 5. The curves of the total cost per unit time with r  for 1(1)8n = . 

 

Figure 6. The graphical representation of 
*( )AC n r . 

7. Sensitivity Analysis and Managerial Insights 

To obtain some managerial insights for decision making, this section further per-

forms a sensitivity analysis involving costs based on the above numerical example. That 

is, we investigate the effects of changes to cost parameters, including 
cK , C , 

,1lC , 
,2lC , 

pC  , 
rC  , 

,1fS  , 
,2fS  , 

nS  , 
rS  ,   , and 

mC  , on the values of *n  , *r  , *

2t  , *

nQ  , and 
* * *

2( , , )AC t n r . This type of parameter is directly related to costs, and, logically, the increase 

in each cost directly leads to an increase in the total cost. Therefore, this study aims to 

analyze the impacts of these parameters on the optimal solutions through sensitivity anal-

ysis. The goal is to understand the contribution and influence of these parameters on the 

Figure 6. The graphical representation of AC(n|r∗ ).



Mathematics 2023, 11, 3041 12 of 16

7. Sensitivity Analysis and Managerial Insights

To obtain some managerial insights for decision making, this section further performs
a sensitivity analysis involving costs based on the above numerical example. That is, we
investigate the effects of changes to cost parameters, including Kc, C, Cl,1, Cl,2, Cp, Cr,
S f ,1, S f ,2, Sn, Sr, λ, and Cm, on the values of n∗, r∗, t∗2 , Q∗n, and AC(t∗2 , n∗, r∗). This type
of parameter is directly related to costs, and, logically, the increase in each cost directly
leads to an increase in the total cost. Therefore, this study aims to analyze the impacts
of these parameters on the optimal solutions through sensitivity analysis. The goal is to
understand the contribution and influence of these parameters on the overall system under
their changes. The results of the sensitivity analysis are tabulated, as shown in Table 2. Note
that each parameter is changed separately by +20%, +10%, −20%, or −10%. By observing
the data trend in Table 2, we can derive the following managerial insights, which could be
a guide for decision making:

1. Though the result that increasing the cost parameters will lead to an increase in the
total cost is in line with practical intuition, it is found that the total cost per unit time
is relatively sensitive to the production and holding costs (i.e., C, S f ,1, S f ,2, and Sn).
From a business operations perspective, if companies aim to effectively reduce total
costs, they should prioritize parameters that exhibit relatively high sensitivity.

2. When considering production-related cost parameters (i.e., Kc, C, Cp, Cr, λ, and Cm),
an increase in the cost parameter value leads to higher optimal values of r∗ and
t∗2 . This implies that the manager could lengthen the production cycle to allocate
the growth of these costs. Furthermore, the number of maintenance times could
simultaneously increase when these costs increase excessively. From Table 2, the
number of maintenance times changes from two to three as the production cost
increases by 20%. More precisely, the number of maintenance times starts to increase
when the production cost increases by 12%. Table 3 also provides information about
the other cost parameters related to the upper boundaries of change in the number of
maintenance times. The results show that a change in production-related cost has a
higher impact on the number of maintenance times. On the other hand, the total cost
per unit time is 9182.02 when both strategies are unimplemented. If both strategies
are implemented, the total cost per unit can be saved by 150.84, as the parameter λ
decreases by 20% (i.e., cost from 9182.02 to 9031.18; the reduction rate is 16.4%). If the
parameter Cm decreases by 20%, the total cost per unit can be saved by 147.35 (i.e., cost
from 9182.02 to 9034.67; the reduction rate is 16.0%). From the above results, although
both reduction rates are close, reducing parameter λ may be relatively efficient.

3. Regarding holding cost parameters (i.e., S f ,1, S f ,2, Sn, and Sr), with the increase in
the value of S f ,1 or Sr, the optimal values of r∗ and t∗2 also increase. This implies
that the manager could extend the production cycle to control the growth of these
kinds of holding costs. For the holding cost of product 1, the upper boundary of
change in the number of maintenance times is also shown in Table 3. Note that the
effect of the change to a parameter Sr on the number of maintenance times is not
significant. However, the holding costs of product 2 (S f ,2) and the new material (Sn)
yield opposite results, and even the number of maintenance times decreases. The
main reason is that the production of product 2 is in the out-of-control stage involving
decision making, and increasing the recovery rate and production time would lead to
an increase in inventories of product 2 and new material requirements. This results in
the manager having to reduce the length of the production cycle and the number of
maintenance times to avoid the excessive growth of holding costs when the values of
S f ,2 and Sn increase.

4. As for opportunity cost parameters (i.e., Cl,1 and Cl,2), the effects of the changes to
opportunity costs on the values of optimal solutions and total cost are not significant.
This implies that the manager could focus on other high-impact parameters related to
production or investment control.
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Table 2. Sensitivity analysis for cost parameters.

Parameter Change
(%)

Change in

n* r* t*
2 Q*

n AC(t*
2, n*, r*)

Kc

20 2 0.1981 1.2402 472.0100 9071.29 (+0.38%)
10 2 0.1966 1.2242 470.4100 9054.07 (+0.19%)
−10 2 0.1935 1.1919 467.1800 9019.35 (−0.19%)
−20 2 0.1918 1.1757 465.5600 9001.85 (−0.39%)

C

20 3 0.2256 1.5375 501.7400 9995.42 (+10.61%)
10 2 0.2098 1.3657 484.5600 9520.64 (+5.35%)
−10 2 0.1783 1.0426 452.2500 8543.59 (−5.46%)
−20 2 0.1590 0.8673 434.7200 8039.53 (−11.04%)

Cl,1

20 2 0.1951 1.2092 468.9140 9037.63 (+0.01%)
10 2 0.1951 1.2087 468.8590 9037.19 (+0.00%)
−10 2 0.1950 1.2076 468.7470 9036.32 (−0.00%)
−20 2 0.1949 1.2070 468.6920 9035.88 (−0.01%)

Cl,2

20 2 0.1950 1.2081 468.7950 9036.87 (+0.01%)
10 2 0.1950 1.2081 468.7990 9036.81 (+0.01%)
−10 2 0.1950 1.2082 468.8070 9036.70 (−0.00%)
−20 2 0.1950 1.2082 468.8110 9036.64 (−0.00%)

Cp

20 2 0.1976 1.2349 471.4810 9118.01 (+0.90%)
10 2 0.1963 1.2216 470.1450 9077.42 (+0.45%)
−10 2 0.1937 1.1947 467.4560 8996.03 (−0.45%)
−20 2 0.1924 1.1811 466.1030 8955.25 (−0.90%)

Cr

20 2 0.1961 1.2187 469.8630 9054.06 (+0.19%)
10 2 0.1955 1.2134 469.3330 9045.41 (+0.10%)
−10 2 0.1945 1.2028 468.2730 9028.09 (−0.10%)
−20 2 0.1940 1.1975 467.7430 9019.41 (−0.90%)

S f ,1

20 2 0.2148 1.4216 490.1450 9267.00 (+2.55%)
10 2 0.2053 1.3168 479.6730 9153.84 (+1.30%)
−10 2 0.1837 1.0950 457.4850 8915.29 (−1.34%)
−20 2 0.1712 0.9767 445.6579 8788.90 (−2.74%)

S f ,2

20 1 0.1315 0.6431 412.3048 9303.05 (+2.95%)
10 2 0.1664 0.9332 441.3092 9185.70 (+1.65%)
−10 3 0.2245 1.5246 500.4450 8858.75 (−1.97%)
−20 3 0.2507 1.8530 533.2880 8650.57 (−4.27%)

Sn

20 2 0.1921 1.1780 465.7870 9151.05 (+1.26%)
10 2 0.1935 1.1929 467.2790 9093.94 (+0.63%)
−10 2 0.1965 1.2237 470.3600 8979.49 (−0.63%)
−20 2 0.1981 1.2396 471.9520 8922.13 (−1.27%)

Sr

20 2 0.1952 1.2099 468.9770 9045.76 (+0.10%)
10 2 0.1951 1.2090 468.8900 9041.26 (+0.05%)
−10 2 0.1949 1.2073 468.7160 9032.26 (−0.05%)
−20 2 0.1949 1.2064 468.6300 9027.75 (−0.10%)

λ

20 2 0.1931 1.1889 466.8750 9042.20 (+0.06%)
10 2 0.1941 1.1985 467.8350 9039.49 (+0.03%)
−10 2 0.1960 1.2179 469.7790 9033.99 (−0.03%)
−20 2 0.1969 1.2277 470.7640 9031.18 (−0.06%)

Cm

20 2 0.1952 1.2101 468.9970 9038.84 (+0.02%)
10 2 0.1951 1.2091 468.9000 9037.80 (+0.01%)
−10 2 0.1949 1.2072 468.7060 9035.72 (−0.01%)
−20 2 0.1948 1.2062 468.6090 9034.67 (−0.02%)

Table 3. Boundaries of change in the number of maintenance times.

Parameter Kc C Cp Cr λ Cm S f ,1

Boundary 139.5% 12.0% 143.6% 220.5% 499.7% 160.9% 20.3%
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8. Conclusions

Based on Su et al. [12], this paper explored a production–inventory scenario involving
an imperfect production system and developed a more general model with both the circular
economy and process maintenance activities, which is not presented in previous studies.
This system was formulated as a joint EOQ and EPQ model aimed at determining the
optimal production run time, purchase quantity of material, number of maintenance
times, and recovery rate that would minimize the total cost per unit time. Furthermore, a
computational algorithm was provided to effectively find the optimal solutions. Though it
is challenging to mathematically prove the existence and uniqueness of the optimal solution,
this study utilized numerical and graphical techniques to ensure the optimal solutions
obtained through the algorithm were the local optimum. This study also performed
numerical and sensitivity analyses on a practical case to provide some managerial insights
pertaining to the reference for decision making. First, an optimal combination of circular
economy and process maintenance strategies was determined by observing the impact of
parameter changes on optimal decisions. In the proposed case, the total cost per unit time
can be saved by 145.26 (i.e., reducing the cost from 9182.02 to 9036.76) when both capital
investment and process maintenance strategies are implemented in the production system.
Second, when the cost-related parameter increases, the capital investment in recovery
capacity improvement would be increased first, and the number of maintenance times
starts to increase when it increases to a boundary (please see Table 3). Third, enhancing
the production cost can significantly decrease the overall cost per unit time. The total cost
per unit time can be saved by 997.23 if the unit production cost of the finished product is
decreased by 20%. Finally, in terms of holding cost parameters, the total cost per unit time
can be effectively reduced by improving the holding cost of product 2 (i.e., a reduction of
4.27% in the total cost can be achieved by reducing the holding cost of product 2 by 20%).

Some research limitations and suggestions for future research can be considered to
extend our model. Initially, one can take into account the deteriorating properties of items,
such as raw materials and finished products. Second, the maintenance process may be im-
perfect in practice; that is, the defective rate in the out-of-control stage cannot be adjusted to
the in-control stage at each maintenance time. Third, multi-products, multi-materials, and
multi-stages can be explored to make the proposed model more applicable to production
situations. Fourth, we can consider the impacts of external factors, such as government
policy, COVID-19, and international influences, on demand patterns, material procurement,
labor, and shipment. Finally, implementing CSR activities (e.g., social donations, envi-
ronmental protection, green industrial development, etc.) has already been an important
topic at present, and it has been confirmed that the financial performance of firms can be
improved. Therefore, the effects of CSR activities in the proposed production system can
be explored in future research.
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Abbreviations

Parameters
Kc The ordering and set-up costs per cycle;
fn The feed rate of new materials;
fr,j The feed rate of scrap returns for a product j, where j = 1, 2;
p f The production rate of the finished product;
dj The demand rate of the product j, where j = 1, 2;
θ1 The defective rate during the in-control stage;
θ2 The defective rate during the out-of-control stage;
Qrt The maximum stock of scrap returns;
Q f ,j The maximum stock of the product j, where j = 1, 2;

Sr The holding cost of scrap returns per unit/per unit time;
Sn The holding cost of new material per unit/per unit time;
S f ,j The holding cost of product j per unit/per unit time, where j = 1, 2;
C The production cost of a finished product per unit;
Cr The processing cost for converting a defective product to scrap returns;

Cl,j
The opportunity cost of a defective product j that cannot be converted to scrap returns,
where j = 1, 2;

Cp The purchasing cost of new material per unit;

Cm
The maintenance cost of equipment for recovering an out-of-control stage to an in-control
stage in the production line;

tj,d The period during which the stock is depleted for the product j, where j = 1, 2;
t1 The production run time during the in-control stage; random variable.
Decision variables
t2 The production run time during the out-of-control stage;
Qn The purchasing quantity of new material per cycle;
r The recovery rate of scrap returns;
n The number of maintenance times with n ≥ 1.
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